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Explainable Identification of Dementia From
Transcripts Using Transformer Networks

Loukas Ilias and Dimitris Askounis

Abstract—Alzheimer’s disease (AD) is the main cause of
dementia which is accompanied by loss of memory and
may lead to severe consequences in peoples’ everyday life
if not diagnosed on time. Very few works have exploited
transformer-based networks and despite the high accuracy
achieved, little work has been done in terms of model
interpretability. In addition, although Mini-Mental State
Exam (MMSE) scores are inextricably linked with the iden-
tification of dementia, research works face the task of de-
mentia identification and the task of the prediction of MMSE
scores as two separate tasks. In order to address these
limitations, we employ several transformer-based models,
with BERT achieving the highest accuracy accounting for
87.50%. Concurrently, we propose an interpretable method
to detect AD patients based on siamese networks reaching
accuracy up to 83.75%. Next, we introduce two multi-task
learning models, where the main task refers to the identi-
fication of dementia (binary classification), while the aux-
iliary one corresponds to the identification of the severity
of dementia (multiclass classification). Our model obtains
accuracy equal to 86.25% on the detection of AD patients
in the multi-task learning setting. Finally, we present some
new methods to identify the linguistic patterns used by AD
patients and non-AD ones, including text statistics, vocab-
ulary uniqueness, word usage, correlations via a detailed
linguistic analysis, and explainability techniques (LIME).
Findings indicate significant differences in language be-
tween AD and non-AD patients.

Index Terms—Alzheimer’s disease, dementia, BERT,
multi-task learning, LIME.

I. INTRODUCTION

A LZHEIMER’S disease (AD) constitutes a neurodegen-
erative disease characterized by a progressive cognitive

decline and is the leading cause of dementia. Signs of dementia
include amongst others: problems with short-term memory,
keeping track of a purse or wallet, paying bills, planning and
preparing meals, remembering appointments, or travelling out
of the neighborhood [1]. Because of the fact that Alzheimer’s
dementia gets worse over time, it is important to be diagnosed
early. For this reason, several research works have been in-
troduced targeting at diagnosing dementia, which use imaging
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techniques [2], CSF biomarkers [3], [4], or EEG signals [5].
Due to the fact that dementia affects speech to a high degree,
recently the research has moved towards dementia identification
from spontaneous speech, where several shared tasks [6], [7]
have been developed in order to distinguish AD from non-AD
patients.

Several research works have been conducted with regard
to the identification of AD patients using speech and tran-
scripts. The majority of them have employed feature extrac-
tion techniques [8]–[12], in order to train traditional Machine
Learning (ML) algorithms, such as Logistic Regression, k-NN,
Random Forest, etc. However, feature extraction constitutes a
time-consuming procedure achieving poor classification results
and often demands some level of domain expertise. Recently,
researchers introduce deep learning architectures [13], [14], such
as CNNs and BiLSTMs, so as to improve the classification re-
sults. Despite the success of transformer-based models in several
domains, their potential has not been investigated to a high
degree in the task of dementia identification from transcripts,
where research works [15] having proposed them, use their
outputs as features to train shallow machine learning algorithms.
Concurrently, all research works except one [16], train machine
learning models, in order to distinguish AD patients from non-
AD patients, without taking into account the severity of dementia
via Mini-Mental State Exam (MMSE) scores. Motivated by this
limitation, we propose two multi-task learning models minimiz-
ing the loss of both dementia identification and its severity.

At the same time, to the best of our knowledge, the research
works that have proposed deep learning models based on trans-
former networks have focused their interest only on improving
the classification results obtained by CNNs, BiLSTMs etc. in-
stead of exploring possible explainability techniques. Specifi-
cally, due to the fact that deep learning models are considered
black boxes, it is important to propose ways of making them
interpretable, since it is imperative for a clinician to be informed
why the specific deep neural network classified a person as
AD patient or not. To the best of our knowledge, only one
work [17] has experimented with interpreting its proposed deep
learning model (CNN-LSTM model) in the field of dementia
detection using transcripts. In order to tackle this limitation, our
contribution is twofold. First, we propose an interpretable neural
network architecture. Next, we extend prior work and employ
LIME [18], a model agnostic framework for interpretability,
aiming to explain the predictions made by our best performing
model. Concurrently, we propose an in-depth analysis of the
language patterns used between AD and non-AD patients aiming
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to shed more light on the main differences observed in the
vocabulary that may distinguish people suffering from dementia
from healthy people.

Our main contributions can be summarized as follows:
� We employ several transformer-based models, pretrained

in biomedical and general corpora, and compare their
performances.

� We propose an interpretable method based on the siamese
neural networks along with a co-attention mechanism, so
as to detect AD patients.

� We introduce two models in a multi-task learning frame-
work, where the one task is the identification of dementia
and the second one is the detection of MMSE score (sever-
ity of dementia). We model the MMSE detection task as a
multiclass classification task instead of a regression task.

� We perform a thorough linguistic analysis regarding the
differences in language between control and dementia
groups.

� We employ LIME, in order to explain the predictions of
our best performing model.

II. RELATED WORK

A. Feature-Based

The authors in [19], [20] introduced approaches based on
multimodal data (both linguistic and acoustic features) to detect
AD patients (binary classification task) and predict MMSE
score (regression task). More specifically, the authors in [19]
exploited dimensionality reduction techniques followed by ma-
chine learning classifiers and stated that Logistic Regression
(LR) with language features was their best performing model in
terms of classifying AD and non-AD patients. With regards to
estimating the MMSE score, they claimed that a Random Forest
classifier with language features achieves the lowest RMSE
and R2 scores. The combination of linguistic and acoustic
features did not perform well on both tasks. In [20], the authors
trained both shallow and deep learning models (LSTM and
CNN) on a feature set consisting of acoustic features (i-vectors,
x-vectors) and text features (word vectors, BERT embeddings,
LIWC features, and CLAN features) to detect AD patients. They
found that the top-performing classification models were the
Support Vector Machine (SVM) and Random Forest classifiers
trained on BERT embeddings, which both achieved an accuracy
of 85.4% on the test set. Regarding the regression task, they
claimed that the gradient boosting regression model using BERT
embeddings outperformed all the other introduced architectures.
Authors in [15] trained shallow machine learning algorithms
(Logistic Regression and Support Vector Machine for detecting
AD patients, and Support Vector Machines based regression
and Partial Least Squares Regressor for predicting the MMSE
scores) using embeddings extracted by transformer-based mod-
els, namely BERT, RoBERTa, DistilBERT, DistilRoBERTa, and
BioMed-RoBERTa-base. A similar approach was conducted
by [21], where the authors extracted embeddings for each word
of the transcript using transformer-based networks, exploited
four types of pooling functions for generating a transcript-level

representation, and trained a Logistic Regression classifier. Re-
search work [22] merged acoustic (x-vectors) and linguistic fea-
tures and trained a Support Vector Machine Classifier. In terms
of the language features, (i) a Global Maximum pooling, (ii) a
bidirectional LSTM-RNNs provided with an attention module,
and (iii) the second model augmented with part-of-speech (POS)
embeddings were trained on the top of a pretrained BERT model.
Nasreen et al. [11] extracted two feature sets, namely disfluency
and interactional features, and performed an in-depth statistical
analysis in an attempt to investigate the differences between AD
and non-AD subjects in terms of these features. Findings show
that these two groups of people present significant differences.
Then, they exploited shallow machine learning algorithms using
the aforementioned feature sets to distinguish AD from non-AD
patients and obtained an accuracy of 0.90 when providing both
feature sets as input to the SVM classifier.

B. Deep Learning

Research works [23], [24] employed a hierarchical attention
neural network to detect AD patients. More specifically, the
authors in [23] evaluated their proposed model in both manual
and automatic transcripts and found that a hierarchical neural
network achieves an improvement in F1-score in comparison to
other deep learning models. In [24], the authors tried to interpret
the decisions made by the proposed model by visualizing words
and sentences and performing statistical analyses. However, they
were not able to explain why their model pays attention to
some specific words more than others. Moreover, an explainable
approach was introduced by [17]. Specifically, after proposing
three deep learning architectures based on CNNs and RNNs,
the authors applied visualization techniques and showed which
linguistic characteristics are indicative of dementia, i.e., short
answers, repeated requests for clarification, and interjections at
the start of each utterance. Authors in [25] proposed a multi-task
learning framework (Sinc-CLA), so as to predict age and MMSE
scores (both considered as regression tasks) and used only
speech as input for their proposed network. Concurrently, they
introduced shallow networks with input i-vectors and x-vectors
both in single and multi-task learning frameworks. They claimed
that using x-vectors in a multi-task learning framework yields
the best results in terms of the estimation of both age and MMSE
scores. Ref. [26] introduced both feature-based and transformer-
based methods. Regarding transformer-based models, they fine-
tuned the BERT model to detect AD patients achieving better
evaluation results than the ones achieved via the feature-based
methods. For estimating the MMSE score they proposed only
feature-based approaches. Research work [16] is the most sim-
ilar to ours. The authors proposed transformer-based models
using text, audio, and images (they converted audio to images
using Mel Frequency Cepstral Coefficient). Regarding text, they
employed BERT and Longformer. They claimed that models
using only text data outperformed all the other proposed ones.
The fusion of text and audio did not achieve better results.
They introduced also a multi-task learning architecture using
only text as input, in order to predict the MMSE score (re-
gression task) and detect AD patients (binary classification
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task). Results showed limited improvements in classification
and a negative impact in regression. We extend this research
work by employing more transformer-based networks with an
efficient training strategy, proposing a new interpretable method
to detect AD patients based on siamese networks, introducing
two models in a multi-task learning framework by regarding
the MMSE prediction task as a multiclass classification task
and employing explainability techniques. On the other hand,
research works [27] & [28] introduced deep learning models
including CNNs and LSTM neural networks with feed-forward
highway layers respectively. In [27] results suggested that the
utterances of the interviewer boost the classification perfor-
mance. A similar methodology with [28] was proposed by [29],
where the authors exploited both BERT and LSTMs with gating
mechanism and showed that LSTM with gating mechanism
outperforms BERT model with gating mechanism. They stated
that this difference may be attributable to the fact that BERT
is very large in comparison to the LSTM models. Researchers
in [30] introduced four approaches for detecting AD patients.
Specifically, they trained a hierarchical neural network with
an attention mechanism on linguistic features. Concurrently,
they proposed a Siamese Neural Network and a Convolutional
Neural Network using audio waveforms. Finally, they extracted
features from audio segments and trained an SVM classifier.
Results showed that the combination of audio features, CNNs,
and hierarchical neural network achieved the best classification
results.

C. Related Work Review Findings

From the aforementioned research works, it is evident that
despite the negative consequences dementia has in people’s
everyday life, little work has been done so far towards its iden-
tification. More specifically, most researchers introduce feature
extraction approaches from audio and transcripts and train ML
algorithms, such as SVM, LR, etc. Because of the fact that
feature extraction constitutes a time-consuming procedure and
does not generalize well to new AD patients, researchers have
started exploiting deep learning methods, such as CNNs and
LSTMs, which obtain low performances. However, despite the
fact that pretrained transformer models achieve new state-of-
the-art results in several domains, including the biomedical one,
their potential has been mainly used as embeddings for training
shallow ML algorithms, such as SVM or LR. Concurrently, little
has been done regarding the interpretability of the proposed deep
learning models as well as the main differences observed in the
language between AD patients and non-AD patients.

Our work is different from the research works mentioned
above, since we: (a) propose several pretrained transformer-
based models and compare their performances, (b) introduce the
idea of siamese neural networks along with a co-attention mech-
anism towards the task of dementia classification, (c) convert the
MMSE regression task into a multiclass classification one and
explore if it helps dementia identification, (d) perform a detailed
linguistic analysis to find the linguistic patterns that distinguish

TABLE I
MEAN AND STANDARD DEVIATION OF THE MMSE SCORES FOR THE TWO

MAIN GROUPS (AD AND NON-AD PATIENTS)

AD patients from non-AD ones, and (e) exploit LIME for
explaining the predictions made by our best performing model.

III. DATASET

We use the ADReSS Challenge Dataset [6] for conducting
our experiments. In contrast to other datasets, this dataset is
matched for gender and age, so as to minimize the risk of bias in
the prediction tasks. Moreover, it has been selected in such a way
so as to mitigate biases often overlooked in evaluations of AD
detection methods, including repeated occurrences of speech
from the same participant (common in longitudinal datasets) and
variations in audio quality. It consists of speech recordings along
with their associative transcripts and includes 78 non-AD and 78
AD subjects. In addition, the dataset includes the MMSE scores
for each subject except one. We report the mean and standard
deviation of the MMSE scores for the two main groups, i.e., AD
patients and non-AD ones, in Table I. Each participant (PAR) has
been assigned by the interviewer (INV) to describe the Cookie
Theft picture from the Boston Diagnostic Aphasia Exam [31].
Due to the fact that the transcripts are annotated using the CHAT
coding system [32], we use the python library PyLangAcq [33]
for having access to the dataset. We use data (utterances) only
from PAR and conduct our experiments at the transcript-level.
The ADReSS Challenge dataset has been divided into a train
and a test set. The train set consists of 54 AD patients and 54
non-AD ones, while the test set consists of 24 AD patients and
24 non-AD ones.

IV. PROBLEM STATEMENT

In this section, the problem statement used in this paper is
presented. More specifically, it can be divided into two problems,
namely the Single-Task Learning (STL) Problem and the Multi-
Task Learning (MTL) Problem, which are presented in detail in
Sections IV-A and IV-B respectively.

A. Single-Task Learning Problem

Let a dataset Sn×2 =

⎡
⎢⎣

s1, label1
s2, label2

.

.

.
sn, labeln

⎤
⎥⎦ consist of a set of transcrip-

tions belonging to the dementia group, d ⊂ S , and a set of tran-
scriptions belonging to the control group, c ⊂ S . Furthermore,
labeli ∈ {0, 1}, 1 ≤ i ≤ n, where 0 denotes that si ∈ c, while
1 denotes that si ∈ d. The task is to identify if a transcription
si ∈ S , belongs to a person suffering from dementia, i.e., si ∈ d,
or not, i.e., si ∈ c.



4156 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 8, AUGUST 2022

B. Multi-Task Learning Problem

Let a dataset Sn×3 =

⎡
⎢⎣

s1, label1,mmse1
s2, label2,mmse2

.

.

.
sn, labeln,mmsen

⎤
⎥⎦ consist of a set of

transcriptions belonging to the dementia group, d ⊂ S , and a set
of transcriptions belonging to the control group, c ⊂ S . Further-
more, labeli ∈ {0, 1}, 1 ≤ i ≤ n, where 0 denotes that si ∈ c,
while 1 denotes that si ∈ d. Moreover, mmsei indicates the
MMSE scores. The tasks here are to identify (i) if a transcription
si ∈ S , belongs to a person suffering from dementia, i.e., si ∈ d,
or not, i.e., si ∈ c, as well as (ii) to identify the MMSE scores
of each person.

V. PREDICTIVE MODELS

In this section, we describe the models used for detecting AD
patients. Specifically, Section V-A refers to the models employed
in the single-task learning setting, whereas in Section V-B we
refer to the models used for jointly learning to identify AD
patients and detect the severity of dementia.

A. Single-Task Learning

1) Transformer-Based Models: We exploit the following
transformer-based networks in our experiments: BERT [34],
BioBERT [35], BioClinicalBERT [36], ConvBERT [37],
RoBERTa [38], ALBERT [39], and XLNet [40].

Regarding our experiments, we pass each transcription
through each pretrained model mentioned above. The output
of each model is passed through a Global Average Pooling layer
followed by two dense layers. The first dense layer consists of
128 units with a ReLU activation function and the second one
has one unit with a sigmoid activation function to give the final
output.

2) Transformer-Based Models With Co-Attention Mecha-
nism: In this section, we present an interpretable method to
differentiate AD from non-AD patients. First, we split each
transcription s in the dataset into two statements of equal length
(s1 & s2). In this way, we have to categorize a pair of statements
(s1 & s2) into dementia or control group. To do this, we pass
s1 and s2 through the transformer-based models mentioned in
Section V-A1, i.e., BERT, BioBERT, BioClinicalBERT, Con-
vBERT, RoBERTa, ALBERT, and XLNet. These models can
be considered as siamese in our experiments, since we make
them share the same weights. Then, we implement a co-attention
mechanism introduced by [41] and adopted in several studies,
including [42], [43], over the two embeddings of the two state-
ments (outputs of the transformer-based models), in order to
render the entire architecture interpretable.

Formally, let x1
1, x

1
2, x

1
3, . . ., x

1
N and x2

1, x
2
2, x

2
3, . . ., x

2
T be the

tokens of s1 and s2 respectively. These tokens are passed to the
transformer-based models as described via the equations below:

C = model
(
x1
1, x

1
2, x

1
3, . . ., x

1
N

)
, C ∈ Rd×N (1)

S = model
(
x2
1, x

2
2, x

2
3, . . ., x

2
T

)
, S ∈ Rd×T (2)

where model is one of the following: BERT, BioBERT, Bio-
ClinicalBERT, ConvBERT, RoBERTa, ALBERT, and XLNet.
We have omitted the first dimension, which corresponds to
the batch size. Following the methodology proposed by [41],
given the output of the model receiving the tokens of s1 (C ∈
Rd×N ) and the output of the model receiving the tokens of s2
(S ∈ Rd×T ), where d denotes the hidden size of the model,
the affinity matrix F ∈ RN×T is calculated using the equation
F = tanh

(
CTWlS

)
, where Wl ∈ Rd×d is a matrix of learn-

able parameters. Next, this affinity matrix is considered as a
feature and we learn to predict the attention maps for both
statements via the following, Hs = tanh (WsS + (WcC)F )
and Hc = tanh

(
WcC + (WsS)F

T
)
, where Ws,Wc ∈ Rk×d

are matrices of learnable parameters. The attention probabil-
ities for each word in both statements are calculated through
the softmax function as follows, as = softmax

(
wT

hsH
s
)
,

ac = softmax
(
wT

hcH
c
)
, where as ∈ R1×T and ac ∈ R1×N .

Whs,Whc ∈ Rk×1 are the weight parameters. Based on the
above attention weights, the attention vectors for each state-
ment are obtained by calculating the weighted sum of the
features from each statement. Formally, ŝ =

∑N
i=1 a

s
i s

i, ĉ =∑T
j=1 a

c
jc

j , where ŝ ∈ R1×d and ĉ ∈ R1×d. Finally, these two
vectors are concatenated, i.e., p = [ŝ, ĉ], where p ∈ R1×2d and
we pass the vector p to a dense layer with 128 units and a ReLU
activation function followed by a dense layer consisting of one
unit with a sigmoid activation function.

B. Multi-Task Learning

In this section we propose two architectures based on multi-
task learning [44] and adopt the methodology followed by [45]
& [46]. To be more precise, we employ a multi-task learning
framework consisting of a primary and an auxiliary task. The
identification of dementia constitutes the primary task, while
the prediction of the MMSE score constitutes the auxiliary one.
Our main objective is to explore whether the MMSE score helps
in classifying groups into dementia or control. The introduced
architectures are trained on the two tasks and updated at the same
time with a joint loss:

L = (1− α)Ldementia + αLMMSE (3)

where Ldementia and LMMSE are the losses of dementia iden-
tification and MMSE prediction tasks respectively. α is a hyper-
parameter that controls the importance we place on each task.
We mention below the MTL architectures developed.

a) MTL-BERT (Multiclass): We pass each transcription
through a BERT model (which constitutes our best performing
STL model). The output of the BERT model is passed through
two separate dense layers, so as to identify dementia and predict
the MMSE score. For identifying dementia, we use a dense layer
with 2 units and a softmax activation function and minimize
the cross-entropy loss function. Regarding the estimation of
the MMSE score, in contrast with previous research works, we
convert the MMSE regression task into a multiclass classifica-
tion task. More specifically, according to [28], we can create
4 groups of cognitive severity: healthy (MMSE score ≥ 25),
mild dementia (MMSE score of 21–24), moderate dementia
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(MMSE score of 10–20), and severe dementia (MMSE score
≤ 9). Thus, for classifying transcriptions into one of these 4
groups, we use a dense layer of 4 units with a softmax activation
function and minimize the cross-entropy loss function.

b) MTL-BERT-DE (Multiclass): Similarly to [46], we pass
each transcription into a BERT model. The output of the BERT
model is passed through two separate BERT encoders, i.e, dou-
ble encoders, which are followed by dense layers so as to identify
dementia and classify MMSE score into one of the four classes
mentioned above. For identifying dementia, we use a dense layer
with 2 units and a softmax activation function and minimize the
cross-entropy loss function. For classifying the MMSE score, we
use a dense layer with 4 units and a softmax activation function
and minimize the cross-entropy loss function.

VI. EXPERIMENTS

All experiments are conducted on a single Tesla P100-PCIE-
16 GB GPU.

A. Single-Task Learning

Comparison with state-of-the-art approaches: We
compare our introduced models with the following research
works, since these research works propose single-task learning
models and test their proposed approaches on the ADReSS
Challenge test set: (1) Text [15], (2) LSTM with Gating (Acous-
tic + Lexical + Dis) [28], (3) Fusion Maj. (3-best) [30], (4)
Logistic Regression (NLP) [20], (5) fastText, bi + trigram [27],
(6) Attempt 5 [21], and (7) Fusion of system [22].

Experimental Setup: Firstly, we divide the train set
provided by the Challenge into a train and a validation set
(65%-35%). Next, we train the proposed architectures five times
and test them using the test set provided by the Challenge.
Specifically, we freeze the weights of each pretrained model
(BERT, BioBERT, BioClinicalBERT, ConvBERT, RoBERTa,
ALBERT, and XLNet) and update the weights of the rest layers.
In this way, these pretrained models act as fixed feature extrac-
tors. We train the proposed architectures using Adam optimizer
with a learning rate of 1e-4. We apply EarlyStopping and stop
training, if the validation loss has stopped decreasing for 9
consecutive epochs. We also apply ReduceLROnPlateau, where
we reduce the learning rate by a factor of 0.2, if the validation
loss has stopped decreasing for 3 consecutive epochs. When
this training procedure stops, we unfreeze the weights of the
pretrained models and train the entire deep learning architectures
using Adam optimizer with a learning rate of 1e-5. We apply
EarlyStopping with a patience of 3 based on the validation loss.
In terms of models with a co-attention mechanism, we start
training the proposed architectures using Adam optimizer with a
learning rate of 1e-3 and follow the same methodology. We also
apply dropout after the co-attention mechanism with a rate of 0.4.
For BERT, we have used the base-uncased model, for BioBERT
we have used BioBERT v1.1 (+PubMed), for ConvBERT we
have used the base model, for RoBERTa we have employed the
base model, for ALBERT we have used the base-v1 model, and

for XLNet we have used the base model. For these pretrained
models, we have used the Transformers library [47].1

Evaluation Metrics: We evaluate our results using Ac-
curacy, Precision, Recall, F1-score, and Specificity. All these
metrics have been calculated using the dementia class as the
positive one.

B. Multi-Task Learning

Comparison with state-of-the-art approaches: For
the primary task (AD Classification task), we compare our
introduced models with BERT base [16], since this research
work proposes a multi-task learning model and tests its proposed
approach on the ADReSS Challenge test set.

Experimental Setup: Firstly, we divide the train set
provided by the Challenge into a train and a validation set
(65%-35%). Next, we train the proposed architectures five times
and test them using the test set provided by the Challenge.
We use the Adam optimizer with a learning rate of 1e-6. We
apply EarlyStopping and stop training, if the validation loss has
stopped decreasing for 8 consecutive epochs. Regarding MTL-
BERT-DE (Multiclass), we freeze the weights of the shared
BERT model. Moreover, because of the class imbalance of the
MMSE categories, we apply balanced class weights to the loss
function (LMMSE). We set α of (3) equal to 0.1. 2

Evaluation Metrics: For the primary task (AD Classifi-
cation task), we evaluate our results using Accuracy, Precision,
Recall, F1-score, and Specificity. All these metrics have been
calculated using the dementia class as the positive one.

For the auxiliary task (MMSE Classification task), we eval-
uate our results using the average weighted Precision, average
weighted Recall, and average weighted F1-score.

VII. RESULTS

A. Single-Task Learning Experiments

The results of the proposed models mentioned in Section V-A
are reported in Table II. Also, Table II provides a comparison of
our introduced models with existing research initiatives.

Regarding our proposed transformer-based models, one can
easily observe that BERT obtains the highest Recall, F1-score,
and Accuracy accounting for 81.66%, 86.73%, and 87.50%
respectively. Specifically, BERT outperforms the other intro-
duced transformer-based models in Recall by 1.67-13.33%, in
F1-score by 2.01-10.98%, and in Accuracy by 1.25-9.17%.
BioClinicalBERT achieves the second highest Accuracy and
F1-score accounting for 86.25% and 84.72% respectively. Also,
BioClinicalBERT obtains the highest Precision score equal to
95.03% surpassing the other transformer-based models by 4.79-
15.88%. RoBERTa achieves comparable results to BERT and
BioClinicalBERT yielding an Accuracy and F1-score of 84.16%
and 82.81% respectively. In addition, BioBERT and ConvBERT
demonstrate slight differences in Accuracy and F1-score, with

1For BioClinicalBERT we have used the model in: https://huggingface.co/
emilyalsentzer/Bio_ClinicalBERT

2We used also the experimental setup of Section VI-A. However, lower
evaluation results were achieved.

https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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TABLE II
PERFORMANCE COMPARISON AMONG PROPOSED STL MODELS AND

STATE-OF-THE-ART APPROACHES ON THE ADRESS CHALLENGE TEST SET

Reported values are mean ± standard deviation. Results are averaged across five runs.

BioBERT surpassing ConvBERT in both metrics. Specifically,
BioBERT surpasses ConvBERT in F1-score by 0.46% and in
Accuracy by 0.84%. Moreover, we observe that ALBERT and
XLNet achieve Accuracy scores equal to 78.33%, with ALBERT
surpassing XLNet in F1-score by 2.70%.

Regarding our proposed transformer-based models with a co-
attention mechanism, they achieve lower performance than the
proposed transformer-based models except for ConvBERT+Co-
Attention, ALBERT+Co-Attention, and XLNet+Co-Attention.
More specifically, ConvBERT+Co-Attention presents a slight
surge of 0.42% in Accuracy in comparison with ConvBERT,
ALBERT+Co-Attention presents an increase in Accuracy
by 1.67% in comparison with ALBERT, and XLNet+Co-
Attention demonstrates a slight increase of 0.42% in Accu-
racy in comparison with XLNet. BERT+Co-Attention attains
the highest F1-score and Accuracy accounting for 83.85%
and 83.75% respectively. BERT+Co-Attention outperforms the
other models in terms of F1-score by 1.42-7.43%, and in
terms of Accuracy by 1.25-5.00%. ConvBERT+Co-Attention

TABLE III
PERFORMANCE COMPARISON AMONG PROPOSED MTL MODELS AND

STATE-OF-THE-ART APPROACHES ON THE ADRESS CHALLENGE TEST SET
FOR THE PRIMARY TASK (AD CLASSIFICATION TASK)

Reported values are mean ± standard deviation. Results are averaged across five runs.

and BioClinicalBERT+Co-Attention demonstrate slight differ-
ences in F1-score and Accuracy, with ConvBERT+Co-Attention
surpassing BioClinicalBERT+Co-Attention in F1-score by
0.44% and in Accuracy by 0.42%. BioBERT+Co-Attention
and ALBERT+Co-Attention achieve almost equal F1-score re-
sults, with BioBERT+Co-Attention attaining a higher Accuracy
score than ALBERT+Co-Attention by 1.66%. RoBERTa+Co-
Attention and XLNet+Co-Attention demonstrate low perfor-
mances attaining an Accuracy of 79.16% and 78.75% respec-
tively.

Overall, BERT constitutes our best performing model, since it
outperforms all the other introduced models in F1-score and Ac-
curacy. Although there are models surpassing BERT in Precision
and Recall, BERT outperforms all of them in F1-score, which
constitutes the weighted average of Precision and Recall. In
addition, there are models that outperform BERT in Specificity.
However, high specificity and low recall means that the model
cannot diagnose the AD patients pretty well and consequently
AD patients are misdiagnosed as non-AD ones.

In comparison with the state-of-the-art approaches, one can
observe that our proposed models achieve comparable perfor-
mance to or outperform previous studies. More specifically,
BERT outperforms all the research works, except [15], in terms
of Accuracy by 2.08-8.33%, in F1-score by 1.33-8.68%, and
in Recall by 2.66-14.99%. Moreover, BERT+Co-Attention sur-
passes [22], [27], [28] in Accuracy by 2.50%, 0.42%, and 4.58%
respectively. Also, it surpasses [22], [27], [28] in Recall by
17.49%, 5.16%, and 9.16% respectively. BERT+Co-Attention
outperforms [22], [27], [28] in F1-score by 5.80%, 0.85%, and
5.59% respectively.

B. Multi-Task Learning Experiments

1) Primary Task: The results of the introduced models de-
scribed in Section V-B are reported in Table III. Also, Table III
provides a comparison of our introduced approaches with state-
of-the-art approaches.

With regards to our introduced models, one can easily ob-
serve that MTL-BERT (Multiclass) outperforms MTL-BERT-
DE (Multiclass) in terms of all the evaluation metrics except
Recall. Specifically, MTL-BERT (Multiclass) surpasses MTL-
BERT-DE (Multiclass) in Precision by 3.40%, in F1-score by
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TABLE IV
RESULTS OF THE PROPOSED MTL MODELS ON THE ADRESS CHALLENGE

TEST SET FOR THE AUXILIARY TASK (MMSE CLASSIFICATION TASK)

Reported values are mean ± standard deviation. Results are averaged across five runs.

0.88%, in Accuracy by 1.25%, and in Specificity by 4.16%.
Although MTL-BERT-DE (Multiclass) surpasses MTL-BERT
(Multiclass) in Recall by 1.67%, MTL-BERT (Multiclass) ob-
tains a higher F1-score, which constitutes the weighted average
of Precision and Recall. Therefore, MTL-BERT (Multiclass)
constitutes our best performing model in the MTL framework.

In comparison to the research work [16], as one can easily
observe, both our introduced models attain a higher Accuracy
score. To be more precise, MTL-BERT (Multiclass) outperforms
BERT base [16] in Accuracy by 5.42%. In addition, MTL-BERT-
DE (Multiclass) surpasses the research work [16] in Accuracy
by 4.17%. These differences in performance are attributable to
the fact that we adopt a different training procedure than the one
adopted by [16], we consider the MMSE task as a multiclass
classification task instead of a regression task, as well as to the
different architectures proposed.

2) Auxiliary Task: The results of the introduced models men-
tioned in Section V-B for the auxiliary task (MMSE Classifica-
tion task) are reported in Table IV.

As one can easily observe, MTL-BERT (Multiclass) obtains
an average weighted Precision of 73.62% surpassing MTL-
BERT-DE (Multiclass) by 3.12%. However, MTL-BERT-DE
(Multiclass) outperforms MTL-BERT (Multiclass) in average
weighted Recall and average weighted F1-score by 1.26% and
3.82% respectively.

VIII. ANALYSIS OF THE LANGUAGE USED IN CONTROL AND

DEMENTIA GROUPS

We finally perform an extensive analysis to uncover some
unique characteristics, which discriminate the AD patients from
the non-AD ones, and understand the predictions made by our
best performing model as well as its limits.

A. Text Statistics

We first extract some statistics, namely the syllable count, the
lexicon count, the difficult words, and the sentence count, using
the TEXTSTAT library in Python, in order to understand better
the differences in language used between control and dementia
groups. More specifically, the syllable count refers to the number
of syllables, the lexicon count to the number of words, and the
sentence count to the number of sentences present in the given
text. With regards to the difficult words, they refer to the number
of polysyllabic words with a Syllable Count > 2 that are not
included in the list of words of common usage in English [48].

TABLE V
MEAN ± STANDARD DEVIATION METRICS PER TRANSCRIPT

† indicates statistical significance between transcripts of control and
dementia groups. All differences are significant at p < 0.05 after
benjamini-hochberg correction.

TABLE VI
JACCARD’S INDEX BETWEEN TRANSCRIPTS OF CONTROL AND DEMENTIA

GROUP

After extracting these statistics per transcript, we calculate the
mean and standard deviation for both control and dementia
groups. We test for statistical significance using an independent
t-test for each metric between control and dementia groups and
adjust the p-values using Benjamini-Hochberg correction [49].
As one can easily observe in Table V, the control group presents
a significantly higher number of syllables, lexicon, and difficult
words than the dementia group.

B. Vocabulary Uniqueness

In order to understand the vocabulary similarities and dif-
ferences between control and dementia groups, we adopt the
methodology proposed by [50]. Formally, let P and C be the
sets of unique words included in the control group and dementia
group respectively. Next, we calculate the Jaccard’s index given
by (4), in order to measure the similarity between finite sample
sets. More specifically, the Jaccard’s index is a number between
0 and 1, where 1 indicates that the two sets, namely P and C,
have the same elements, while 0 indicates that the two sets are
completely different.

J(P,C) = |P ∩ C|/|P ∪ C| (4)

As observed in Table VI, the Jaccard’s index between the
control and dementia groups is equal to 0.4049, which indicates
that people with dementia tend to use a different vocabulary than
those in the control group.

C. Word Usage

Apart from finding the vocabulary similarities and differ-
ences, it is imperative that patterns of word usage be investigated.
Thus, following the methodology introduced in [50], the main
objective of this section is to explore the differences between the
two classes (control and dementia) with regard to the probability
of using specific words more than others. Formally, let D1 and
D2 be two documents, where D1 includes all the transcriptions
of the control group, whereas D2 consists of transcriptions of
the dementia group. Moreover, we define S as the entire corpus
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TABLE VII
KULLBACK-LEIBLER DIVERGENCE

consisting of D1 and D2. Now we can define the probability of
a word wi in the document D1 in a collection of documents S
given by (5):

P (wi|D1, S) = (1− αD)P (wi|D1) + αDP (wi|S) (5)

Similarly, we can define the probability of a word wi in the
document D2 in a collection of documents S given by (6):

P (wi|D2, S) = (1− αD)P (wi|D2) + αDP (wi|S) (6)

We employ the Jelinek-Mercer smoothing method and con-
sider that αD ∈ [0, 1]. More specifically, αD is a parameter that
controls the probability of words included only in one document
(D1 or D2). In our experiments, we set αD equal to 0.2.

Moreover, we define P (wi|S) = swi

|S| , where swi
denotes the

number of times a wordwi is included in the collection, whereas
|S| is the total number of words occurrences in the collection.

Similarly, P (wi|D1) =
dwi

|D1| , where dwi
denotes the number of

times a word wi is presented in the document D1, whereas |D1|
is the total number of words occurrences in the document D1.
The same methodology has been adopted for calculating the
P (wi|D2).

After having calculated the two distributions, i.e.,
P (wi|D1, S) andP (wi|D2, S), we exploit the Kullback-Leibler
(KL) divergence, in order to measure the difference of these
two distributions. KL-divergence is always greater than zero
and is given by (7). The larger it gets, the more different the two
distributions are.

KL(P ||C) =
∑
x

P (x)log
P (x)

C(x)
(7)

As one can easily observe in Table VII, the KL divergence
between control and dementia groups is high indicating that
these two groups present differences regarding the probability
of using some words more than others. Our findings agree
with the ones in [50], where the authors state that there are
clear differences in terms of language use between positive
(depression and self-harm) and control group, where the values
of KL-divergence range from 0.18 to 0.21.

D. Linguistic Feature Analysis

Following the method introduced by [51], the main objective
of this section is to shed light on which unigrams and pos-tags are
mostly correlated with each class separately. To facilitate this,
we compute the point-biserial correlation between each feature
(unigram and pos-tag) across all the transcriptions and a binary
label (0 for the control and 1 for the dementia group). Before
computing the correlation, we normalize features so that they
sum up to 1 across each transcription. We use the point-biserial
correlation, since it is a correlation used between continuous and
binary variables. It returns a value between -1 and 1. Since we are

TABLE VIII
FEATURES ASSOCIATED WITH CONTROL AND DEMENTIA SUBJECTS,

SORTED BY POINT-BISERIAL CORRELATION

All correlations are significant at P < 0.05 after
benjamini-hochberg correction.

only interested in the strength of the correlation, we compute the
absolute value, where negative correlations refer to the control
group (label 0) and positive correlations refer to the dementia
one (label 1). We report our findings in Table VIII, where all cor-
relations are significant at p < 0.05, with Benjamini-Hochberg
correction [49] for multiple comparisons.

As one can easily observe, the pos-tags associated with the
dementia group are the following: RB (adverbs), PRP (personal
pronoun), VBD (verb in past tense), and UH (interjection).
On the other hand, people in the control group tend to use
VBG (verb, gerund, or present participle), DT (determiner),
and NN (noun). These findings can be justified in Table IX,
where we present three examples of transcripts belonging to
the control group and three examples of transcripts belonging to
the dementia one. More specifically, we have assigned colours to
different pos-tags, so as to render the differences in the language
patterns used by each group easily understandable to the reader.
To be more precise, red colour indicates the VBG pos-tag, yellow
refers to the DT pos-tag, fuchsia to the RB pos-tag, apricot to
the PRP pos-tag, navy blue to the VBD pos-tag, and the pine
green to the UH pos-tag.

We observe that people in the dementia group tend to use
personal pronouns (he, she, I, them etc.) very often, since they
are unable to remember the specific terms (mom, boy, etc.). This
finding agrees with the research conducted by [52], where the
authors state that personal pronouns present a high frequency
in the speech of AD patients, since these people cannot find
the target word. To be more precise, in a conversation people
have to remember what they have said during the entire con-
versation. However, this is not possible in AD patients, who
present working memory impairment and thus tend to produce
empty conversational speech (use of personal pronouns). On the
other hand, people in the control group tend to use more nouns
instead of personal pronouns, since they are able to maintain
various kinds of information.

Moreover, AD patients tend to use verbs in the past tense
(were, forgot, did, started) in contrast to people who are not
suffering from dementia and use verbs in the present participle.
One typical example that can illustrate this difference can be seen
in the fifth transcription in Table IX, i.e., ”oh have you heard of
that new game that they started to play after christmas? did you”.
The AD patient perhaps remembers a personal story from the
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TABLE IX
EXAMPLES OF TRANSCRIPTS ALONG WITH THEIR LABELS

Red colour indicates the VBG pos-tag, yellow refers to the DT pos-tag, fuchsia to the RB pos-tag, apricot to the PRP pos-tag, navy blue to the VBD pos-tag, and the pine green to the UH
pos-tag.

past that wants to narrate, instead of the task he has been assigned
to conduct. Therefore, the patient is not able to stay focused
on describing the picture. This finding is consistent with [53],
[54], where the authors state that AD patients present difficulty
in maintaining and continuing the development of a topic and
thus demonstrate unexpected topic shifts. Also, this finding
reveals a difference in language used by the AD patients and
the agrammatic aphasics. Specifically, patients with agrammatic
aphasia typically have problems using past tense inflection and
instead rely on infinitive or present tense verb forms [55].

In addition, AD patients tend to use the UH (oh, yeah, well)
and the RB (maybe, probably) pos-tags, since they are not certain
of what they are describing due to the cognitive impairment.
Concurrently, the UH pos-tag constitutes an example of empty
speech. More specifically, this pos-tag is used as filler at the
beginning of each utterance, since AD patients are thinking of
what to say.

E. Explainability - Error Analysis

In this section, we employ LIME [18] (using 5000 samples)
to explain the predictions made by our best performing model,

namely BERT, and shed more light regarding the differences in
language between AD and non-AD patients. More specifically,
LIME generates local explanations for any machine learning
classifier by introducing an interpretable model, which is trained
on data generated through observing differences in the classifi-
cation performance when removing tokens from the input string.

Examples of explanations generated by LIME are illus-
trated in Figs. 1-4. More specifically, Fig. 1 illustrates two
transcripts, whose ground-truth label is dementia, while our
model predicts them as belonging to non-AD patients. Fig. 2
refers to transcripts with both ground-truth label and prediction
corresponding to dementia. In Fig. 3, two transcripts are pre-
sented, whose prediction is control and true label is control too.
Finally, Fig. 4 illustrates transcripts, which are misclassified.
The ground-truth is control, whereas the prediction is dementia.
Moreover, as one can observe, each token has been assigned
a colour, either blue or orange. To be more precise, the blue
colour indicates which tokens are indicative of the control group,
whilst the orange colour indicates tokens, which are used mainly
by AD patients. The more intense the colours are, the more
important these tokens are towards the final classification of the
transcript.
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Fig. 1. Label: Dementia, Prediction: Control.

Fig. 2. Label: Dementia, Prediction: Dementia.

Fig. 3. Label: Control, Prediction: Control.

Fig. 4. Label: Control, Prediction: Dementia.
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As one can easily observe in Fig. 2, tokens belonging to the
UH pos-tag, such as yeah and oh, are identified as important
for the dementia class by our best performing model. Moreover,
personal pronouns (she, they) and verbs in the past tense (got,
had) are also indicative of dementia. Also, our model considers
the token “here,” which corresponds to the RB pos-tag, indicative
of the dementia class. These findings are consistent with the ones
in Section VIII-D, where we have found that PRP, VBD, UH pos-
tags as well as the unigram “here” are significantly correlated
with the dementia class. In addition, our model identifies the
repetition of token “and” as important for the dementia class.
This finding agrees with previous research works [17], where
the word “and” indicates a short answer and burst of speech.

Regarding Fig. 3, one can easily observe that our model iden-
tifies tokens belonging to the VBG (putting, drying, blowing,
standing, etc.), DT (the, a), and NN (cookie, action, stool, etc.)
pos-tags as significant for the control class. Concurrently, in
consistence with the findings in Section VIII-D, the unigrams
“curtain” and “window” are used mainly by non-AD patients.

With regards to Figs. 1 and 4, our model is not able to
classify these transcripts correctly. One possible reason for such
misclassifications has to do with the fact that these transcripts
include pos-tags which are indicative of both the control and
the dementia class. To be more precise, in Fig. 1, the majority
of tokens in both transcripts belong to the VBG, NN, and
DT pos-tags, which are correctly identified by our model as
significant for the control group. Words, like “and,” “him,” and
“well” are used in a low frequency. Similarly to Fig. 1, in Fig. 4,
the majority of tokens in each transcript belong to the pos-tags
which are significantly correlated with the dementia class. This
can be illustrated in Fig. 4(c), where we observe the usage of
words, like “and,” “yeah,” “well” & “got”.

IX. CONCLUSION AND FUTURE WORK

We introduced both single-task and multi-task learning mod-
els. Regarding single-task learning models, we employed several
transformer-based networks and compared their performances.
Results showed that BERT achieved the highest classification
performance with accuracy accounting for 87.50%. Concur-
rently, we introduced siamese networks coupled with a co-
attention mechanism which can detect AD patients with an
accuracy up to 83.75%. In terms of the multi-task learning
setting, it consisted of two tasks, the primary and the auxiliary
one. The primary task was the identification of dementia (binary
classification), whereas the auxiliary task was the categorization
of the severity of dementia into one of the four categories
-healthy, mild/moderate/severe dementia- (multiclass classifica-
tion). Specifically, we proposed two multi-task learning models.
Results showed that our model achieves competitive results in
the MTL framework reaching accuracy up to 86.25% on the de-
tection of AD patients. Next, we performed an in-depth linguistic
analysis, in order to understand better the differences in language
between AD and non-AD patients. Finally, we employed LIME,
in order to shed light on how our best performing model works.
Findings suggest that AD patients tend to use personal pronouns,
interjection, adverbs, verbs in the past tense, and the token

“and” at the beginning of utterances in a high frequency. On
the contrary, healthy people use verbs in present participle or
gerund, nouns as well as determiners.

One limitation of the current research work is pertinent to the
small dataset used for conducting our experiments. However,
we opted for this dataset, in order to mitigate different kinds of
biases that could otherwise influence the validity of the proposed
approaches.

We conducted our experiments on the ADReSS Challenge
dataset, which is matched for gender and age and consists of a
statistically balanced, acoustically enhanced set of recordings of
spontaneous speech. Therefore, the results of this study could
be integrated into an application, which will predict whether a
person is an AD patient and will provide at the same time the
reasons for this prediction via the explainability method.

In the future, we plan to investigate multimodal deep learning
models incorporating both text and audio. Specifically, we plan
to propose end-to-end trainable deep neural networks in contrast
to existing research initiatives, which train multiple models
separately and then use majority-voting approaches. In addition,
our aim is to investigate fusion methods, in order to assign
more importance to the most relevant modality and suppress the
irrelevant information. Another future plan is to exploit further
explainability techniques, such as anchor explanations [56].
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