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Abstract—Total anomalous pulmonary venous connec-
tion (TAPVC) is a rare but mortal congenital heart disease
in children and can be repaired by surgical operations.
However, some patients may suffer from pulmonary venous
obstruction (PVO) after surgery with insufficient blood
supply, necessitating special follow-up strategy and treat-
ment. Therefore, it is a clinically important yet challeng-
ing problem to predict such patients before surgery. In
this paper, we address this issue and propose a computa-
tional framework to determine the risk factors for postoper-
ative PVO (PPVO) from computed tomography angiography
(CTA) images and build the PPVO risk prediction model.
From clinical experiences, such risk factors are likely from
the left atrium (LA) and pulmonary vein (PV) of the patient.
Thus, 3D models of LA and PV are first reconstructed from
low-dose CTA images. Then, a feature pool is built by com-
puting different morphological features from 3D models of
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LA and PV, and the coupling spatial features of LA and
PV. Finally, four risk factors are identified from the feature
pool using the machine learning techniques, followed by a
risk prediction model. As a result, not only PPVO patients
can be effectively predicted but also qualitative risk factors
reported in the literature can now be quantified. Finally,
the risk prediction model is evaluated on two independent
clinical datasets from two hospitals. The model can achieve
the AUC values of 0.88 and 0.87 respectively, demonstrating
its effectiveness in risk prediction.

Index Terms—Congenital heart disease, risk factors,
risk assessment model, quantitative computing, computed
tomography angiography (CTA).

I. INTRODUCTION

TOTAL anomalous pulmonary venous connection (TAPVC)
is a rare and heterogenous anomaly, accounting for ≈ 1%

to 3% cases of congenital heart diseases [1]. It is characterized
by a failure of the pulmonary venous confluence to be absorbed
into the dorsal portion of the left atrium (LA), as illustrated in
Fig. 1(a). Historically, TAPVC has led to a high mortality rate of
≈ 80% in the first year of life without intervention [3]. For the
past few decades, advances in surgical techniques and improve-
ment in diagnostic accuracy have contributed to a significant
decrease in preoperative mortality. The surgical operation for
TAPVC is shown in Fig. 1(b), in which the roof of LA and
the common PV are exposed and a side-to-side anastomosis is
needed to complete. Several risk factors such as neonatal surgi-
cal repair, preoperative pulmonary venous obstruction (PVO),
mixed anatomic variation, single-ventricle physiology, and het-
erotaxy remain to be important for poor prognosis of TAPVC
repairing [4]–[7]. Particularly, late mortality after the repair of
TAPVC is frequently associated with postoperative pulmonary
venous obstruction (PPVO). Patients with PPVO will suffer from
insufficient blood supply. Thus there is a higher mortality rate
in patients who develop PPVO. Their 30-day, 1-year, and 3-year
survival rates are 95.8%, 62%, and 58.7%, respectively [11].
While the total rate of PPVO is ≈ 15% [8], 5%-18% of the need
for reoperation after TAPVC repair is due to PPVO [9], [10].
Thus, PPVO after TAPVC repair poses an ongoing challenge and
is associated with increased late mortality and morbidity [12],
[13].
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Fig. 1. (a) Anatomy description of total anomalous pulmonary venous
connection (TAPVC) [2]. (b) Illustration of operation process: the roof of
the left atrium (LA) and the common pulmonary vein (PV) are exposed
and a side-to-side anastomosis is completed.

For patients with PPVO, the current standard of care is a
follow-up reoperation in time. They should be monitored care-
fully after TAPVC repair and actively examined on the slightest
suspicion of PPVO. During the follow-up process, clinicians
can find patients with PPVO symptoms in time and provide ef-
fective and necessary treatment, such as the reoperation. Hence,
it is significant for clinicians to determine which patients are
particularly at the risk of developing PPVO, which is however
a complicated task with few studies existed. To this end, in this
paper we will address this issue and propose a computational
framework to screen the risk factors for PPVO from computed
tomography angiography (CTA) images and build the PPVO risk
prediction model.

In the past several years, researches have studied risk factors
for the survival and outcome of TAPVC surgery. Karamlou
et al., [12] reported that patients of younger ages appears to
have more emergency operations. Jenkins et al., [14] found that
the size of the individual pulmonary vein (PV) is an important
predictor of diagnosis and survival for neonates with TAPVC.
Bando et al., [6] also found that a small venous confluence
and diffuse pulmonary venous narrowing are the risk factors
for death. Seale et al., [11] discovered that preoperative clinical
factors and cardiac morphologic type are important risk factors
for PPVO and survival rate. In the study by Shi et al. [8], they
used competing-risk analysis to discover that preoperative PVO
and infracardiac and mixed anatomic variation are associated
with PPVO. However, these studies are generally qualitative,
only identifying partial risk factors related to PPVO. As a
result, a quantitative and accurate risk predictive model with
the determination of risk factors is needed so that clinicians
can judge which patient is at risk of PPVO. Recently, deep
learning techniques have demonstrated excellent performance in
classification and segmentation tasks [15]. [16], [17] proposed
to use convolutional neural network to automatically extract
image features from CT images and combined them with clinical
features in an end-to-end trainable manner to predict PPVO.
However, the image features used to predict PPVO are difficult

to understand and cannot provide clinicians with understandable
risk factors.

Recently, several risk assessment approaches for adverse
cardiac events have been developed. The CARPREG score for
women with congenital heart disease, acquired heart disease,
and arrhythmia was first introduced [18]. Puchner et al., [19]
demonstrated that high-risk coronary plaque features detected
from CTA can improve the diagnostic accuracy in identifying
patients with acute coronary syndromes and the presence of
significant coronary artery disease for patients with acute chest
pain. In [20], the investigators studied the quantitative coronary
wall volume change to assess the heart transplanted patients
based on coronary CTA. In [21], the study sought to outline the
natural history of ascending thoracic aortic aneurysm based on
ascending aortic length and developed novel predictive tools to
aid in risk stratification. Overall, the risk assessment models
described above can help clinicians to stratify patients into
distinct prognosis groups and predict outcomes. Despite of these
efforts, there is still no risk assessment model for PPVO in
TAPVC patients.

While radiomics technique is widely applied in various tumor
studies [22]–[24], it was until recently that it has been applied
to cardiac image analysis [25]–[28]. By the radiomics analy-
sis [29], a feature pool is first constructed from medical images.
Then, risk factors are selected from the feature pool, and finally
a risk prediction model is built. Cetin et al., [25] demonstrated a
new approach to identify cardiovascular diseases from cine-MRI
by computing radiomic image features. Oikonomou et al., [28]
presented a high-risk radiomic signature of coronary perivascu-
lar adipose tissue from the analysis of traditional coronary CTA
scans. These results indicate that radiomics features of cardiac
images can indeed provide feasible assistance for clinicians.
However, similar researches are not seen in PPVO prediction
because of the complexity of constructing a suitable feature pool
for PPVO analysis.

Based on clinical experiences and reports in [6], [8], [11],
[12], [14], infracardiac and mixed anatomic variations are as-
sociated with PPVO in patients with TAPVC. In particular,
the morphological structures of LA and PV and their spatial
relationship are closely related to PPVO. However, these are
only qualitative observations from clinic, and how LA and PV
influence the PPVO quantitatively is not clear. To solve this
problem, we propose a computational framework to screen the
risk factors for PPVO from CTA images, with the construction
of risk predictive model. First, we segment LA and PV from
CTA images and reconstruct their 3D models. Then, a feature
pool is constructed, which consists of various morphological
features from LA and PV, such as the volume of LA, length
of common PV, mean radius of common PV, bifurcation angle
of PV branches, spatial distance between PV and LA, and the
coupling features of LA and PV. Finally, based on multivariant
logistic regression model and machine-learning techniques, four
different risk factors for PPVO are determined from the feature
pool for the construction of risk prediction model. Compared
with [6], [8], [11], [12], [14], quantitative risk factors rather than
qualitative observations are provided in this work. In particular,
critical risk factors are extracted from CTA images, resulting
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Fig. 2. Illustration of our framework for predicting postoperative PVO (PPVO).

Fig. 3. Illustration of our network architecture for segmenting PV and LA.

in more accurate the risk prediction model. The feature set is
constructed by segmenting, modeling and quantitative analysis
of LA and PV, which are more suitable for PPVO analysis in
comparison with the work in [25], [28]. The risk factors are based
on morphological features from LA and PV, promising for better
repeatability and interpretability of the prediction model than
those in tumor radiomics analysis. Finally, the proposed risk pre-
diction model is evaluated with two independent clinical datasets
from two different hospitals, which achieves the area under curve
(AUC) values of 88% and 87% respectively, demonstrating its
effectiveness.

The contributions of this paper can be summarized as follows:
� An effective risk prediction model is proposed for PPVO

in TAPVC patients, and quantitative morphological risk
factors are extracted from CTA images.

� A computational framework is proposed to quantify risk
features from the CTA images, which are often observed
qualitatively and ambiguously in the literature.

� A novel set of quantitative morphological features are
defined to describe spatial relationship between LA and
PV, which are often overlooked by conventional studies
but contribute to important patterns.

The remaining part of this paper is organized as follows. In
Section II, the proposed method are described. Results, discus-
sions, and conclusions are presented in Sections III, IV, and V,
respectively.

II. METHOD

In this section, we introduce the proposed framework in
detail, whose diagram is shown in Fig. 2. First, we describe
the segmentation and 3D modeling of LA and PV. Then we
construct a feature pool by computing a series of morphological
features from the 3D models of LA and PV. Finally, we determine
risk factors from the feature pool and build a risk assessment
model for PPVO. This retrospective study was conducted fol-
lowing ethical approval from the Institutional Review Board
at the Shanghai Children’s Medical Center and Guangdong’s
Provincial People’s hospital.

A. Segmentation and 3D Modeling of LA and PV

From clinical experiences, the PPVO is closely associated
with morphological structures of LA and PV and their spatial
relationship. Thus, we will first segment LA and PV from CTA
images and construct their 3D models. In clinics, CTA with
low radiation dose (Low-Dose) is commonly used for children
imaging, which generates CTA images with lower contrast than
general CTA images, as illustrated in Fig. 4(a). This makes it a
difficult task to segment LA and PV from Low-Dose CTA, espe-
cially in children. About 2 hours will be taken for radiologists to
delineate PV and LA manually from a 3D CTA image. Hence,
we propose a hybrid strategy to segment PV and LA, in which
PV and LA are first segmented automatically from CTA images,
and then the segmented result is further modified manually by
clinicians. This way combines the automatic image processing
and the experience of clinicians, making a trade-off between
accuracy and time. It only takes about 20 minutes for a clinician
to make corrections, which is acceptable.

1) Automatic Segmentation of LA and PV: V-Net [30] is a
convolutional neural network widely used in 3D medical im-
age segmentation tasks due to its good performance and low
computational cost. We have improved the V-Net in [31] to
automatically segment PV and LA from 3D Low-Dose CTA
images of TAPVC children. In the improved architecture, the
V-Net is used as the baseline model, and several useful im-
provements have been made to it. First, we remove the residual
connection in the convolution layer of the encoder to avoid
over-fitting. Second, since the batch size in 3D images is small,
we replace batch normalization with instance normalization in
all convolution layers. Most importantly, we incorporate the
attention mechanism [32] into the V-Net by implementing the
attention mechanism in spatial and channel attention blocks
(SCABs). The SCABs can guide the decoder to focus on the
important spatial position and feature channels to extract more
useful features to obtain better segmentation performance. The
improved V-Net architecture is called SCAB-VNet. The network
architecture is shown in Fig. 3.

Firstly, the OTSU threshold method [33] is used to segment
the region of the lung from the whole 3D CTA images to
save computational time. Then the CTA images are normalized
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Fig. 4. Illustration of segmentation and 3D modeling of PV and LA from CTA images. (a) Original CTA image. (b) Automatic segmentation of PV
and LA, masked by red and green, respectively. (c) PV and LA areas after manual revision of clinicians. (d) 3D modeling of PV and LA.

Fig. 5. (a) A PV consists of a common PV (CPV) and four branches: PVi, i = 1, 2, 3, 4. αi represents the angle between branch of PVi and the
centerline of the CPV. The red curve represents the centerline of the CPV, the yellow curves represent the centerlines of four branches of PV. (b)
The CPV marked from the PV model by clinicians and the separated CPV model.

by the Z-score method. Finally, CTA images are fed into the
SCAB-VNet to segment LA and PV. From our experiment,
the automatic segmentation can correctly recognize most of the
voxels belonging to LA and PV, as illustrated in Fig. 4(b).

2) Manual Revision: Due to the complexity of PV and LA
in Low-Dose CTA, the segmentation of PV and LA cannot
reach 100% accuracy by the network, which usually contains
some false positive regions or misses some voxels belonging to
LA and PV. In this case, many morphological features cannot
be computed correctly. The subsequent manual correction is
necessary for computing high-precision morphological features.
Usually, such manual editing only takes about 20 minutes or
so in a CTA image, a very short time as opposed to manual
delineations, which is about two hours or so. Based on this hybrid
strategy, both the accuracy and time can be balanced, facilitating
clinicians’ work in analyzing PV and LA quantitatively.

3) 3D Models of LA and PV: In order to generate smoothed
surface models of PV and LA, the segmentation results of PV and
LA will be used as the initialization, and refined by active contour
models [34]. Subsequently, the marching cube algorithm [35] is
used to reconstruct the surface models of LA and PV from the
binary segmentation results as shown in Fig. 4(d).

B. Computation of Morphological Features From LA and
PV

For risk factors of PPVO, clinicians have suggested some
qualitative but ambitious measurements from their clinical ex-
periences. In this section, we will show how to quantify them
more accurately by morphological features from LA and PV.

The morphological features and their coupling features together
to form the feature pool.

1) Morphological Features From PV and LA: PV vessel con-
sists of a common PV (CPV) and four branches, as shown in
Fig. 5(a). Considering that CPV is a complicated section of
PV and varied in different patients, its position is manually
marked by experienced clinicians from visualized PV model.
As a result, its 3D model is separated from the PV model, as
shown in Fig. 5(b). Based on the suggestions of clinicians, the
following features of CPV and LA are considered: the volume
of LA, length of CPV, mean radius of CPV, tortuosity of CPV,
bifurcation angles between CPV and four branches of PV. In
order to quantitatively describe these features, the centerline of
the PV vessel should be first extracted from the PV model. In this
work, the centerline is computed by the method in [36], which
has low computational complexity. An example of centerlines
extracted from a PV model is illustrated in Fig. 5(a). The length
and tortuosity of the centerline of CPV are denoted by |CPV |
and Tor(CPV ), respectively. CPV has varied radii at different
positions along its centerline, and the average radius is denoted
byR(CPV ). LetPV1,PV2,PV3,PV4 represent the centerlines
of the four branches of the PV as shown in Fig. 5(a). The four
angles between the four branches of PV and the centerline of
the CPV are denoted by α1, α2, α3, α4, respectively. Then
morphological features from PV and LA can be calculated as
follows:
VLA: The volume of LA, estimated by counting voxels in the

segmentation area of LA.
VCPV : The volume of CPV, estimated by counting voxels in

the segmentation area of CPV, as shown in Fig. 5(b).
|CPV |: The length of the centerline of CPV.
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Fig. 6. Illustration of the CPV radius computation. (a): A plane perpendicular to CPV is computed. (b): A circle (yellow) is used to fit the intersecting
curve (red) between the CPV model and the plane. (c): Distribution histograms of CPV radii from a patient without PPVO and a patient with PPVO.

αi = Θ(
−−→
PVi,

−−−→
CPV ), i = 1, 2, 3, 4, represent the angle be-

tween two vectors
−−→
PVi and

−−−→
CPV .

−−→
PVi and

−−−→
CPV represent

the principal direction of PVi and CPV, respectively.
Tor(CPV ): Let Dist|CPV | denote the distance between

two vertices of the CPV centerline. The tortuosity of CPV is
approximately computed as follows:

Tor(CPV ) =
|CPV |

Dist|CPV | − 1 (1)

The tortuosity defined above is zero when the vessel is
straight, and increases when the vessel is more tortuous.
R(CPV ) is computed from the CPV model as follows:
Firstly, the centerline of CPV is discretely sampled at 100

points at equal intervals. Secondly, the radius is computed at each
sampling point. At each sampling point, a plane perpendicular
to CPV is computed and used to calculate an intersecting curve
between this plane and the surface model of CPV, as shown
in Fig. 6(a). Since the actual PV is not a regular circular tube,
the intersection curve is fitted with a circle and the radius of
this circle is used at the sampling point, as shown in Fig. 6(b).
We utilize the average radius and variance of the CPV radii
computed from 100 sampling points to depict CPV thickness as
follows:

R(CPV ) =

∑100
i=1 r(Pi)

100
(2)

V ARR(CPV ) =

∑100
i=1 (r(Pi)−R(CPV ))2

100− 1
(3)

where r(Pi) represents the radius at the sampling point Pi. In
Fig. 6(c), the distribution of two patient’s CPV radii computed at
different sampling points are shown, indicating that the thickness
of a CPV can be approximately described by its average radius.

2) Features for Describing Distance Between LA and CPV:
Among the TAPVC operation, CPV and LA will be pulled
together along a direction (denoted byDir) and stitched together
along an incision of CPV, as shown in Fig. 1(b). Thus, TAPVC
operation’s result is closely related to the distance between LA
and CPV (DBLP). Along the direction Dir, each point in the
centerline of CPV will have the corresponding projection point
on LA surface model, and a projection distance can thus be
determined. DBLP actually can be regarded as the distribution
of all such projection distances from the centerline of CPV to
the surface of LA. Since the spatial relationship between LA
and CPV is very complicated, DBLP is difficult to describe

Fig. 7. Illustration of projection distances distribution between LA and
CPV (DBLP). The red curve represents the centerline of the CPV from
which 100 points are sampled and 100 lines (blue) are projected onto
LA surface. 100 intersecting points between the projected lines and CPV
surface (or LA surface) are represented in yellow (green).

based only on the minimal or mean distance. In the following,
the DBLP will be quantitatively measured by histogram-based
features.

We will first estimate the direction Dir from the surface
models of LA and CPV. Similar to Section II-B(1), 100 discrete
sampling points of the centerline of CPV can be computed. For
each sampling point Pi, i = 1, 2, . . ., 100, we can compute a
point Qi from the surface model of LA such that the distance
between Pi and Qi is the shortest among all possible distances
between Pi and LA. Thus, for each sampling point, we can
determine a direction from Pi to Qi, denoted by a vector:

−−→
PiQi.

The average of such vector directions of all sampling points will
approximately represent the direction Dir:

Dir =

∑100
i=1

−−→
PiQi

100
(4)

For each sampling point, we can compute its projection
point over the LA surface model along with the direction Dir,
and the distance between these two points can be obtained.
Consequently, a distance distribution histogram is generated
based on such projection distances of all sampling points on the
centerline of CPV as shown in Fig. 7, where DBLP is intuitively
illustrated by all blue lines. The dave represents the average
distance between the CPV and LA, defined as follows:

dave =

∑100
i=1 dDir(Pi, LA)

100
(5)

V ARdave
=

∑100
i=1 (dDir(Pi, LA)− dave)

2

100− 1
(6)
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Fig. 8. DBLP Histograms of two patients. (a) Without PPVO, (b) with
PPVO.

where dDir(Pi, LA) represents the distance from the sampling
point Pi to the LA along the direction Dir. dave and V ARdave

represent the average value and variance of all projection dis-
tances of the DBLP. DBLP histogram, a quantitative description
of distance change between LA and CPV, is constructed as
follows. The horizontal axis represents the projection distance
value with the unit of 0.5mm and ranging from 0mm to
4mm shown in Fig. 8. The vertical axis represents the number
of sampling points with the corresponding value of projec-
tion distance. Consequently, the DBLP histogram is divided
into 8 bins, as shown in Fig. 8. Let A1, A2, . . ., A8 represent
sampling points of 8 different bins respectively, and Di =
Ai×|CPV |

100 , i = 1, 2, . . ., 8. The values of D1, . . ., D8 represent
the lengths of different CPV segments, whose projection dis-
tances are in 0mm− 0.5mm,..., 3.5mm− 4mm, respectively.
For instance, D1 represents the length of CPV segment whose
projection distance is within 0mm− 0.5mm. Fig. 8 presents
DBLP histograms of two patients without and with PPVO,
showing that the DBLP varies between different patients and
cannot be described by dave. This is the reason that we use the
DBLP histogram to describe the spatial relationship between LA
and CPV for each patient.

Clinically, the longer the CPV segment with smaller projec-
tion distances, the more conducive to the success of the opera-
tion. Thus, we further derive additional quantitative features as
follows:

D9 = D8 +D7

D10 = D8 +D7 +D6

D11 = D8 +D7 +D6 +D5

D12 = D1 +D2

D13 = D1 +D2 +D3

D14 = D1 +D2 +D3 +D4 (7)

D9, D10, D11 depict the lengths of different CPV segments
whose projection distances are in 3mm− 4mm, 2.5mm−
4.0mm, 2.0mm− 4.0mm, respectively.D12, D13, D14 depict
the lengths of different CPV segments whose projection dis-
tances are in 0.0mm− 1.0mm, 0.0mm− 1.5mm, 0.0mm−
2.0mm, respectively. Roughly speaking, if D12, or D13, or D14

has larger value, DBLP can be regarded to be small.
3) Coupling Features Between LA and PV: From clinical

experience, TAPVC operation’s outcome is greatly affected by
coupling features between LA and CPV. For example, when

CPV is thick and long, a patient might have PPVO if the distance
between LA and CPV is large. Thus, we will construct some
coupling features to quantitatively describe such a coupling
relationship between LA and CPV. The coupling features will
be formed by three different kinds of features: various DBLP
features Dj(j = 1, 2, . . ., 14), the CPV length |CPV |, and the
mean radius of CPV R(CPV ). We compute the following
coupling features:

C1 = |CPV | ×R(CPV )× dave

Cj+1 = |CPV | ×R(CPV )×Dj , (j = 1, . . ., 14) (8)

where C2, . . ., C15 describe various coupling among various
DBLP features, CPV thickness, and CPV length. Since π ×
|CPV | ×R(CPV )2 is an approximation to the volume of CPV,
the volume of CPV (VCPV ) is also incorporated into coupling
features. Additional coupling features are constructed based on
the volume of CPV as follows:

C16 = VCPV × dave

Cj+16 = VCPV ×Dj (j = 1, . . ., 14) (9)

whereC17, . . ., C30 describe the coupling cases between various
DBLP features and the CPV volume. C13, C14, C15 can be used
to describe the cases where the CPV length, mean radius of CPV
are large but the DBLP is small.C28, C29, C30 describe the cases
where CPV volume is large but DBLP is small.

We also compute the tortuosity of the projected CPV over LA
surface. The projection direction Dir is computed in equation
(4). Let ̂CPV represent the projected CPV.

Torproj(CPV ) =
|̂CPV |

Dist|̂CPV |
− 1 (10)

Dist|̂CPV | denotes the distance between the two vertices of
the projected CPV centerline.

Consequently, 57 features are computed or defined in this
paper, as shown in Table I, including α1, . . ., α4, C1, . . ., C30,
Tor(CPV ), Torproj(CPV ), D1, . . ., D14, |CPV |, VLA,
VCPV , dave, R(CPV ), V ARR(CPV ) and V ARdave

. These
features constitute a feature pool.

C. Determination of Risk Factors

Risk factors of PPVO are determined from the feature pool
by feature selection using a retrospective dataset of children
with TAPVC repairing surgery. In the dataset, CTA image and
surgery result (with or without PPVO) of each patient will be
detailed in Section III. The importance score of each feature
computed by random forest [37] is provided in Table I. The
correlations between all features to each other are shown in
Fig. 9. Fig. 9 shows that many features in the feature pool are
highly correlated, indicating that there is redundancy among
these features. Thus, it is necessary to select features from the
feature pool.

Firstly, a univariable statistical significance test is per-
formed [38], and features with a p-value < 0.1 are retained
from all 57 features for further selection. The commonly used
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TABLE I
FEATURE POOL CONSTRUCTED IN OUR FRAMEWORK

Fig. 9. The correlations between all features in the feature pool. (From
left to right: VLA, VCPV ,..., C30) .

threshold of 0.05 is relaxed to 0.1 to retain a moderate number
of features for further investigation. The p-value of each feature
is also shown in Table I. This step retains 29 features.

Secondly, variation inflation factor (VIF) is a statistical mea-
surement used to evaluate the degree of collinearity between
features and remove redundant features [39]. The feature with

the highest VIF value is removed, and perform this VIF-filtering
procedure recursively until the highest VIF value is below a cer-
tain threshold. We have experimented with different thresholds
in the set {50, 30, 10, 5} to find a suitable threshold. Under these
different thresholds, the number of features filtered by VIF is
{18, 15, 12, 10}, respectively. Considering the sample size, we
decide 10 as the selected threshold, and therefore 12 features are
suitable for further selection.

Finally, the LASSO (least absolute shrinkage and selection
operator [40]) regression model is adopted to select important
features. The regularization parameter used in the LASSO is
searched in a range of [10−1, 105] with a step size of 0.5 in
logscale. As shown in Fig. 10, each curve represents the co-
efficient of the corresponding feature in LASSO model that
varies with the regularization parameter. The coefficients of most
features are eliminated in [10−0.5, 100.5]. So we conduct a further
search in this range, using a step size of 0.05 in the logscale.
Based on the cross-validation, the performance is the best when
the L1-regularization parameter is 100.3. In this case, only 4
features are left.
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Fig. 10. Coefficient of features in LASSO model under different regu-
larization parameters.

TABLE II
DATASETS USED IN OUR EXPERIMENT

(SCMC: Shanghai Children’s Medical Center, GPPH: Guangdong’s Provincial
People’s Hospital).

D. Risk Prediction Model by Morphological Features of
LA and PV

The selected four morphological features are subsequently
entered into a multivariable logistic regression model [41] to
build a risk prediction model. Considering the small sample
size of the dataset, we enforce a mixed L1 and L2 norm based
regularization in model fitting. The parameters of the logistic
regression model and regularization ratios are decided through 3-
fold cross-validation within the training dataset. Consequently, a
risk assessment model consisting of four morphological features
is generated, which is used for predicting PPVO in TAPVC
patients.

III. RESULTS

In this section, selected risk factors are tested. In addition, the
risk prediction model and its performances are evaluated.

A. Dataset

Considering potential uncontrollable factors in ages, infants
aged 12 months or older were not included in this study. As
shown in Table II, 68 patients from Shanghai Children’s Medical
Center were split into a training and a test dataset. The training
dataset includes 54 patients, and 14 of which suffer from PPVO.
The test dataset (denoted by Data1) contains 14 patients, and 3
of them suffer from PPVO. In order to verify the generalization
of our risk assessment model, the model is additionally eval-
uated by an independent dataset from Guangdong’s Provincial
People’s hospital (denoted byData2) with 15 patients including
6 of them have PPVO. In this paper, a patient is diagnosed as
having PPVO if postoperative pulmonary venous obstruction
(PPVO) occurs within one year after the operation procedure.

B. Selected Risk Factors and Risk Prediction Model

Four risk factors are selected for PPVO with the proposed
method, including the volume of LA (VLA), the volume of CPV
(VCPV ), average radius of CPV (R(CPV )) and the coupling
feature C30 (C30 = VCPV ×D14, coupled by the volume of the
CPV and the length of the CPV segment with samll projection
distance in 0mm− 2mm).

Let F = [VLA, VCPV , R(CPV ), C30] represent the
vector formed by the values of the four risk factors, W =
[−0.34324788,−0.09530407,−0.6822308,−0.3734412, ]
represent the vector formed by the weights of these four risk
factors, respectively. The prediction model Pre for PPVO is
then defined as:

Pre =
1

1 + e−(−0.34067382+FTW )
(11)

By the model, we can estimate the risk probability for each
patient based on his/her CTA image, and classify the patient into
high-risk or low-risk groups. The prediction model is jointly
determined by the weighted sum of the four risk factors.

C. Performance of Risk Prediction Model

Let TP, FP, TN, FN represent the true positive, false positive,
true negative and false negative, respectively. Then true positive
rate (TPR), precision, false negative rate (FPR), recall, accuracy
and F1-score are represented as follows:

TPR = Recall =
TP

TP + FN

Precision =
TP

TP + FP

FPR =
FP

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F1− score =
2× Precision×Recall

Precision+Recall
(12)

The ROC curve measures the TPR (y-axis) versus the FPR
(x-axis) at different threshold settings. The area under the ROC
curve is denoted by AUC. The higher the value of AUC, the
better the performance of the risk prediction model.

In order to verify the effectiveness and advantages of our
proposed method, we compare our prediction model with the
radiomics-features-based method [23] and CNN-based model
mentioned in [17]. Our datasets do not include the records of
clinical features as [17]. We only use the CTA image features
from the CNN network for PPVO risk prediction. We use two
independent datasets to evaluate the performance of these three
different methods. The ROC curves of three different methods
on Data1 and Data2 are shown in Fig. 11, respectively. In
addition, Table III also shows the recall, accuracy and F1-score
of the three different methods. Fig. 11 and Table III show that
our proposed model have better performance than the other two
methods with the AUC values 0.879 and 0.870 on two different
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Fig. 11. The ROC curves of different prediction models on different
datasets, (a): Data1, (b): Data2.

TABLE III
PREDICTION PERFORMANCE OF DIFFERENT METHODS

The bold entities mean the best results in comparsion experiments.

Fig. 12. The confusion matrix of the proposed prediction model on
different dataset, (a) Data1, (b) Data2.

test datasets. It demonstrates the advantages of our prediction
model.

The CNN is a black-box classifier, in which the features used
for classification are not interpretable. The radiomics-features-
based method constructs the prediction model through some
complex radiomics features (such as texture features), but the
texture features are usually not easy to understand. In addition,
the proposed prediction model usually has stable performance on
different CTA datasets, and is not affected by different CT scan-
ning equipment and different scanning conditions. However, the
performance of the other two PPVO classification methods in
our experiments vary greatly.

These evaluation results indicate that the proposed risk pre-
diction model can exhibit satisfactory performance in classi-
fying patients on two independent datasets. In particular, the
normalized confusion matrix shown in Fig. 12 shows that the
prediction model can not only identify patients with PPVO with
high precisions, but also recognize most of patients without
PPVO.

An ablation study is experimented on Data1 to discuss the
effect of the number of selected risk factors on classification
performance of the prediction model. The results are shown in

TABLE IV
ABLATION STUDY ABOUT THE EFFECT OF FEATURE NUMBER

ON PREDICTION MODEL

Fig. 13. The correlation between the selected risk factors.

Fig. 14. Value distributions of four risk factors among patients without
and with PPVO.

Table IV. Considering our small datasets, we choose four risk
factors as the final risk factors to avoid over-fitting.

D. Properties of Risk Factors

Based on equation (11), if a patient has large CPV volume
and LA volume and small DBLP, this patient has low risk of
PPVO. The bigger the CPV average radius and CPV length are,
the larger the CPV volume is. Fig. 13 shows the correlation
between these four risk factors. While these risk factors have
high correlations due to their definitions, they are actually com-
plementary. For example, since the length of CPV is possibly
short, it is not sufficient to correctly predict PPVO based only
on the thickness of CPV (R(CPV )). Additionally, even if the
CPV is thicker and longer (i.e., with large volume VCPV ), CPV
is possibly far from LA. Thus, CPV volume VCPV and C30 are
useful complementary risk factors for R(CPV ). Here, VCPV

implicitly contains the information of CPV length. Based on
Data1 and Data2, the value distributions of each risk factor
among patients without PPVO and with PPVO are shown in
Fig. 14. It can be seen, while the four risk factors can be
combined into the prediction model to distinguish between the
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two classes, the average radius of CPV (R(CPV )) itself can
distinguish most PPVO patients.

IV. DISCUSSION

In this study, we propose a computational framework to
explore high risk factors related to PPVO in TAPVC. Our main
findings are as follows: 1) Four quantitative risk factors are
discovered to be predictive of PPVO; 2) A risk prediction model
is developed, being able to predict patients with high risk of
PPVO; 3) A feasible computational framework is proposed to
screen the risk factors for PPVO based on CTA images. More
discussions are presented below.

A. On Clinical Importance

Based on the proposed risk prediction model, clinicians can
recognize patients with high risk of PPVO. This helps clinicians
in decision making and plan for follow-up procedures, such as
carefully monitoring them after TAPVC repairing, and actively
investigating their slightest suspicion of PPVO. In this way,
clinicians can timely identify patients with PPVO symptoms and
provide necessary treatments, such as the reoperation. There-
fore, this risk prediction model is of great clinical significance
in avoiding and reducing the death or sickness caused by PPVO.

B. On Risk Factors

In the past literatures, based on clinical experiences, clinicians
have suggested some qualitative risk factors or observations [6],
[8], [12], [14].

In this paper, four quantitative risk factors are discovered for
PPVO. Compared with [12], we show that the volume of LA is
an important risk factor. Younger ages generally correspond to
smaller volumes of LA. Compared with the works [6], [8], [14]
based on CPV only, we reveal that the average radius of CPV
and CPV volume are important risk factors. The thicker the CPV,
the smaller risk of PPVO. In [8] authors vaguely mentioned
that anastomotic restriction is closely related to PPVO. Using
the coupling feature C30, we find it can quantify the extent of
anastomosis. Thus, while we provide a quantitative calculation
framework for clinical observations in literature, clinical obser-
vations as the evidence confirm our identified risk factors.

C. On Risk Prediction Model

Risk factors reported in [6], [8], [12], [14] may be related to
PPVO classification. However, they are either qualitative and
unclear to provide quantitative calculations, or they can only
provide very few risk factors for PPVO predictions. Hence,
a high-accuracy risk prediction model usually cannot be con-
structed based on the risk factors suggested in [6], [8], [12],
[14]. Based on the four risk factors discovered in this paper,
a risk prediction model is constructed, which can provide a
quantitative and high-accuracy risk assessment of PPVO. The
prediction model shows how the risk prediction is impacted
by the four risk factors. The four risk factors have different
contributions to the prediction model as shown in equation (11)
and Fig. 15. The larger value of each risk factor, the lower the
risk probability is.

Fig. 15. The contributions of four different risk factors in prediction
model.

TABLE V
SEGMENTATION PERFORMANCE OF DIFFERENT METHODS

The bold entities mean the best results in comparsion experiments.

The proposed prediction model provides the probability of
risk in developing PPVO. The sensitivity of the model depends
on the setting of a low or high probability threshold. Setting to
low threshold has pros and cons. On one hand, a lower threshold
can increase sensitivity (lower specificity) and trigger more
clinical evaluations or surveillance for patients at risk, thereby
leading to timely re-intervention and reducing PPVO-related
mortality. On the other hand, for patients without PPVO, this can
cause extra costs in unnecessary workups attributed to rigorous
assessments. Additionally, the misdiagnosis in some instances
can potentially cause some anxiety for patients’ families in
the short term but that is much less severe than misdiagnosis
which results in death. Nevertheless, the risk of misdiagnosis
can be mitigated because the diagnosis of PPVO can be based
on a comprehensive evaluation of CT, echocardiography, and
clinical manifestations rather than on imaging criteria alone. In
the future, we will further improve the accuracy of risk prediction
to reduce misdiagnosis by integrating with other clinical data.

D. On the Computational Framework

It is important to segment LA and PV from CTA images
with high accuracy and efficiency [42]. We use dice similarity
coefficient (DSC), average surface distance (ASD), and Haus-
dorff distance (HD) to evaluate the SCAB-VNet. We evaluate
its performance through 5-fold cross-validation on Data1 and
compare it with the V-Net [30] and 3D-UNet [43], which are
commonly used in segmentation tasks. According to the result
shown in Table V, SCAB-VNet has better performance than
the V-Net and 3D-UNet. It has higher DSC values and lower
ASD and HD values than V-Net and 3D-UNet, with an average
DSC of 0.772 (PV) and 0.814 (LA). This means that SCAB-
VNet has better segmentation results in terms of both regions
and boundaries. SCAB-VNet takes about 400 milliseconds to
generate segmentation results for LA and PV from a 3D CTA
image. Nevertheless, SCAB-VNet usually only provides some
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TABLE VI
CLASSIFICATION PERFORMANCE OF DIFFERENT PREDICTION MODELS

WITH CLINICAL FACTORS

The bold entities mean the best results in comparsion experiments.

rough segmentation results. Therefore, clinicians need to further
manually correct such vague segmentation errors in different
slices based on their experiences. This usually requires an av-
erage of 20 minutes per each CTA data. This is more efficient
than a complete manual delineation that takes more than 100
minutes. Therefore, considering both the accuracy and time, the
hybrid segmentation strategy in this paper is an effective and
time-saving method.

The risk factors described by clinicians and discussed in
literature are qualitative, which may lead to ambiguity in appli-
cation and practice. In this paper, we design quantitative ways to
compute them, leading to a feature pool shown in Section II-B. In
addition, novel features such as the histogram-based DBLP and
coupling features are incorporated. Based on such quantitative
features, we can extract quantitative risk factors with machine
learning methods and build the risk prediction model for accurate
diagnosis.

E. On Interpretability and Repeatability

In tumor study, the radiomics features [23] selected from CTA
images are usually complex texture features, which are not easy
to understand. Texture features describe image details, but image
details are easily affected by different CT scanning equipment
and different scanning conditions. Therefore, the performance
of the prediction model based on radiomics features vary greatly
in our experiment. However, in our method, the selected mor-
phological features do not change in different CTA datasets,
which makes our prediction model have a stable performance
in different CTA datasets. The morphological-features-like risk
factors and their risk prediction model can be easy to understand
and have good interpretability and reproducibility.

F. On the Clinical Features

11 clinical features, including sex, weight, height, age, preop-
erative SPO2, delayed closure, hospital stay, cardiopulmonary
bypass time (CPB), temperature during cardiopulmonary by-
pass, ICU stay, preoperative PVO, are also considered. Among
them, four clinical features, such as weight, hospital stay, CPB
and sex, were applied in [17]. Similar to our proposed model,
three PPVO prediction models can also be constructed respec-
tively by 11 clinical features, 15 hybrid features (11 clinical
features and the four selected risk factors), and 8 hybrid features
(four clinical features used in [17] and the four selected risk fac-
tors). The AUC of these prediction models in Data1 and Data2
are shown in Table VI. Compared with these three models, our

proposed model has better performance. In the future, we will
collect more subjects to discuss the impact of clinical factors.

V. CONCLUSION

In this paper we propose a computational framework to mea-
sure quantitative risk factors from CTA images and use them to
build a risk prediction model for postoperative PVO in TAPVC
patients. Qualitative risk descriptions in the literature can now
be quantified in a rigorous way. Based on the extracted features,
the prediction model can assess the risk of postoperative PVO
with high accuracy. The approach in this work has great clinical
impact by avoiding or reducing the death rate caused by postop-
erative PVO. In the future, we will collect more multi-center data
to further validate the effectiveness of our model and advance
the clinical application of our model in TAPVC patients.
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