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Abstract—The ability to use digitally recorded and
quantified neurological exam information is important to
help healthcare systems deliver better care, in-person and
via telehealth, as they compensate for a growing shortage
of neurologists. Current neurological digital biomarker
pipelines, however, are narrowed down to a specific
neurological exam component or applied for assessing
specific conditions. In this paper, we propose an accessible
vision-based exam and documentation solution called
Digitized Neurological Examination (DNE) to expand exam
biomarker recording options and clinical applications using
a smartphone/tablet. Through our DNE software, healthcare
providers in clinical settings and people at home are
enabled to video capture an examination while performing
instructed neurological tests, including finger tapping,
finger to finger, forearm roll, and stand-up and walk. Our
modular design of the DNE software supports integrations
of additional tests. The DNE extracts from the recorded
examinations the 2D/3D human-body pose and quantifies
kinematic and spatio-temporal features. The features are
clinically relevant and allow clinicians to document and ob-
serve the quantified movements and the changes of these
metrics over time. A web server and a user interface for
recordings viewing and feature visualizations are available.
DNE was evaluated on a collected dataset of 21 subjects
containing normal and simulated-impaired movements. The
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overall accuracy of DNE is demonstrated by classifying
the recorded movements using various machine learning
models. Our tests show an accuracy beyond 90% for
upper-limb tests and 80% for the stand-up and walk tests.

Index Terms—Digital biomarkers, digitized exams, tele-
neurology, quantitative analysis, disease documentation,
monitoring, finger tapping, finger to finger, forearm roll,
stand-up and walk, gait, human pose, machine learning.

I. INTRODUCTION

THE burden and prevalence of neurological disorders [1]
and the national shortage of neurologists [2] continue to

grow hand in hand. This increases disparity through unequal
access to clinical care and drives worsening clinician burnout
rates. Meanwhile, the COVID-19 pandemic has boosted the tran-
sition from in-person to virtual neurological examinations [3],
[4] through teleneurology (TN) platforms. Raplidly develop-
ing TN has shown potential in making efficient assessments
remotely [5]–[7] and helping in distributing scarce healthcare
resources and enhancing accessibility to neurological care [8],
[9]. In addition, digital biomarker exam solutions with quantifi-
cation of physical evaluations that bypass clinician availability
and subjectivity of assessments [10] are important to improve
care and compensate for the shortage of neurologists.

Current digital biomarker exam systems are devoted to
a single neurological test [11]–[13], require advanced se-
tups/equipment [14], or lack automated assessments [15], [16].
Therefore, a digital biomarker solution, 1) suitable for use by
neurologists and non-neurologists, 2) with wide applicability at
clinics or home, 3) that is easy to deploy, 4) supports a wide
range of neurological tests, and 5) enables automated objective
quantitative evaluations, would significantly advance health care
delivery.

For this purpose, in this work, we introduce an end-to-end
vision-based exam and documentation platform named Digi-
tized Neurological Examination (DNE). As part of DNE, we
designed an easy-to-use smartphone/tablet software with pre-
defined examination instructions. The DNE software allows the
users to video record their performance on several neurological
screening examinations, including finger tapping (FT), finger to
finger (FTF), forearm roll (FR), and stand-up and walk (SAW).
These recordings are uploaded to a secure cloud-based storage.
In an offline step, for each recording, 2D/3D pose, estimating
the location of major human body keypoints, is extracted us-
ing deep-learning-based solutions such as OpenPose [17], and
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Fig. 1. Illustration of our digitized neurological exam system.

VideoPose3D [18]. From the estimated pose, unified digital
biomarkers, including spatio-temporal and kinematic features,
are computed [19]. We showcase the performance of our system
on a dataset collected from 21 healthy subjects taking different
neurological tests (FT, FTF, FR, SAW) when their function is
normal or with a simulated impairment. We incorporate our
defined features in a variety of machine learning models to
detect abnormal functioning in our dataset. Fig. 1 illustrates the
capabilities our DNE system.

We summarize the key contributions of this work as:
� We develop a unified and modular software package for

high-quality DNE recording collection. Our DNE soft-
ware is easy-to-use, allows the integration of new tests,
and runs on handheld iOS devices. We also implement
a web-based dashboard for viewing the recordings and
feature visualization.

� We propose a vision-based approach to study various
neurological tests (FT, FTF, FR, and SAW). For each test,
we define clinically interpretable kinematic and spatio-
temporal quantified features.

� To the best of our knowledge, we are the first to construct
a vision-based dataset consisting of multiple neurolog-
ical tests and simulated-impaired video recordings per
subject alongside the extracted 2D/3D pose. Analyzing
this dataset allows us to have a normal self-baseline for
each abnormal recording and test the power of the ex-
tracted features in distinguishing normal from abnormal
performance. Our dataset (excluding RGB videos due to
privacy restrictions) and code will be available at https:
//dneproject.web.illinois.edu/.

The organization of this paper is as follows. Section II sum-
marizes recent studies on digital biomarker systems. Section III
describes DNE’s software platform used in our data collection.
Section IV introduces our DNE dataset. We define our features
in detail in Section V. Section VI contains our analysis results
while Section VIII draws our main conclusions.

II. RELATED WORK

In this section, we review the related literature to different
tests (FT, FTF, FR, SAW). For each test, we briefly discuss the
existing sensor, web/smartphone and vision-based solutions.

Finger Tapping (FT): Sensor-based FT assessments study
spectral analysis of gyroscope data [20], opening finger tap

velocity captured by accelerometers [21], standard deviation,
range and entropy measured by a collection of sensors including
synchronized wrist watches, pressure sensors and accelerome-
ters [22]. Several smartphone based applications [23]–[26] are
designed to quantitatively evaluate various symptoms and motor
skills in patients with Parkinson’s Disease (PD). While these ap-
proaches are proven effective and low cost, their measurements
are not as informative as vision-based methods, relying on video
data and simulating in-person clinical examinations. Among
vision-based pipelines, [11], [27]–[29] extract a set of kinematic
interpretable features from the tracked positions of the fingers
given an RGB video. These features are easy to explain and
associate with clinical symptoms. On the other hand, black box
deep learning models operating on the estimated finger poses
and their derivatives are proposed in [30]. While these solutions
provide high accuracy, unlike our DNE, they lack explainability
and require large training sets to generalize and avoid overfitting.

Finger to Finger (FTF): A well-studied test in the literature
that is similar to FTF in terms of measuring smoothness and
upper extremity coordination is the finger to nose test. Among
sensor-based methods, Rodrigues et al. in [31] investigates
the coordination ability of patients with chronic stroke versus
healthy control using a complex marker-based motion analysis
system. Oubre et al. [32] studied ataxia through wearable inertial
sensors and a computer tablet version of finger to nose test.
Furthermore, predicting severity levels of ataxia or PD via a rapid
web-based computer mouse test is explored in [33]. Jaroensri et
al. [12] is among the first to propose vision-based solutions that
are on par with a specialist in terms of rating the severity scale of
PD while using estimated joint positions from recorded videos.

Upper Limb Tests: To the best of our knowledge, sensor-based
or vision-based studies related to the forearm roll task are scarce.
Thus, here we further overview the existing methods devoted to
the study of upper limb movements. Using wearable sensors,
Cruz et al. in [14] assessed the acceleration, velocity or smooth-
ness of the upper limb motor function of patients after stroke.
A low-cost Kinect based solution, tracking subjects’ hand when
asked to move a marker on a rectangular pattern is proposed
in [34]. The range of motion is analyzed using an internet-based
goniometer in [35]. In [36], the authors describe a vision-based
system that captures upper limb motions via multiple cameras
installed at different views. While this multi-camera system is
less sensitive to occlusions and dynamic backgrounds, unlike
our DNE system, it requires a special setup which is hard to
install for home-use.

Stand-up and Walk (SAW): In our review of gait analysis
literature, we focus on the marker-less [37] vision-based so-
lutions, mainly measured using general handheld cameras and
mobile devices. In early efforts for marker-less gait analysis,
silhouettes are extensively used to detect heel-strike and toe-off
occurrences. These two events refer to the first and last ground
contact of each foot, later on adopted to accurately estimate
important gait parameters [38]–[41]. However, these methods
are restricted to specific laboratory settings and are sensitive to
the quality of foreground/background segmentation. The surge
of research in the human pose estimation field [42]–[44] brought
along popular deep learning frameworks which accurately es-
timate the 2D/3D location of body joints from different inputs
including RGB image, video and depth maps [17], [18], [45],
[46]. Depth-map based gait assessment solutions relying on the
estimated pose from either depth or RGBD [47], [48], have
studied the rotational angle and angle velocity of certain body
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Fig. 2. DNE System. (a) DNE Recorder - an iOS application for neurological recordings collection. (b) DNE Viewer a web application for dataset
management, video previewing and visualizing the analysis results (best viewed in magnification).

keypoints [49] and evaluated the spatio-temporal gait metrics
such as step length and time [13], [50].

Wei et al. [16] introduced an automated smart-phone based
video capturing system with hand/body pose estimation. While
neurological exams such as gait are considered in [16], feature
extraction and analysis is not studied and the main focus is
on the quality control of the video acquisition process. Using
the estimated pose from OpenPose [17], Xue et al. [13] stud-
ied the remote monitoring of gait parameters for senior care.
Furthermore, [51] reports timings of different segments of the
timed-up-and-go (TUG) test by performing frame-based activity
classification based on 2D pose data. To assess the freezing
of gait (FoG) symptom in Parkinson patients, [52] proposed
the use of frequency analysis methods while [53] adopted
graph convolutional neural networks to attain the probability
of FoG from pose data. Kidziński in [54] employed black-box
deep learning models to estimate the level of movement dis-
order in children suffering from cerebral palsy. Despite their
promising results, deep learning based solutions are less inter-
pretable and require large training supervised datasets for better
generalization.

III. SYSTEM DESIGN

As part of DNE, we developed three software packages to
maintain data acquisition, analysis and results report.

DNE Recorder: This module accommodates easy-to-use self
or assisted video recording on a set of pre-defined neurological
tests. DNE Recorder is an iOS mobile application. It includes
detailed instructions on how to perform each test alongside
automated video capturing functions. Our software facilitates
recording of high quality depth maps on devices equipped with
LiDAR. We collect 1080× 720 high-quality RGB, depth videos
(upon applicable hardware) and camera calibration parameters
at 60 frames per second (FPS). All recordings are synchronized
into a secure cloud storage for offline processing. The user
interface of this module is shown in Fig. 2(a).

DNE Analyzer: We analyze the RGB recordings offline in
a separate module. The main components of DNE Analyzer
include 1) vision-based pose estimation, 2) feature extraction,
3) abnormality detection.

DNE Viewer: We provide a secure web application for clin-
icians, neurologists and researchers to monitor raw record-
ings and view the analysis results from all subjects remotely.
Fig. 2 (b) displays a screenshot of the DNE Viewer user
interface.

IV. DATASET COLLECTION

Our dataset collection protocol is IRB approved
(#IRB.1452500) on 02/27/2020 by the University of Illinois
College of Medicine at Peoria Institute Review Board 1. In
this study, 21 healthy volunteers (18 females/3 males) were
recruited by sampling of convenience at the OSF HealthCare
Illinois Neurological Institute Outpatient Neurology Clinic
(Peoria, IL). Neurological examinations examine fine motor
and mobility abilities. We study the FT, FTF, FR for fine motor
tasks, and evaluate the mobility by the SAW test. Below we
describe in detail how these tasks are performed.

� FT: Participants are instructed to put their hands within
the camera view when their index fingers and thumbs were
touched. Then they would start tapping them as big open
and close, and fast as they could for 15 seconds.

� FR: Participants are asked to gently clench their hands,
hold their forearms horizontally, and roll their hands
around each other as fast as possible for 15 seconds.

� FTF: Participants repetitively first point their index fingers
towards the ceiling and then touch their fingers together
in front of their chests for a duration of 15 seconds.

� SAW: Participants stand from a sitting pose in a chair,
move the chair out of the way, walk back and forth 15
feet. The designated time for SAW test is 45 seconds.

Each subject took two sets of neurological examinations
supervised by a neurologist. In the first set of examinations, the
subjects performed the tasks normally. However, for the second
set, the subjects were asked to simulate motor dysfunction, i.e.
perform the test abnormally. For this purpose, the subjects wore
devices to deliberately add disruption to their performance and
mimic impairments. For FT, a rubber band is used to restrict
movements of the index and thumb fingers. For the FR and
SAW tests the subjects put on a left wrist and a knee brace,
respectively. On the other hand, for the FTF test, the subjects
were asked to deliberately mimic a tremor pattern in moving
their fingers and hands. Snapshots of recordings and subjects
wearing the devices are exhibited in Fig. 3.

Both set of recordings are acquired by our DNE Recorder
on iPad 11 Pro and iPhone 11 devices. For upper body tests,
we have a close-up frontal view of the subjects with visible
pelvis. Moreover, to assess the invariance of our analysis under
small deviations from the frontal camera view, the view of the
recordings taken on iPhone is slightly to the left compared to
the iPad recordings. In addition, for the SAW, we record both
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Fig. 3. Examples of DNE dataset recordings. Impairments are induced
by wearing a wrist brace for FR, a rubber band for FT and a knee brace
for SAW tests.

TABLE I
SUMMARY OF OUR DNE DATASET

saggital and frontal views, using iPad and iPhone, respectively.
In total, including all four tests (FR, FT, FTF, SAW), we collect
375 videos. Table I provides a summary of our dataset.

While there is hardly any similar publicly available upper-
body neurological related dataset, there are several datasets
studying gait impairments specifically in [13], [38], [39], [52],
[54]. The closest to our dataset is KIMORE [55] focusing on
rehabilitation exercises rather than neurological tests. The KI-
MORE provides RGB, depth, and pose data for each recording,
collected by Kinect v2 which is not as ubiquitous as handheld
devices adopted in DNE. In Table II, we compare our dataset
versus state of the art public gait impairment datasets in various
aspects. For this comparison, we only focus on studies using a
single-view, portable camera for data collection, similar to our
setting. Accordingly, we list the contributions introduced by our
dataset as: 1) This is the first public dataset studying multiple
neurological test segments. 2) Our dataset includes normal and
abnormal performance of the same task for each particular sub-
ject. 3) Our dataset contains multiple data modalities, including
depth videos, camera parameters, and 2D/3D pose estimation.

V. DNE VISION-BASED ANALYSIS

In our DNE analysis pipeline, given an RGB video, we first
compute the human pose in each frame. Next, from the pose
time series, we extract a set of features that quantify the sub-
ject’s performance in various aspects. We structure our analysis
pipeline into three layers, namely 1) pose estimation, 2) feature
extraction, and 3) application layer, as illustrated in Fig. 4.
The pose estimation layer provides frame-level high-quality
2D/3D joint locations (Section V-A). We pre-process the es-
timated pose to prepare it for feature computation. In the feature
extraction layer, we calculate a set of features that describe
subject’s performance on various tests. We carefully design
these features for each test separately to accurately reflect the
subjects’ performance and dedicated abnormalities. Lastly, the
application layer contains several downstream tasks consuming

Fig. 4. Overview of DNE vision-based analysis framework.

the features, including abnormality detection and visualization
for a qualitative comparison among recordings.

A. Pose Estimation

For upper body tests (FT, FTF, and FR), we use OpenPose
(OP) to estimate the 2D hand [56] and body [17] pose. On the
other hand, for SAW tests, we compute the 3D pose using the
VideoPose3D (VP3D) package [18]. Given an RGB image, OP
first detects all visible body parts and associates them to each
individual by solving a graph matching problem. Meanwhile,
VP3D adopts dilated temporal convolution to estimate 3D pose
from sequence of 2D keypoints extracted from the video.

For upper body tests, if the subject and the moving limb is
located parallel to the camera plane, then the motion is well
approximated in a plane, i.e. in two dimensions. That is why
2D pose is chosen for upper body tests. However, this might
not hold for the SAW test (especially depending on the camera
view), hence urging us to use 3D pose for this analysis.

B. Pre-processing

We truncate a recording to only include the sequence of frames
that are related to the subject performing the test. To account for
variable distance of the subjects from the camera, we normalize
the estimated pose by a reference length. For FT, FTF and FR
tests, the reference is the length of the forearm. For SAW, the
reference is the distance between the pelvis and neck joints.
We compute the reference lengths as the median of the value
across all the frames. In addition, as the estimated pose can be
erroneous at some frames we use median and Savitzky-Golay
filtering [58]. In our dataset, we have excluded 27 recordings
due to unreliable and noisy estimated pose. Therefore, we only
analyzed 348 videos in total.

C. Notations

Given the pose sequence estimated from the RGB video, we
extract a set of quantified features. Below, we first express our
notations and then introduce the features we defined for each
test. Let v = [v1, . . ., vN ] denote the set of N frames ordered
chronologically in video v. There is a one-to-one correspon-
dence between the time associated with each frame and the frame
index, where t = [t1, . . ., tN ] and ti = i/fps, fps denoting
the frame per second rate of the video. Given v and the pose
estimation module (such as OP or VP3D), we extract the location
ofK keypoints in each frame. For convenience, we use the same
indexing of the body joints for both 2D and 3D pose. However,
to differentiate between the 2D and 3D pose, we denote each by
B2 and B3, respectively. Furthermore, we use H2 to represent
the 2D hand keypoints. An illustration of the hand and body



4024 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 8, AUGUST 2022

TABLE II
COMPARISON BETWEEN MULTIPLE VISION-BASED GAIT IMPAIRMENT VIDEO DATASETS, ACQUIRED BY A SINGLE CAMERA

Fig. 5. Skeleton tree for (a) body B, and (b) hand H. Examples of
human pose estimation (c) in 2D (B2,H2) using OpenPose [17] and (d)
in 3D (B3) using VideoPose3D [18].

skeleton trees alongside our indexing notations are provided in
Fig. 5. Note that, for the sake of brevity, we have only indexed
a subset of the keypoints that we are using in our analysis.

We reserve sk,∗[i] for the location of the k-th keypoint at
frame i, corresponding to skeleton tree ∗ ∈ {H2, B2, B3}. For
∗ ∈ {H2, B2}, sk,∗[i] ∈ R2 and for ∗ = B3, sk,∗[i] ∈ R3. Fur-
thermore, we add superscript r and l to point to right and left
(R/L) body parts, respectively. For example, sr3,H2

[i] locates the
tip of the right thumb at frame i.

To extract kinematic features that quantify the performance
of a subject in a test, we track the location of various major key-
points and define a set of features accordingly. Major keypoints
vary based on the test. For instance, the major keypoints in FT
include the tip of the index and thumb fingers of two hands while
in FR, we closely track the wrist joints.

In different tests, the subjects are asked to move certain
limbs repeatedly. Thus, it is natural to compute features such
as frequency, and amplitude for periodic pose patterns and
report the mean and standard deviation (STD) across different
cycles. In addition, for a test performed normally, the features
corresponding to the R/L body parts should be close. Thus, to
quantify the difference between the right fr and left f l features,
we define an asymmetry metric as:

Asym(fr, f l) =
|fr − f l|
fr + f l

. (1)

Another useful metric in our analysis is Pearson correlation
coefficient denoted by CC. For two 1D discrete time series x1

and x2, we define CC as:

CC(x1,x2) =
(x1 − x̄1)

T (x2 − x̄2)

‖x1 − x̄1‖2‖x2 − x̄2‖2 . (2)

Fig. 6. FT amplitude for normal and abnormal examples.

where .̄ and .T denote the mean and transpose operators. For
highly correlated series, |CC| is close to one.

D. Feature Definition

We list the features defined for various tests in Table III and
describe them in detail below.

Finger Tapping (FT): For this test, the major keypoints are
the tip of the R/L thumb and index fingers alongside R/L wrist
and elbow joints. To extract properties of the periodic motion,
we examine the distance between the tip of the index and thumb
fingers across time defined as:

d∗
ft[i] = ‖s∗3,H2

[i]− s∗6,H2
[i]‖2, ∗ ∈ {r, l}. (3)

Examples of dr
ft and dl

ft for normal and abnormal execu-
tions of the FT test are provided in Fig. 6. In our dataset, to
simulate abnormality in FT the subjects are wearing a rub-
ber band around index and thumb fingers of one hand. As
also revealed in Fig. 6, this limits the tapping amplitude of
the hand wearing the band and slows down the tapping rate.
Given d∗

ft, we compute the period for the ∗ hand, T ∗
ft , as the

time (in seconds) between two consecutive local minima (or
maxima) of d∗

ft. Frequency F ∗
ft is the reciprocal of T ∗

ft . We
also report the magnitude of finger-tapping A∗

ft as the differ-
ence in consecutive minima and maxima of d∗

ft. We also re-
port the asymmetry of the periods (Asym(T r

ft , T
l
ft)), frequencies

(Asym(F r
ft , F

l
ft)) and amplitudes (Asym(Ar

ft, A
l
ft)) of R/L hands

following (1).
Furthermore, we define the instant tapping speed and accel-

eration for R/L hands as the first and second order derivatives of
dr

ft anddl
ft with respect to time. We adopt mean and maximum of

instant speed and acceleration across tapping cycles as features.
We also introduce average tapping rate as the average number
of finger taps per second.

Finally, to evaluate the stability of the hands and arms during
the FT recording, we examine the wrist and elbow joints. For this
purpose, we introduce the relative height between (sr7,B2

, sl7,B2
)
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TABLE III
SUMMARY OF OUR DNE FEATURES

Asymmetry Between R/L Features is Computed Based on (1).

and (sr6,B2
, sl6,B2

) across N frames:

Cwrist
ft =

1

N

N∑
i=1

‖sr7,B2
[i]− sl7,B2

[i]‖2
‖sr7,B2

[i]‖2 , (4)

Celbow
ft =

1

N

N∑
i=1

‖sr6,B2
[i]− sl6,B2

[i]‖2
‖sr6,B2

[i]‖2 . (5)

Finger to Finger (FTF): In our dataset, we observe that the
estimated pose by OP for middle joints of the index finger, i.e.
joint index 5 in H2, is more stable than the outer fingertip.
Hence, we focus on this joint for FTF test. In a normal FTF,
the horizontal and vertical trajectories of the R/L hands are
symmetric up to a mirroring (Fig. 7(a) top row), while this
does not necessarily hold for abnormal case (Fig. 7(a) bottom
row). Thus, in each cycle, we define the cross correlation of the
R/L horizontal (x) and vertical (y) coordinates as the horizontal
(Sfinger-x

ftf ) and vertical symmetries (Sfinger-y
ftf ):

Sfinger-x
ftf = CC

([
sl5,H2

]
x
,− [

sr5,H2

]
x

)
, (6)

Sfinger-y
ftf = CC

([
sl5,H2

]
y
,
[
sr5,H2

]
y

)
(7)

where [s∗5,H2
]† = {s∗5,H2

[i](†)}Ni=1, † ∈ {x, y} and ∗ ∈ {r, l},
is the x or y coordinates of the pose series. We also compute
the period and average speed. We derive the average speed by

dividing the traversed distance of R/L finger within half a cycle’s
period by half the cycle’s period.

Patients with neurological impairments tend to have tremors
while moving their fingers during FTF test [59]. This leads to
a deviation of the fingers’ trajectory from a smooth curve. To
characterize this deviation, we first fit a smooth curve to the
fingers’ trajectory, in the form of a second order polynomial
in terms of the x and y coordinates. We observe that fitting a
second order function to the trajectories, well matches the FTF
trajectories of normal subjects. We consider the length of this
smooth curve as a reference to compare against the length of
the original fingers’ trajectory. We then define the ratio of the
length of the actual fingers’ trajectory during each FTF cycle by
the length of the fitted smooth curve as path smoothness metric
(PS). We report PS for R/L hands. Examples of normal and
abnormal finger trajectories alongside the smooth fitted curves
are plotted in Fig. 7(b).

Another feature we found helpful in detecting abnormal func-
tion in FTF is instant velocity. We derive the instant velocity
vector by the first derivative of the horizontal and vertical pose
with respect to time. We then examine the angle between the
vertical and horizontal components of this vector on the R/L
hands. At time instant t, the velocity angle θ is:

θ∗(t) = atan2

⎛
⎜⎝

d [s∗
5,H2

]
y

dt

d
[
s∗
5,H2

]
x

dt

⎞
⎟⎠ , ∗ ∈ {r, l}. (8)
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Fig. 7. FTF features including finger (a) positions, (b) spatial trajec-
tory, (c) velocity angle. Green (red) curves stand for normal (abnormal)
recordings. In each row (column), the subplots share the same vertical
(horizontal) axis.

Fig. 8. Vertical (y) coordinate of the wrist joint versus time for normal
and abnormal examples in FR test.

Next, for each hand, we compare θ across different cycles
using CC in (2). Given NC number of cycles, we have

(
NC

2

)
CC

values assessing the symmetry of the R/L velocity angles across
different cycles, which we summarize by reporting the mean and
STD. Examples of normal and abnormal aligned velocity angles
across different cycles are provided in Fig. 7(c). Note that for
abnormal FTF, large magnitude fluctuations, caused by tremors
in moving the hands, visibly appear in θ.

Forearm Rolling (FR): We include the wrist and elbow joints
as the major keypoints for this test. We specifically attend to
the vertical coordinate of the wrist joints to compute period T ∗

fr
and amplitudes A∗

fr for ∗ ∈ {r, l}. Fig. 8 illustrates the vertical
position of the R/L wrists for a normal and abnormal example.
Note that, due to wearing the device in the abnormal recording,
the period of the forearm roll cycles for both R/L hands are larger
compared to its normal counterpart. In addition, similar to FT,

Fig. 9. Examples of SAW features.

we include the asymmetry of the aforementioned metrics in the
FR features.

We also include the maximum instant speed and acceleration
derived from vertical coordinates of the wrist joints. Similar to
FT, we define rolling speed and rate. Rolling speed is computed
as the difference between the minimum and maximum of y
coordinate of the R/L hands divided by half the rolling period.
Also, rolling rate is defined as the number of rolling cycles per
second. Finally, we report the stability of the elbows Celbow

fr and
define it analogous to (5).

Stand-up and Walk (SAW): We use the side-view SAW record-
ings in our analysis of SAW test. For SAW pose estimation, we
use VP3D [18]. In VP3D, the joint locations are defined relative
to the pelvis joint. As a result, estimated pose by VP3D misses
the global position of subjects within a frame which is essential
to detect different segments of the SAW test, i.e. stand-up (SU),
walk (W), and turn (TU). This urged us to track the 2D position
of the pelvis s0,B2

extracted by OP as a notion of subject’s
global position in a video frame. Analyzing this position through
time enables us to split a SAW recording into multiple non-
overlapping SU, W, and TU segments. Supplementary Fig. S3
visualizes these segments.

For the SU segment of SAW, we focus on the time to
stand [60], measured by the total time taken from the first SU
effort to a full standing on feet state. We derive time to stand
by thresholding the magnitude of the pelvis joint’s velocity.
Note that, since our subjects are asked to walk back and forth
a designated room multiple times, at some points, they have to
change direction and turn around. We report time to turn around
as another indicative feature for SAW test.

The first set of features derived for the walking segment are
obtained based on the distance between the two feet stated as:

dsaw[i] = ||sr2,B3
[i]− sl2,B3

[i]||2. (9)

Note that, the periodic nature of a normal gait also reflects in
dsaw (see Fig. 9(a)). Given dsaw, we highlight different W and
TU segments in Fig. 9(a). For a gait pattern derived based on
dsaw, step time is the time to complete one step and computed
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as the time difference between two consecutive local maxima of
dsaw. Meanwhile, step length defined as linear distance between
two successive placements of the same foot [61] manifests as
the local maxima of dsaw. The step width, on the other hand,
is interpreted as the local minima of dsaw. The calculations of
these features in turning segments are excluded.

As two global features for gait, we report mean and STD of
cadence and average speed across all W segments. We compute
cadence as the number of steps divided by the duration of a
walking segment. Average speed is determined by the total
traveled distance of the pelvis joint divided by the duration of a
walking segment.

To evaluate the symmetry of the R/L gait, we introduce the
cross correlation between the knee angle series of R/L legs,
denoted by Sknee angle

saw . We find this feature a good descriptive
of gait abnormality, as in our recordings, gait abnormality is
introduced through wearing a knee band which limits the knee
motion (Fig. 3). For each frame, we define the knee angle as the
angle between sr3,B3

− sr4,B3
and sr3,B3

− sr2,B3
for the right leg

and sl3,B3
− sl4,B3

and sl3,B3
− sl2,B3

for the left leg. As there is
a lag between the R/L gait cycles, we align the knee angle series
of the R/L legs within each cycle and then report CC of the
aligned series. Examples of aligned normal and abnormal knee
angles for R/L legs are shown in Fig. 9(b). For normal gait, the
R/L knee angles are highly correlated after alignment (Fig. 9(b)
top row), while this does not hold for abnormal gait (Fig. 9(b)
bottom row).

In addition, we define step symmetry between the R/L feet
movements by comparing the horizontal position of R/L feet
at different gait cycles. We represent this metric by Sfeet-x

saw . To
compute Sfeet-x

saw , similar to Sknee angle
saw , we first align the R/L

horizontal positions within each gait stride and report the CC
of the aligned series. We report mean and STD for both Sfeet-x

saw

and Sknee angle
saw across different cycles.

VI. RESULTS AND DISCUSSION

A. Subject-based Normal Vs. Abnormal Comparison

In this section, we compare the normal and simulated-
impaired performances of the same subject and show that this
analysis is insensitive to the choice of recording device and
robust to the viewpoint or distance from the camera. Note that
in our dataset, for each subject, we have four sets of recordings.
Two of these recordings capture the normal performance of the
test, while in the other two, the subject is asked to perform ab-
normally. In addition, two pairs of normal/abnormal recordings
are captured by an iPhone (P) and an iPad (T). Let NP /NT and
AP /AT denote the normal and abnormal recordings captured by
iPhone/iPad.

For each feature and subject, we define A-A/N-N as the
intra-class distance between the features derived from the ab-
normal/normal recordings of the subject captured on iPhone
and iPad devices. In other words, A-A is the distance between
features computed for AT and AP recordings, while N-N marks
the difference between the features of NT and NP videos. For
N-A, we consider the distance between AT -NP and NT -AP

pairs and report the average. We normalize the A-A, N-N, and
N-A distances by the maximum of N-A distances.

Fig. 10 illustrates the distribution of A-A, N-N, and N-A
distances across 20 different subjects for a subset of features
of FTF test. While the intra-class values are concentrated near

Fig. 10. The inter-class and intra-class distances between some fea-
tures of normal (N) and abnormal (A) FTF recordings. ♦ denotes the
mean value.

Fig. 11. PCA analysis of FT, FTF, FR, and SAW tests. Green crosses
and red circles stand for normal and abnormal recordings. All subplots
share the same axis.

zero, the inter-class distances are spread out over a wider range.
In addition, the mean A-A and N-N distances are strictly lower
than the N-A distances. The higher concentration of A-A and
N-N distances around zero shows that our feature set is robust
to some minor changes in the viewpoint and is not affected by
the recording device. Furthermore, it can be seen as a proof-
of-concept, demonstrating the ability to compare the subject’s
performance across different time points.

B. Abnormality Detection

Principal component analysis (PCA): The feature set de-
scribing normal and abnormal recordings constitutes a high-
dimensional vector. For a visual comparison of normal and ab-
normal recordings in terms of their derived features, we perform
dimensionality reduction through PCA. For this purpose, for
each test, we concatenate the set of features listed in Table III
and normalize them before passing to PCA. Fig. 11 showcases
the results for different tests. It is observed that the normal and
abnormal recordings are separated in dimension reduced feature
space. This implies that our defined features are descriptive and
well differentiate normal from abnormal.

Abnormal Class Distribution: In Fig. 12 we compare the
distribution of normal versus abnormal features for FT, FTF,
FR, and SAW tests. These plots clearly indicate the difference
in distribution between two classes. Normal features are more
concentrated in a specific range, however the abnormal features
are often less regular and have a higher STD.
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Fig. 12. Distribution of normal/abnormal features for FT, FTF, FR, SAW
tests plotted in first, second, third and last rows. We used kernel density
estimation to fit distributions to the data.

Abnormality Detection: We assess the normal and abnor-
mal classification performance using our features. Therefore,
we utilize several machine learning (ML) models that are
grouped into: 1) tree-based methods such as Random Forest
(RF), Gradient-Boosting Machine (GBM) [62], XGBoost [63]
and 2) parametric models trained using gradient-descent up-
dates, including Logistic Regression (LR), Support Vector Ma-
chine with radial basis function (RBF) kernel (RSVM) and
Multi-layer Perceptron (MLP) with rectified linear unit (ReLU)
activation.

We also benchmarked our ML classification performance
against two deep learning (DL) baselines. Both DL models
predict normal versus abnormal based on major keypoint pose
sequence, unlike the ML based models which perform clas-
sification on the extracted spatio-temporal/kinematic features.
In the first DL baseline, we adopt a long-short term memory
(LSTM) [64] based sequential model while in the second DL
approach, similar to [65], we use convolutional neural networks
(CNN). Details of ML and DL based classification models, data
processing and hyper parameters are provided in the Supple-
mentary Section II and Table S1. We evaluate different models
via metrics such as accuracy, average precision, F1 score, and
area under the ROC curve (AUC).

We have two splitting schemes to separate the train from
test sets. In video-based splitting, videos from all subjects are
divided independently based on a 80%/20% splitting ratio for
train/test sets. In addition, to evaluate the performance of the
models on unseen patients, the subject-based division scheme
splits a portion of the subjects into the train set while keeping
the rest in the test set. Thus, videos belonging to the subjects
in the train set are not used in the test set and vice versa. In
subject-based splitting, we have 16/4 subjects in train/test sets.

We perform 5-fold cross validation and summarize the av-
erage classification performance of all ML and DL models in

Table IV. While all models perform well for various tests, among
ML models RSVM and GBM/XGBoost tend to perform better
on most metrics. However, the gap between the performance
of all ML models is not significant. This suggests that the
extracted set of features well-distinguish normal from abnormal
samples.

Furthermore, comparing ML and DL models, we notice that:
1) While DL models perform well on FT, FR and FTF tasks
(especially for video-based splitting), they are lagging behind
ML models for SAW. We attribute this to the fact that SAW
involves more complex motion patterns. Therefore, DL models
require larger datasets to be able to learn the classification task
from the pose data. 2) DL features extracted from the pose
data lack clinical interpretability. 3) For subject-based splitting,
ML models operating on the spatio-temporal/kinematic features
outperform DL models on most metrics. This indicates better
generalization capability of our features on unseen subjects
compared to DL models operating on pose data.

C. Feature Importance Analysis

One benefit of tree-based models is in the tractable decision-
making process. Therefore, we investigate the importance of
each feature, contributing to the decision process by analyzing
our RF models. This analysis gives us the weight of all features,
sorted in descending order in Supplementary Fig. S4.

We notice that symmetry between specific R/L features for
FT, FTF, and SAW tests is considered the most important, i.e.,
with the largest weight. For the SAW test, the most important
feature is the similarity between the knee angle time series across
different cycles (Sknee angle

saw ) while for FT (Supplementary Fig.
S4(a)) and FTF (Supplementary Fig. S4(c)), the features with
the largest weights are frequency asymmetry and horizontal
(Sfinger-x

ftf ) symmetry, respectively. Although this can be attributed
to the nature of the simulated impairments in our dataset, it is
consistent with the clinical practice, where the left and right
asymmetry is a common biomarker [66]–[68] of different neu-
rological disorders.

Furthermore, temporal and spatial features that characterize
the periodic behavior of the movement are important metrics
that the decision tree classification models rely on. Examples of
these features are amplitude and period for FT, FTF, and FR tests,
step length, width, and step time for SAW. We also notice that
for a subset of features, having large variations (i.e. STD) across
different cycles is another indicator of abnormal performance in
our dataset. This is captured in the large weight associated with
STD values of some features for various tests. This result also
affirms our observations in Fig. 12.

VII. DISCUSSION & CHALLENGES

In this section, we discuss various aspects of DNE including
feature design, robustness, clinical relevance and application as
well as the current challenges and our proposed solutions.

A. Discussion

Feature Design: The main goal of our DNE system is to
provide an objective tool for quantifying and documentation of
recordings of neurological tests. Thus, it is critical to design a
set of clinical interpretable features that explain the performance
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TABLE IV
CLASSIFICATION PERFORMANCE OF SEVERAL MACHINE LEARNING MODELS, INCLUDING RANDOM FOREST (RF), GRADIENT-BOOSTING MACHINE (GBM),
XGBOOST, LOGISTIC REGRESSION (LR), SUPPORT VECTOR MACHINE WITH RBF KERNEL (RSVM), AND MULTI-LAYER PERCEPTRON (MLP) ALONGSIDE

LSTM AND CNN BASED DEEP LEARNING MODELS FOR FT, FTF, FR AND SAW TESTS

The best and second best results are in bold and underline, respectively.

of a subject on various motor tasks. In addition, having power-
ful digital biomarkers reduces the workload of normal versus
abnormal classification models and improves their generaliza-
tion, especially when large training datasets are not available.
Furthermore, unlike black-box DL models, the explainability of
our diverse set of features allows clinicians to better understand
and track patients’ status over time.

Robustness: DNE is resilient to changes in slight devia-
tions from the camera view, distance to the camera, subject
clothing, and mild pixel intensity changes due to intermediate
data standardization and robust pose estimation steps (Sec-
tion V-A and V-B). This is experimentally shown by the low
intra-class feature distances in Fig. 10. Data normalization
and filtering in the pre-processing step also helps in elimi-
nating noise and propagated errors from the pose estimation
module.

In FT, FR and SAW tests, the abnormality in the motion
is imposed by wearing equipment which are visible in the
recordings. The pose estimation models we have used (OP and
VP3D) are robust to the appearance of the equipment and can
accurately predict the joint locations regardless of the presence
of the equipment. The features incorporated in the classification
tasks are derived from the pose data. Therefore, the quantified
features and the classification performance is not affected by the
visual cues from the equipment.

Clinical Relevance: In our dataset, the abnormalities in the
movements of the subjects were simulated. The simulated im-
pairment in the FR test is the closest to what is observed in
clinics for patients with neurological disorders. In the simulated
impairment for FR, the arm with no moulage satellites around the

weighted wrist, causing a decrease in the orbit frequency (Fig. 8).
This is coherent with the clinical observations of patients with
neurological impairments.

In the FTF test, the simulated abnormality would be more
realistic, if the tremor or inaccuracy of movement increased
as the finger got closer to its target (i.e. when the two fingers
approach). In our current dataset, the subjects often simulated
the tremor throughout their movements which is only seen in
severe cases. In addition, for the FT test, often the abnormality
is a combination of decreased amplitude and rate (Fig. 6) and
in Parkinson’s decrements of both. In our DNE dataset, some
subjects simulated more of one or the other.

In SAW, the abnormality in real patients appear as a combi-
nation of slow time-to-stand, decreased step length, increased
step-time, and asymmetry of gait features. In our dataset, the
abnormality was imposed by wearing a knee brace. Alongside
asymmetry between the R/L knee angles, we observed decreased
step-length for the subjects wearing the knee brace (Fig. 12-
SAW). These are in-line with clinical observations from real
patients.

Overall, features that clinicians observe were disrupted from
normal findings to various degrees, although the pattern of
disruption of features may have not been exact for a specific
condition. We showed that DNE was able to define clinically
interpretable features and detect differences between normal
and simulated impaired recordings. As future work, to expand
its clinical impact, we will focus our analysis on real patients
with various neurological impairment severity levels, and with
other neurological tests, such as eye movement [69], facial
activation [70], [71], or phonation [72].
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Clinical Application: The initial clinical application of DNE
is measuring and documenting features of various neurological
exams. This would allow for improved communication of ob-
jective exam quantification and the ability to assess for changes
over time. As future work, with clinicians’ supervision, we will
examine and report the performance of DNE on real patients.
A longer term goal is to assist clinicians with classification of
recordings and provide a platform for longitudinal monitoring
of patients.

B. Challenges

Depth Ambiguity: Analyzing human motion from 2D RGB
data requires dealing with uncertainties associated with lacking
depth information. Furthermore, depth ambiguity becomes a
more prominent challenge for the SAW test with frontal view
recordings rather than sagittal view. It also avoids defining the
spatial features in their absolute units. Currently, to mitigate
the issues corresponding to these depth uncertainties, for upper
limb tests, the subjects are asked to perform the tests while
facing the camera and (roughly) in parallel to its image plane.
In our processing steps, we also perform pose normalizations to
compensate for scale variations due to variable distance from the
camera. To further address this issue, we believe incorporating
LiDAR depth maps captured by recent iOS devices, in the pose
estimation step can prove helpful.

Self-baselining: Natural motion properties differ across vari-
ous subjects. For example, one subject can be inherently slower
or have less strength in performing some tests. In our dataset,
we witnessed while some subjects had a slower inherent speed
in their normal performance, they were mistakenly classified as
abnormal. This highlights the importance of taking into account
the history of a subject and self-baselining. In our experiments,
we showcased an example of self-comparisons of normal and ab-
normal performance of the same subject (Fig. 10). The purpose
of this study was to show the ability of our designed features to
discriminate between the varying status of the subject at different
test times. This result validates the potential of our DNE pipeline
as a personalized medical assessment system.

Real-time DNE: Our current DNE system and the extracted
kinematic/spatio temporal features rely on tracking the human
pose from the video recordings in an offline step using off-the-
shelf pose estimation modules. Currently, the pose estimation
step is the most computationally expensive step, hindering real
time processing and feature extraction. To address this challenge,
on-device lighter pose estimation models (with small sacrifice
on the accuracy), that focus on extracting major keypoints rather
than the whole body pose are necessary.

VIII. CONCLUSION

In this paper, we proposed a comprehensive vision-based
digital biomarker exam solution named Digitized Neurological
Examination (DNE). Using DNE software, users video record
their performance on various motor tasks, including finger tap-
ping, finger to finger, forearm roll, and stand-up and walk. We
introduced the DNE dataset, a total of 375 videos consisting
of normal and impaired functions of 21 subjects, performing
different tests. For each recording, 2D/3D pose is estimated and
used to quantify kinematic and spatio-temporal features. These
features form a set of digital biomarkers that can be 1) accurately
obtained from common RGB videos with minimal calibration,
2) used to track the clinical changes across recordings at different

time points. On our DNE dataset, we analyzed the effectiveness
of the defined features in differentiating normal versus impaired
simulated videos per and across subjects. Our results demon-
strate high classification accuracy and F1 scores using a variety
of machine learning models. Future work will extend the setting
of this study to a larger set of subjects with a diverse range of
abnormalities.
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