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Robust Fovea Detection in Retinal OCT Imaging
Using Deep Learning

Simon Schürer-Waldheim , Philipp Seeböck , Hrvoje Bogunović , Bianca S. Gerendas,
and Ursula Schmidt-Erfurth

Abstract—The fovea centralis is an essential landmark
in the retina where the photoreceptor layer is entirely com-
posed of cones responsible for sharp, central vision. The
localization of this anatomical landmark in optical coher-
ence tomography (OCT) volumes is important for assessing
visual function correlates and treatment guidance in macu-
lar disease. In this study, the “PRE U-net” is introduced as a
novel approach for a fully automated fovea centralis detec-
tion, addressing the localization as a pixel-wise regression
task. 2D B-scans are sampled from each image volume and
are concatenated with spatial location information to train
the deep network. A total of 5586 OCT volumes from 1,541
eyes were used to train, validate and test the deep learning
method. The test data is comprised of healthy subjects
and patients affected by neovascular age-related macular
degeneration (nAMD), diabetic macula edema (DME) and
macular edema from retinal vein occlusion (RVO), covering
the three major retinal diseases responsible for blindness.
Our experiments demonstrate that the PRE U-net signifi-
cantly outperforms state-of-the-art methods and improves
the robustness of automated localization, which is of value
for clinical practice.

Index Terms—Age-related macular degeneration, deep
learning, diabetic macula edema, fovea detection, landmark
detection, optical coherence tomography, retinal vein
occlusion.

I. INTRODUCTION

THE fovea centralis is an essential anatomical landmark in
human retina as it marks the spot which is responsible

for central, sharp vision [1]. Macular diseases such as neovas-
cular age-related macular degeneration (nAMD) [2], diabetic
macular edema (DME) [3] and macular edema from retinal
vein occlusion (RVO) [4] can lead to serious distortion of the
fovea, resulting in visual impairment. The identification of the
fovea centralis position is an essential step in retinal image
modalities [5]–[10] to analyze and monitor macular disease
progression as needed for treatment planning and decisions.
The fovea has an important role in diseases as subtle changes
can have high impact on vision [5]. The fovea localization is
required for measuring clinically relevant information such as
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Fig. 1. Fovea localization in retinal OCT. The manual annotated fovea
position is marked with a red dot, while the fovea position predicted
by our model is depicted with a white asterisk. Heatmaps show the
predicted distance to the fovea centralis for each pixel.

the retinal subfield thickness [11], [12] or the positioning of an
early treatment diabetic retinopathy study (ETDRS) grid [13] on
any retinal image to identify the location of retinal pathologies
in relation to its distance from the fovea, meaning its influence
on visual function. Therefore, the fovea centralis is a diagnosti-
cally relevant landmark that is crucial for an appropriate patient
management and treatment success.

In this paper, we propose a novel deep learning based approach
to automatically predict the fovea position in optical coherence
tomography (OCT) scans. OCT is the current gold standard and
most used imaging modality for retinal diseases [14]–[16] and
enables to non-invasively acquire three-dimensional scans of
the retina in micrometer resolution [17]. To obtain a volumetric
scan, one-dimensional A-Scans are concatenated to form a 2D
B-scan and multiple 2D B-scans comprise a 3D volume. The
major advantage of using automated methods for fovea detection
is its objectivity and reproducibility of the results. The labelling
will always be done in the exact same manner by the algorithm,
whereas the intra- and inter-observer variability need to be
considered when human manual detection is performed.

Automated landmark localization in medical imaging is a
challenging and an active research topic since decades [18]–[20].
While earlier approaches such as the left ventricular landmark
detection algorithm by Garcia-Melendo et al. [18] started with
handcrafted rules to solve localisation tasks, learning-based
methods are currently state-of-the-art [20]–[26]. This paradigm
shift can be explained by multiple factors such as the difficulty
of defining effective rules and features, the increased compu-
tational power and the latest achievements of learning-based
methods. The earlier approaches exploited machine learning
based methods such as random forests [27]–[37] and in the
most cases still depend on handcrafted features. For end-to-end
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Fig. 2. Difference between healthy (left) and diseased retina (right). In
healthy cases, recognizing the fovea center (white cross) as the deepest
position of the fovea pit is easy, whereas in diseased cases even expert
graders disagree sometimes.

learning, two different design choices exist in the context of
landmark detection. Either the landmark coordinates are directly
determined [38], or a map [8], [9], [20]–[23], [26] is predicted.
Depending on the design of the algorithm, map values can
represent pseudo-probabilities of being the target of interest [8],
[9] or distances to the landmark [22]. The disadvantage of
directly detecting a landmark is that no feedback explaining the
prediction choice is given. In contrast, maps provide potential
insights, indicating which challenges the algorithm might face.

The automated fovea detection in OCT imaging was ad-
dressed in several previous studies [5]–[10]. Most of the ap-
proaches reached promising results for healthy eyes, where the
retina is showing a consistent morphology and the deepest retinal
point (the “fovea pit”) represents the landmark of interest. In
contrast, fovea detection in diseased subjects is a much more
challenging task (automated and manual) due to the highly
altered and diverse appearance (Fig. 2). For instance, retinal
fluid, pigment epithelial detachments or fibrosis can be found
as common pathologies [39]. More importantly, different fovea
types can occur [6], [10], with disorganized layer boundaries
and abnormal retinal thicknesses in retinal swelling, called
edema [10]. Thinning and confluence of certain retinal layers
close to the fovea is a typical characteristic humans use to
identify the fovea [40]. However, using this anatomical finding
to design an algorithm will not always lead to reliable fovea
detections as the thinning and confluence can not be observed
in all diseased eyes (Fig. 2).

Wu et al. [6] propose to solve the fovea detection in OCT
images by classifying the foveal configuration type (normal,
minor and absent), performing a retinal surface segmentation
algorithm and using different layer thickness maps to compute
the final landmark position. Montuoro et al. [7] use a random
forest regressor with layer thickness maps as input to predict
the distance to the fovea for every A-scan. For finding the
final landmark position, a random sample consensus is applied.
Besides a longer run time due to the additionally required layer
segmentation, both methods are prone to prediction errors that
are caused by imprecise layer segmentations in difficult cases.
Furthermore, important context information might exist that is
not included in layer thickness maps. Liefers et al. [8], [9]

introduced two slightly different fully convolutional network ar-
chitectures that are trained with two-dimensional image patches
to solve the landmark detection task. By solving the classifica-
tion task ‘fovea vs. non-fovea,’ a landmark likelihood value is
predicted for each pixel. The position with the maximum value
in the OCT is then used as final landmark position. In contrast,
our approach tackles the problem as a pixel-wise regression task,
uses full B-scans instead of patches with limited spatial context
and utilizes a spatial map as additional input. Li’s et al.’s [10]
approach is based on creating OCT projection maps, using
two slightly differently trained lightweight U-net instances to
classify the foveal avascular zone (FAZ), a vessel free central
retinal area always containing the fovea. By calculating the
geometric center of the detected FAZ area the fovea position is
obtained. The fast prediction speed of this method, by reducing
the 3D OCT volume into a 2D projection map, comes at the
expense of: (1) The prediction accuracy depends on the quality
of projections, and (2) the 3D high-resolution information is not
exploited.

Our proposed approach, which we refer to as prior regular-
ization U-net (PRE U-net), addresses previous limitations by
tackling the landmark detection task as a distance regression
problem for each pixel (Fig. 1). We propose to use a spatial
location prior, which is created by using the anatomical pixel
information and the volume size to generate a second input for
the artificial network. Hence, a three-dimensional spatial context
is provided to the model.

The main contributions of this work are fourfold: (1) We
addressed the fovea detection as a pixel-wise regression task.
(2) Our novel introduced sampling strategy works with full
B-scans and does not require using full volumes during training
time which saves memory. (3) We introduce a distance map
transformation procedure for the target map creation, consid-
ering the anatomical pixel size and the network optimization
process. (4) We propose the PRE U-net architecture that uses
the spatial location prior as an additional input map to boost the
performance.

II. METHODS

In this study, the landmark detection task is addressed as
pixel-wise regression task. The model fθ is trained to predict
the distance to the fovea centralis for every pixel of the input
image. The pixel with the lowest distance then indicates the
predicted location of the fovea. An overview of the proposed
approach is shown in Fig. 3.

a) Training and Sampling Strategy: Let χn be a dataset of
n OCT volumes. For each volume Xi, the model fθ aims at
finding the function fθ : Xi, Zi → Vi by optimizing its weights
θ, where Zi is the spatial location prior volume (Section II-B)
and Vi the target distance volume (Section II-C). Zi and Vi have
the same size as Xi. For training the PRE U-Net, B-scans xi

are sampled from each OCT volume Xi using the following
strategy: For each volume, the target B-scan (where the landmark
was annotated) and a randomly selected non-target B-scan are
extracted. A hyper-parameter d is used to exclude B-scans from
the non-target selection that are located less than d planes away
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Fig. 3. Overview of the proposed approach. During training, the model learns to predict a fovea distance map, taking the OCT B-scan and the
spatial location prior as input. The final model is then applied B-scan wise to a new OCT volume during test time, obtaining a fovea distance volume.
The pixel with the lowest predicted distance is then used as fovea position estimate.

from the target B-scan. The corresponding spatial location maps
zi ∈ Zi of the B-scans are fed as an additional input to the
network. The model is optimized by minimizing the following
loss:

J(v̂i, vi) =
1

n

n∑

j=1

|v̂ij − vij | (1)

where v̂i are the output distance maps, vi are the corresponding
target distance maps and n is the number of pixels in these
maps.

b) Application: At test time, the trained PRE U-Net is ap-
plied B-scan wise to a new OCT volume. By taking both the
original OCT scan and the corresponding spatial location prior
as input, the model predicts a fovea distance volume V̂i. As
postprocessing-step a three-dimensional Gaussian smoothing
operation is applied as convolution to V̂ , resulting in a smoothed
output volume V̂ ∗ of the same size as the input. The discrete
Gaussian kernel is created by selecting the size of the kernel and
filling the content according to:

G(x, y, z) =
1√

2π
3
σ1σ2σ3

e
− x2

2σ2
1

− y2

2σ2
2

− z2

2σ2
3 (2)

where σ1, σ2, σ3 are determining the smoothness of the out-
put for the dimensions x, y, z. The minimum value of the
smoothed output V̂ ∗ then indicates the detected fovea position
Yi(y1, y2, y3).

A. Spatial Location Prior

With the spatial location prior volume Z, additional three-
dimensional spatial context information is provided to the
model. To generate Z no additional labels are needed. The
spatial location prior volume Zi ∈ Ra×b×c for an OCT volume
Xi ∈ Ra×b×c with an anatomical pixel size of γ1 × γ2 × γ3 is
created by:

Zi : Zij1,j2,j3

=
√

(η1(j1 − c1))2 + η2(j2 − c2))2 + η3(j3 − c3))2 (3)

where c1, c2, c3 are the coordinates of the 3D volume center
Ci, j1, j2, j3 are the pixel positions of Zi and η1, η2, η3 are nor-
malization hyper-parameters (axial, lateral and transversal). The
anatomical pixel size is used to set the normalization parameters:
η1, η2 = γ2 and η3 = γ3.

B. Target Map Creation

The target distance volume V is used as ground truth map
during training. To generate V, the annotated landmark position
and the anatomical voxel size is needed. First, a corresponding
ground truth distance volume Di ∈ R+ of the same size as Xi

is created by:

Di : Dij1,j2,j3

=
√

(ζ1(j1 − y1))2 + ζ2(j2 − y2))2 + ζ3(j3 − y3))2 (4)
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Fig. 4. U-net based architecture of the proposed method (PRE U-net) with five levels of depth, using the spatial location prior (red) as an additional
feature channel.

wherey1, y2, y3 are the coordinates of the ground truth landmark
Yi, j1, j2, j3 are the pixel positions of Di and ζ1, ζ2, ζ3 are nor-
malization hyper-parameters(ζ1, ζ2 = γ2, ζ3 = γ3). A logistic
function g(.) with an offset term is used to transform Di into the
target map Vi ∈ R+[0,1]:

Vi = g(Di) =
L

1 + e−k(Di−x0)
− 0.5L (5)

with hyper-parameters L, k and x0. L/2 determines the maxi-
mum output value,k the steepness of the curve andx0 defines the
horizontal translation of the function. The offset term −0.5 L is
used to set the constraint that a perfect prediction has a distance
of 0.

C. Architecture

In this study, a U-net [41] based architecture is used as a
backbone (Fig. 4). The encoding and decoding part are con-
nected by skip connections. The conv2-block used is a double
sequence of a zero-padded convolution operation (conv) with
a kernel size of 3 × 3, followed by a batch norm layer [42]
and a leaky rectified linear unit (leaky ReLU) [43], [44]. The
leaky ReLU is used instead of the ReLU to address the dying
ReLU problem [43]. 2 × 2 max pooling operations reduce
the spatial resolution in the encoding part. Bilinear upsampling
operations with a scale factor of 2 regain the spatial resolution.
After each upsampling-block the feature maps are concatenated
(skip connection) and fed to a conv2-block. Our network has five
levels of depth, with 64, 128, 256, 512 and 1024 output channels
each. The spatial location prior is added in form of a feature
channel just before the last 1 × 1 convolution operation (Fig. 4,
red block). Finally, a sigmoid activation function is applied in
order to predict distance values between 0 and 1.

III. EXPERIMENT SETUP

A. Materials

This work was conducted in adherence to the tenets of the
Declaration of Helsiniki, and ethics approval was obtained by
the Ethics Committee of the Medical University of Vienna
Submission Nr 1246/2016. A total number of 5,586 OCT
volumes obtained with a Spectralis OCT device (Heidelberg

TABLE I
DATA SETUP USED INCLUDING THE DISTRIBUTION OVER THE FOUR

GROUPS: HEALTHY, WET AMD, DME AND RVO

Engineering, Heidelberg, Germany) from 1,541 eyes of 1,541
different subjects were used for development and evaluation
(Table I). The volumes were acquired with voxel dimensions
of 496× 512× 49. The volume covers an anatomical area of
approximately 2× 6× 6mm, resulting in an voxel size of about
γ1 = 0.004, γ2 = 0.012 and γ3 = 0.122.

The dataset consists of 278 healthy volumes, 1884 volumes
with neovascular age-related macular degeneration (AMD), 311
volumes with diabetic macular edema (DME) and 3113 volumes
with retinal vein occlusion (RVO). The data was randomly
split on a patient-distinct basis into training (nsubjects = 1005),
validation (nsubjects = 136) and test set (nsubjects = 400), as
depicted in Table I. Up to 13 volumes per eye were available,
representing different stages of treatment and disease severity.
In order to obtain a challenging evaluation set, only treatment-
naive volumes (showing most retinal swelling and most retinal
layer disorganization, thus a high level of foveal architechture
distortion) were used in the validation and test set. The fovea
position was manually labelled according to a standardized and
predefined process for all volumes by certified expert graders
(gold standard for manual fovea positioning) of the Vienna
Reading Center (VRC) at the Medical University of Vienna.

B. Training Details

The OCT voxel values were rescaled to [0,1]. In the exper-
iments of this work we used L = 2, k = 3.5 and x0 = 0 as
hyper-parameters to create the target maps. L=2 was chosen
to receive distance values in the range of 0 and 1. k was
empirically determined by taking into account the area which
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can be identified as close to the fovea center by humans, in-
tuitively reflecting the increasing difficulty of estimating the
correct regression value with increasing distance to the fovea
center (Appendix I, Fig. 9). x0 was set to 0 since a horizontal
translation of the transformation function g(.) was not intended.
The sampling hyper-parameter d was set to 3, in order to avoid
sampling of non-target B-scans that are close to the target B-scan
and would therefore represent ambiguous samples. In other
words, B-scans further away than d from the fovea center should
be unambiguous and identifiable as non-targets. The network
was trained using a learning rate of 0.0001 and Adam opti-
mizer [45]. Kaiming [46] was picked as network-weights initial-
ization method. A mini-batch size of 8 was chosen, containing
the target and a non-target B-scan from 4 different volumes
each. The model was trained for 8 epochs corresponding to
10,104 iterations. Data augmentation with horizontal flipping,
rotation with ±10°as well as translation with ±5% laterally and
±15% axially was applied during training at a chance of 50%.
Moreover, the B-scans were elastically deformed (α= 0.05, σ=
0.75) at a chance of 10% and Gaussian noise (μ=0,σ=0.25) was
added at a chance of 5%. During test time, the post-processing
parameters for a 3× 5× 5 Gaussian smoothing kernel were
set to σ1 = 0.33, σ2 = 0.45 and σ3 = 0.42. The deep-learning
models were developed using PyTorch 1.0.0 [47] and Python
3.6 (Python Software Foundation, Delaware, USA).

C. Evaluation

In our experiments, we evaluated (1) the performance of
our model in comparison with a heuristic that has been used
in previous work [8], two state-of-the-art deep learning ap-
proaches [8], [10] and (2) the contribution of each of the
individual components of our proposed approach in the final
results. For quantitative evaluation, the Euclidean distance be-
tween the predicted and the manually annotated fovea location
was calculated. Following the recommended evaluation strategy
of previous work [8], [9], we only evaluated the distance in
the transversal and lateral dimension. A distance-threshold of
0.750 mm to the manual location is used for determining the
number of outliers as this value corresponds to the actual fovea
size of about 1.5 mm in diameter [48]. For a more detailed
evaluation, we also used two more restrictive distance-thresholds
that are 1) the size corresponding to the foveolar 0.175 mm [48]
and 2) the distance used by the VRC to detect outliers. According
to this definition, the difference between detected and manually
annotated positions must lie within a range of 1 B-scan and
5 A-scans (euclidean distance of 0.135 mm) to call the distance
as clinically acceptable. This cutoff was the most stringent cutoff
we used for evaluation of the distance between the detected and
the manually annotated position, claiming that if the detected
distance is in this range it can be called clinically acceptable.

The one-sided Wilcoxon signed-rank test [49] was conducted
at a significance level of α=2.5% to test if the performance
of our proposed method is statistically significantly better than
the baseline approaches: (1) FCNet [8] proposing a fully con-
volutional architecture, (2) FAZNet [10] segmenting the FAZ
region in projection maps and (3) the heuristic of taking the

image center position as fovea center (ICP). In general, two main
locations of OCT acquisition exist. Depending on the clinical
location of interest, OCTs are approximately centered either in
the macula/fovea, which is the case in our dataset, or in the optic
nerve head. Using the center of the scan as an estimate for the
fovea position is therefore a straightforward baseline that does
not involve any training and has also been used previously [8].

We conducted a series of ablation experiments to evaluate
the importance of each individual component of our proposed
method. The one-sided Wilcoxon signed-rank test [49] was used
(α=2.5%) to test if the performance of our proposed method is
better than the performed ablations. It is important to note that
hyper-parameter tuning was based on the performance in the
validation set. The test set was only used to demonstrate the
impact of the model components on the results.

� A- Input information: The spatial location prior map was
removed from the proposed approach.

� B- Target map: Three alternative target maps were evalu-
ated separately:

– The normalized distance map Di.
– Vi with ζ1 = γ1 as normalization hyper-parameter.
– Vi with pixel distance map Di (ζ1, ζ2, ζ3 = 1).

Note that Zi and Di are always normalized in the same
manner.

� C- Architecture: The U-net based backbone architecture
was replaced by the network architecture proposed by
Liefers et al. [8]. However, the idea of using a spatial
location prior as an additional input channel was added.
We refer to this adaptation as centered FCNet.

� D- Sampling strategy: Two alternative sampling strategies
were tested separately:

– The number of selected non-target B-scans per volume
was increased from one to two, three and four.

– The non-target B-scan selection constraint (d = 3) was
omitted.

� E-- Loss function: The L1-loss was replaced with the L2-
loss function.

� F-- Data augmentation: A PRE U-net instance was trained
without applying data augmentation.

� G-- Model: A DeepLabV3+ [50] based backbone was
used without spatial location prior, but with the proposed
target map creation process.

IV. RESULTS

A. Quantitative and Qualitative Evaluation

Quantitative results for fovea detection are shown in Table II,
including results for our proposed method PRE U-Net and the
three baseline approaches FCNet [8], FAZNet [10] and ICP.
The proposed algorithm outperforms the three baseline methods
in all metrics on the test set. In particular, the statistical tests
reveal that ICP (p = 5.1 · 10−10), FAZNet (p = 7.2 · 10−9) and
FCNet (p = 2.3 · 10−6) are significantly outperformed by our
method on the test set. Boxplots illustrating the ‘distance to
ground truth’-distribution in the test set are shown in Fig. 5. The
results demonstrate that for the proposed method the number
of outliers was reduced compared to the state-of-the-art deep
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TABLE II
QUANTITATIVE PERFORMANCE ON THE TEST SET (SAMPLE SIZE = 400)

*19 samples had to be removed due to insufficient segmentation results.
The mean, standard deviation, median and the number of outliers is shown for each method. The distances results (mean, std and median)
are given in mm. The number of outliers are provided for the distance-thresholds of 0.135 mm (VRC-criteria), 0.175 mm (fovevola) and
0.750 mm (fovea). The p-values of one-sided wilcoxon signed-rank tests, comparing our proposed approach with the others, are presented.

TABLE III
QUANTITATIVE RESULTS OF THE ABLATION EXPERIMENTS, EVALUATED ON THE TEST SET

The distance values are given in mm. The number of outliers are provided for the distance-threshold of 0.135 mm (VRC-criteria), 0.175 mm (fovevola) and 0.750
mm (fovea). The p-values of one-sided wilcoxon signed-rank tests, comparing our proposed approach with other ablations, are presented. With smaller p-values the
likeliness of ablations being as good as or better than the proposed approach declines.

Fig. 5. Boxplots depicting the performance of the three different fovea
position estimation methods (Image center position (ICP), FCNet [8])
and PRE U-net) on the test set. The boxplot on the right-hand side
shows a zoomed-in version.

learning method [8] from 30 to 8, corresponding to a relative
decrease of 73.33%. In 392 out of 400 volumes in the test set
the distance error of our approach is within the actual fovea size
corresponding to a success rate of 98%. For 298 out of 400 (75%)
predictions we observed a prediction error lower than 0.175 mm,
meaning that the predictions are within the foveola area [48].

For 262 out of 400 (66%) we observed a prediction error lower
than 0.135 mm, meaning that the predictions are within the
VRC criteria. Notably, the PRE U-Net clearly outperforms both
baseline approaches also for these more stringent outlier cut-off
value criteria. A table containing the quantitative metrics after
excluding the outliers can be found in the Appendix I . (Table IV)
as well as the training and validation loss curves of the three
implemented deep learning approaches (Fig. 8).

Fig. 6 depicts boxplots of the distance between predicted fovea
positions and manual fovea annotations, separated by diseases.
In line with results described above, the proposed approach PRE
U-Net outperforms both baselines in all patient groups and shows
a reduced number of outliers.

Analyzing the outliers, of the 8 volumes which were not
detected within 0.750 mm by our method, most occurred in
the RVO subset (Fig. 6): 0 Healthy, 1 wet AMD, 2 DME,
5 RVO. Similarly, for the two baseline approaches, the RVO
subset produced the most outliers (ICP: 0 Healthy, 1 wet AMD,
2 DME, 6 RVO; FCNet: 1 Healthy, 7 wet AMD, 8 DME, 14
RVO). Since ICP reflects the distance distribution of manual
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Fig. 6. Boxplots illustrating the results of all three methods on the test
set, separated by each data class (Healthy, AMD, DME and RVO). The
boxplot on the right-hand side shows a zoomed-in version.

fovea annotations compared to the center of the scan, Fig. 6
illustrates that the fovea was the most off-centered in the RVO
dataset.

Qualitative results of the PRE U-net on the test set are shown in
Fig. 7. We empirically observed particularly smooth transverse
plane prediction heatmaps for healthy cases. Moreover, results
with low prediction errors (<0.025 mm) were not limited to
the healthy patient group. While eight outliers (>0.750 mm)
occurred in subjects with non-healthy morphologies, in most
cases the algorithm can achieve localizations close to the labelled
positions, even in those with highly altered appearance (Fig. 7).

B. Ablation Study

The conducted experiments revealed that all ablations resulted
in a decline of performance (Table III). The mean performance
value drops more than the median value. Isotropic normaliza-
tion of the target map (axial, lateral) is an important measure,
indicated by the performance drop in B2 (Table III). Besides
the normalization of the target map, the architecture has the
highest impact on the landmark detection performance. Even
the ‘centered FCNet’ with a spatial location prior added to
the method of Liefers et al. [8], shows a reduced performance
with an increased number of outliers (20) (C). Lifting the
normalization of Di and Zi, which is the same as setting all
corresponding hyper-parameters to one, results in a 4.9% higher
median distance (B3). Without the transformation of target map
distance values, described in section II-C, the mean distance
increased by 11.8% and the std by 32.1% (B1). The non-target
B-scan selection limitation has the smallest effect, resulting in
a mean value only 0.001 mm lower (D2).

V. DISCUSSION

Automated detection of the fovea in OCT images is an es-
sential task for quantifying, analyzing and monitoring retinal
diseases. Automated detection has the potential to overcome
several limitations of the manual annotation process such as
the dependence on human experts and reader variability due
to subjectivity. At the same time, however, the performance
and robustness of current approaches is affected by various
challenges. For instance, the wide variety of appearances in
retinal OCTs due to retinal disease make identification of the
fovea sometime very hard, even for trained humans with many
years of experience.

In this work, we propose a new approach for fovea detection
in retinal OCT images. Our method PRE U-net clearly outper-
forms previous methods, particularly in terms of robustness. Our
method is based on a U-net as backbone and takes B-scans as
input to predict a distance value to the landmark for each pixel
of an OCT volume. We believe that the achieved robustness
gain can be explained by two main contributions. First, our
approach was trained on full B-scans using an encoder-decoder
architecture, allowing to use more information for each distance
prediction than e.g. patch-based algorithms. In addition, using
B-scans instead of 3D volumes as input mitigates problems when
dealing with a low or varying number of B-scans, which is a
common situation in clinical practice. Second, a spatial location
prior was added as additional input to the network, providing
three-dimensional spatial context without the need for a 3D
model with all its expenses. Based on the image information the
model might identify more than one landmark position candidate
(i.e. pixels with a distance prediction close to zero). In this
case, the spatial location prior can be used by the network as
additional guidance, putting a candidate in context to its location
in the volume. In general, we hypothesize that the model learns
how to profit the most from the spatial location prior, depending
on the relation between input image characteristics and specific
spatial locations. The positioning of the spatial location prior is
of importance. We experimented with feeding the prior channel
together with the image information to the network which was
not leading to reasonable landmark predictions. However, the
proposed placement was working satisfyingly. We hypothesize
that considering the abstraction level is important for combining
image and prior information in deep learning models. We believe
that using the spatial location prior in an optimal way requires the
network to already have a high level of abstraction and context
as is the case for the features in the last convolution. Even though
out of scope for this work, future studies might focus on a more
detailed investigation of combining different input types such as
priors or constraints with image data.

Many studies have been published on landmark detection
problems in medical imaging [20]. However, the automated
fovea detection task in diseased cases is particularly difficult.
While basic anatomical structures in the surrounding area of
a landmark usually look similar, retinal diseases cause a big
variety of fovea shapes and appearances, making rule-based
approaches and handcrafted features tough to find. For learning
based algorithms, the idea of using additional spatial information
is not new. Multiple works have already shown performance
improvements for landmark predictions by combining image
and spatial information [20], [22], [34], [51]. However, to the
best of our knowledge this is the first work applying this idea
to the task of fovea detection in OCT images. Moreover, most
approaches depend on the availability of multiple landmarks
that are related to each other, which is not transferable to our
use case. Other deep learning based approaches such as the
atlas location autocontext algorithm by O’Neil et al. [51] use a
two-stage algorithm to identify landmark locations. In contrast,
our proposed method adds the spatial location prior directly
as a feature map to the architecture, simplifying the model
complexity.
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Fig. 7. Qualitative results of the PRE U-net on the test set. Two exemplary samples with (a) low (<0.025 mm) and (b) medium (0.120 mm -
0.189 mm) error as well as an (c) outlier (>0.750 mm) are illustrated. The red circles display the location of the ground truth labeling, the white
crosses show the automated detected positions (PRE U-net) and the gray pluses mark the image center position (ICP). The original B-scans, their
heatmaps and the transverse plane heatmaps are shown on the left, middle and right, respectively. The detected landmark position determines the
presented B-scan and transverse planes.
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The baselines used were all significantly outperformed by our
approach. We think that using the center-point of the image as
estimation of the fovea position should not be used in clinical
practice nor for placing the ETDRS grids on retinal images.
Nevertheless, it has often been used in large-scale retrospective,
population-level analysis of ETDRS-grid derived parameters
due to an absence of automated fovea localization method,
and it helps to put the experiments and quantitative results in
context. Our implementation of Liefers’ et al. [8] method is
in line with their reported results. However, RVO cases have
not been part of their evaluation, which seem to be particularly
challenging. While outliers were reported, but excluded for the
quantitative statistics in their study, we included them. In clinical
practice, a detection method without the need of an additional
outlier monitoring process is desirable. Including outliers in the
calculation, our results show that the mean value of 0.261 mm
of the FCNet is even higher than the ICP baseline (0.223 mm),
while this is not the case for our proposed approach (0.169 mm).
The issue with the FAZNet approach by Li et al. [10] for our data
can be explained by the lower projection map quality resulting
from the lower B-scan resolution (49 B-Scans instead of 200).
Other factors might be the distribution of diseased cases and the
vendor type.

The ablation experiments confirmed that all evaluated parts
of our approach contributed to the landmark detection success.
The ablations revealed higher impact on the mean value than on
the median value, indicating the positive effect of the proposed
concepts on robustness. The results revealed the importance
of using target maps with symmetrical distance expansion in
axial and lateral direction during the training procedure (B2).
We hypothesize that isotropically normalized target maps lead
to a simpler representation of the landmark detection problem
and therefore help to improve the performance. Increasing the
number of sampled non-target B-scans (D1) per volume does
not improve the results and even requires more resources during
training than only sampling a single one. Not considering the
anatomical pixel size (B3) for the generation of Zi leads to a
performance drop, supporting the significance of our proposed
spatial location prior creation procedure. We implemented the
DeepLabV3+ as a backbone for our approach (Table III, ablation
experiment G). The spatial location prior was not added to
the DeepLabV3+ as the positioning of the prior is an open
question for this architecture. Nevertheless, DeepLabV3+ and
the U-Net architecture can be compared without spatial location
prior (ablation experiments: G vs. A) which we think is better
suited to evaluate the choice of the backbone architecture. Both
mean and median performance dropped for G, supporting the
usage of the U-Net architecture.

We also noticed that even though we used different amount
of data for the four data groups (Healthy, wet AMD, DME,
RVO) during training time, the performance of the model was
not affected by this class imbalance. From a clinical perspec-
tive, DME and RVO are very similar retinal disease which
could explain the results on DME although the dataset was
small. Another explanation might be that the network finds
features that are independent from the diseases. This might

be supported by the sampling strategy which aims at teach-
ing the network to differentiate between target and non-target
B-scans.

A potential limitation of the PRE U-Net is that the network
operates on two-dimensional B-scan images while solving a
three-dimensional localization task. While this means that our
model is to some extent independent of the number of B-
scans and their anatomical distance, it may miss potentially
important context in the third dimension. However, we pro-
posed the spatial location prior to address the missing con-
text issue in the third dimension. Moreover, having a B-scan-
based approach reduces the memory-need of the deep learning
model.

The idea of the spatial location prior is not limited to the
proposed task, but might be of interest for every task where a
landmark is expected to be in a certain image area. In those
cases, the center of the landmark expectancy range can be used
to create the spatial location prior, not limited to the image
center coordinates. Theoretically, the prior can be created for
arbitrary dimension size, even though we only evaluated it on
three dimensional data.

Taking the high variability between different manual anno-
tations into account, where two trained humans, that result in
comparable central subfield thickness values in standardized
reading center settings, in mean show a distance between two
foveas of 45μm (unpublished results, VRC), having 66% within
the VRC Criteria (which is the most stringent and standardized
criteria available) is comparable to human annotations. These
criteria are most likely more stringent than clinicians in clinical
routine and as such useful. The algorithm is a good example
how to improve the visualization for ophthalmologist in routine.
Many OCT evaluation reports used in the clinic are dependent on
the fovea position (e.g. central retinal thickness in the foveal and
parafoveal area) that is set in most devices just to the center of the
OCT image. The clinician has the possibility to manully re-set
the foveal position at his own discretion, which many clinicians
do not use. Thus, if the PRE U-net approach would pre-align the
OCT analyses for the clinical reports better than the center of
the scan, this means already a large improvement to the current
clinical standard.

VI. CONCLUSION

We proposed the PRE U-Net for fully automated fovea de-
tection in OCT volumes, addressing the task as a pixel-wise
regression problem. The spatial location prior and a novel target
map creation procedure were presented as measures to improve
the performance and robustness. The results demonstrate that the
PRE U-net significantly outperforms the current state-of-the-art
for fovea detection in OCT volumes. Moreover, the proposed
approach clearly reduced the number of outliers, which is of
particular relevance in clinical practice. We are convinced that
using such a model in clinical practice would be more than useful
compared to the current clinical standards. Future fovea detec-
tion studies might also focus on three-dimensional approaches
to include all relevant image context information.
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APPENDIX I
SUPPLEMENTARY MATERIAL

TABLE IV
QUANTITATIVE PERFORMANCE ON THE TEST SET (SAMPLE SIZE = 400)

WITHOUT OUTLIERS (> 0.750 MM)

*19 samples had to be removed due to insufficient segmentation
results.
The mean, standard deviation and median is given in mm for
each method.

Fig. 8. Training curves of the three deep learning approaches.

Fig. 9. Visualization of target map distance transformation.
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