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Abstract—\Voice analysis is an emerging technology
which has the potential to provide low-cost, at-home
monitoring of symptoms associated with a variety of health
conditions. While voice has received significant attention
for monitoring neurological disease, few studies have fo-
cused on voice changes related to flu-like symptoms.
Herein, we investigate the relationship between changes
in acoustic features of voice and self-reported symptoms
during recovery from a flu-like illness in a cohort of 29
subjects. Acoustic features were automatically extracted
from “sick” and “well” visit data collected in the laboratory
setting, and feature down-selection was used to identify
those that change significantly between visits. The selected
acoustic features were extracted from at-home data and
used to construct a combined distance metric that corre-
lated with self-reported symptoms (0.63 rank correlation).
Changes in self-reported symptoms corresponding to 10%
of the ordinal scale used in the study were detected with an
area under the curve of 0.72. The results show that acoustic
features derived from voice recordings may provide an ob-
jective measure for diagnosing and monitoring symptoms
of respiratory illnesses.

Index Terms—Biomedical signal processing, biomedical
acoustics, speech analysis, wearable sensors.

[. INTRODUCTION

N RECENT years we have seen a growing interest in using
voice characteristics to monitor a variety of health condi-
tions [1]. This has been driven by the low-cost and non-invasive
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nature of voice recordings, as well as advances in machine
learning and audio signal processing. Significant attention has
been focused on identifying acoustic features associated with
voice changes in disorders such as Parkinson’s disease [2], [3],
depression [4], dementia [5], hypertension [6], post-traumatic
stress disorder [7], and COVID-19 [8]. However, changes in
voice characteristics during influenza-like illnesses are not well
understood.

During speech production, air flows through the oral tract and
the nasal passages, particularly when pronouncing nasal conso-
nants or other nasal sounds. The nasal passages produce reso-
nances at distinct frequencies, but also anti-resonances (sound
blockages), generally all at higher frequencies. These resonances
and anti-resonances are attenuated during congestion. Thus,
during decongestion, the higher-frequency spectra become both
more peaked and more attenuated due to anti-resonances [9].
Several previous studies examined voice changes after acute de-
congestion induced by nasal decongestant sprays. These studies
demonstrated changes in spectra during vocalization of Chinese
phonemes [9], and also demonstrated changes in the Voice
Low tone to High tone Ratio (VLHR) metric [10]. Prior work
on capturing nasality of speech is also relevant, as congestion
may be comparable to hyponosality. Several studies have used
nasality metrics such as VLHR or analysis of power third-octave
band powers to characterize hypernasality, the sound associated
with cleft palate and other conditions [11], [12]. In third-octave
analysis, the acoustic spectra are divided into log-spaced fre-
quency bands, under the assumption that the distinctive formants
(resonances) for each vowel will be in the same third-octave band
for most subjects. These studies generally found third-octave
analysis to be more sensitive than VLHR to hypernasality [11],
[12].

In this work, we tracked the recovery of study participants
from symptoms associated with acute influenza-like illness (ILI)
using acoustic features extracted during the performance of a
series of sustained phoneme tasks. We recruited participants
with acute ILI who recorded their voice over a two-week period
during the sick to well transition. Voice recording was performed
in the lab at the beginning (sick visit) and at the end (well visit)
of the study. In addition, participants recorded their symptoms
as well as voice twice daily (morning and evening) at home
using a smartphone app for a period of approximately 14 days
in between the two lab visits.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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To our knowledge, this is the first study to report that acoustic
features associated with respiratory symptoms change during
natural patient recovery from a flu-like illness. In addition to
previously studied acoustic features such as VLHR [10] and
third-octave band metrics [13], we explored a wider set of
acoustic features and showed that features capturing spectral
structure correlate well with self-reported change in symptoms.
Furthermore, we use at-home recordings to create a distance
metric which combines information from a selected set of acous-
tic features extracted from only three sustained phoneme tasks,
and show this metric can capture patient trajectories over time
with good correlation to self-reported symptoms. These results
suggest that at-home, smartphone-based monitoring of changes
in the acoustic features of voice may be an effective, objective
approach for tracking patient recovery and may merit further
investigation for early detection of respiratory infections.

Il. MATERIALS AND METHODS

Before discussing our methods in detail, we give a brief
overview. Section A describes the experimental protocol. Sec-
tions B-C describe preprocessing and extraction of acoustic
features. Section D describes analysis of self-reported symp-
toms, and Section E describes how in-lab and at-home data were
analyzed to identify the most informative phonemes and acoustic
features.

A. Experimental Protocol

Individuals with flu-like symptoms who met the inclu-
sion/exclusion criteria were recruited and studied during their
recovery phase. The study was approved by the Partners Hu-
man Research Committee IRB (protocol #2017P002684 / PHS,
2/7/2018). The study protocol was explained to all subjects and
written consent was obtained. A sick-to-well study design was
chosen to make it easier to recruit participants as opposed to
a well-to-sick design, which would significantly increase the
duration and complexity of the study in addition to requiring a
much larger sample size. We collected self-reported symptoms
and voice data both in-lab and at-home to capture their sick and
well states as well as day-to-day changes during the recovery
period. As shown in Fig. 1, participants were asked to perform
voice tasks during both lab visits (sick visit and well visit) as
well as at-home during the minimum two-week period between
these visits. Accelerometer-based systems [14] offer advantages
in terms of environmental noise and privacy, but we focused
on smartphone-based recordings (scalable to large-scale clinical
trials). Thus we created a custom-built app running on a Samsung
Galaxy S7 Edge smart phone with an Android operating system
and used it to record both at-home and in-lab data. As a check,
in-lab data were simultaneously recorded using a Shure SM10 A
headset microphone with an ART USB Dual Pre preamp (35 dB
channel gain) and Audacity software version 2.2.2 running on
a laptop. Both systems used non-lossy compression and had a
bit depth of 16; Samsung data were sampled at 44.1 kHz, and
Audacity data were sampled at 48 kHz. The protocol did not
specify mouth-to-microphone distance. Participants recorded
sustained phonations of both nasal consonants and cardinal
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Fig. 1. Overview of data collection. Participants performed voice ex-
ercises both during sick and well visits, recorded simultaneously on
a smartphone and a headset system. Between visits, participants
recorded voice exercises using a smartphone app every morning and
evening and rated their status on symptoms of respiratory illness.

TABLE |
SELF-REPORTED SYMPTOMS FOR PROPOSED ILLNESS PHENOTYPES

Phenotype
Congestion-specific

Symptoms included

Need to blow nose, Nasal obstruction,
Post-nasal discharge

Runny nose, Cough, Sore throat,
Thick Nasal Discharge

Non-congestion

TABLE Il
SUMMARY OF CANDIDATE ACOUSTIC ENDPOINTS FOUND FROM
DOWN-SELECTION BASED ON IN-LAB MEASUREMENTS

Acoustic features

Pitch interquartile range / median (LG)
Jitter, local (LG)

Shimmer, dB

200 Hz third-octave band power
standard deviation (LG)
Harmonicity

Voice low/high ratio (VLHR)
Spectral entropy (1.5-2.5 kHz,
1.6-3.2 kHz)

Spectral contrast (1.7-3.2 kHz (LG),
3.2-6.4 kHz (LG))

Spectral flatness (1.5-2.5 kHz band)
F1 frequency (LG)

F1 bandwidth standard deviation
mean MFCC: MFCC 6, 8

Standard deviation of MFCC (LG):
MEFCC 2, 3, 8,9, 10, 11, 12

Category
Pitch variability

Amplitude variability

Spectral structure

Formant 1 (F1)

MFCC

Endpoints are grouped by general category of voice characteristics. LG denotes
log-transformed variables; other variables are not transformed.

vowels for 5-10 seconds. The four vowels using the International
Phonetic Alphabet (IPA) were /a/, /i/, /u/, and /ae/ (participants
were prompted to pronounce sounds using the more vernacular
cues “o0,” “E,” “O0,” and “a”). The three nasal consonants were
the sounds /n/, /m/ and /ng/ (note that the English /ng/ sound does
not map directly to the IPA). During the home monitoring period
and concurrent with the voice tasks, participants were asked
to rate their perceived symptom severity (0-5, O being lowest
and 5 being highest) for 19 symptoms in the morning and 16
symptoms in the evening related to respiratory tract illness (see
Supplementary Materials Table III for details). A Composite
Symptom Score (CSS) was formed by summing of morning
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TABLE IlI
FINAL SET OF ACOUSTIC FEATURES FOR THE 3 SELECTED PHONEMES

Phoneme | Acoustic Feature

/m/ Harmonicity

Pitch interquartile range (IQR) (LG)

F1 bandwidth standard deviation

Spectral Entropy: 1.5-2.5kHz, 1.6-3.2 kHz
Standard Deviation of MFCC (LG): MFCC 2, 10
Spectral Flatness 1.5-2.5 kHz

Mean MFCC: MFCC 8§

Shimmer (local, dB)

Spectral Contrast 3.2-6.4 kHz (LG)

200 Hz TOB (third-octave band) standard deviation (LG)
/n/ Harmonicity

F1 bandwidth standard deviation

Pitch interquartile range (IQR) (LG)

Spectral Entropy: 1.5-2.5kHz, 1.6-3.2 kHz
Spectral Flatness 1.5-2.5 kHz

Standard Deviation of MFCC (LG): MFCC 1, 2, 3, 11
Mean MFCC: MFCC §

Spectral Contrast 1.6-3.2 kHz (LG)

fal F1 bandwidth standard deviation

Pitch interquartile range (IQR) (LG)

Spectral Entropy: 1.6-3.2 kHz

Jitter (local) (LG)

Standard Deviation of MFCC (LG): MFCC 9, 12
Mean MFCC: MFCC 6

Spectral Contrast 3.2-6.4 kHz (LG)

plus evening scores on 7 symptoms (‘post-nasal discharge’,
‘nasal obstruction’, ‘runny nose’, ‘thick nasal discharge with
mucus’ ‘cough’, ‘sore throat’, and ‘need to blow nose’, yielding
a CSS range 0-70). After completing two weeks of recordings,
participants were instructed to return to the lab for their well
visit when all symptoms had resolved (i.e. for some participants
the well visit took place several days after the end of the 2-week
monitoring period).

B. Voice Signal Preprocessing and Phoneme
Segmentation

Voice recordings were subject to several screening and pre-
processing steps. Recording lengths were checked to identify
and remove any incomplete recordings. When multiple complete
recordings exist for a given time point, the final recording was
used for analysis, under the assumption that participants had
re-recorded their speech due to technical problems encountered
during previous attempts.

Segmentation was carried out to identify the time periods
during which individual phonemes were present in the audio
recordings. Segmentation was made easier by the fact that the
volume of each phoneme is relatively constant and the expected
number of vocalizations in each recording is known. The acous-
tic intensity throughout the recording was first computed using
Praat [15], and Otsu’s method [16] was used to find a thresh-
old separating background noise from more energetic events
representing speech segments. A morphological ‘fill” operation
was then used to fill short (< 0.2 sec) gaps in the detected
segments. Finally, the first 0.75 sec of each detected phoneme
was discarded to avoid transient effects and a time segment of
2 sec was retained for analysis, similar to other studies [10]. See
the Supplementary Materials for more discussion.

This automated segmentation approach was validated by com-
parison to manual segmentation (manual annotations were made
using [17]) for a portion of the in-lab recordings. In these
recordings, the automated quality checks discarded 26 of 228
automatically segmented vowels; for the remaining vowels, we
observed good agreement between the manual and automated
vowel segment start times (mean difference: 0.015 sec, standard
deviation: 0.04 sec).

C. Extraction of Acoustic Features

For each segmented phoneme, multiple acoustic features were
computed using the Parselmouth interface [18] to Praat as well
as custom Python code. Features were computed at the default
Praat frame rate (generally 10 msec) and statistics were com-
puted across frames in each phoneme. Samsung and Audacity
processing was identical except for pitch floor parameters noted
below.

Power and power variability features: The root-mean-square
(RMS) acoustic amplitude for each segment was computed and
used to normalize sound amplitude, following Lee et al. [9].
RMS was converted to dB for consideration as a feature. Power
variability was measured using shimmer, which captures the
rapid variability in waveform amplitudes measured at glottal
pulse intervals [6], [19]. We examined several variants of shim-
mer [15]. We expected shimmer to reduce as participants recover,
inflammation decreases, and vocal fold function returns to its
normal state.

Motivated by previous work on third-octave band analysis
for hypernasality [13], [20] we analyzed power fluctuations in
the output of 1/3 octave band filters at various frequencies.
Exploratory data analysis revealed little change in average 1/3
octave output, but significant reductions in the power variability
(measured as the standard deviation) of 1/3 octave filters for
several bands. Fluctuations in the 200 Hz third-octave band
(passband 178-224 Hz) were significant for all sustained nasal
and vowel phonemes. Because this frequency band captures the
pitch fundamental for much of our cohort, we interpret this
output to be a measure of power variability at frequencies near
the pitch fundamental. Similar to shimmer, we expect variability
in the 200 Hz third-octave band to decrease as participants
recover.

Pitch and pitch variability features: Pitch characteristics of
each segment were extracted using the autocorrelation method
from Praat [15]. For Samsung files, manual review indicated
that the presence of low-frequency periodic background noise
in laboratory measurements led to some false pitch detections,
so the pitch floor was increased to 80 Hz for males and 100 Hz
for females (for Audacity data, a pitch floor of 50 Hz was
acceptable). Within each vocalization, estimated pitch values
were processed to compute the pitch statistics. In some noisier
recordings, pitch estimation was difficult so that the algorithm
temporarily locked onto the wrong frequency. Thus, we used
robust measures of location and spread (median and interquar-
tile range) and computed the quartile variation (IQR/median),
denoted covigr_pitch below. Unreliable pitch estimates
were screened by requiring that this quartile variation be less
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than 10% (threshold determined empirically). Values greater
than this were treated as missing data. Pitch variability on
shorter time scales was captured using jitter [18]. We expect that
jitter and other measures of pitch fluctuation should decrease as
participants recover.

Spectral structure features: Congestion is known to change
the spectral structure of phonemes that involve the nasal pas-
sages. We compute multiple metrics to capture this effect:

e Harmonicity [21] captures the power ratio of harmonic to
non-harmonic components. Because resonances and anti-
resonances at high frequencies become more pronounced
in decongested participants, harmonicity should increase
with decongestion.

e Spectral entropy [22] computes the entropy of the spec-
trum in a desired frequency band. During decongestion,
the spectrum should become more peaked (particularly at
higher frequencies), so entropy should decrease.

e Spectral contrast [23] sorts power spectrum values in a
desired frequency band by intensity and computes the
ratio of the highest quartile of values (peaks) to the lowest
quartile of values (troughs). During decongestion, contrast
in higher-frequency bands should increase as the spectrum
becomes more peaked.

e Spectral flatness [24] is computed as the ratio of the
geometric to arithmetic mean of spectrum values in a
given frequency band, and (like entropy) seeks to differen-
tiate flat vs. peaked spectra. During decongestion, flatness
should decrease.

® Voice low-to-high ratio (VLHR) [10] is the ratio of low-
to-high frequency energy. We used a separation between
low and high of 600 Hz, following [12]. In decongested
participants, anti-resonances decrease high-frequency en-
ergy, so VLHR should increase as congestion decreases.

e Mel-frequency Cepstral Coefficients (MFCC) are widely
used features in speech processing and are useful in analy-
sis of Parkinsonian speech [25]. These coefficients, which
represent the discrete cosine transform of a scaled power
spectrum, have less straightforward physical interpreta-
tion, but are sensitive to changes in the spectrum and
are also robust to environmental noise. We computed 21
MEFCC values using librosa [26].

Except for harmonicity and MFCC, the above spectral fea-
tures are computed over specific sub-bands of the spectrum
where changes were expected to be more pronounced (for ex-
ample, spectral contrast was computed between 1.6-3.2 kHz,
and also between 3.2-6.4 kHz). These sub-band frequencies
were manually selected based on exploratory data analysis.
Praat Parselmouth routines were used to estimate properties of
the acoustic formants, which represent resonances of the vocal
tract. For each segmented sound, the mean formant frequency,
standard deviation of formant frequency, and formant bandwidth
were computed. Manual review revealed that estimates of for-
mants 2 and 3 were sometimes unreliable. Therefore, we only
used estimates derived from formant 1, denoted as F1.

D. Analysis of Self-Reported Symptoms

To describe changes in self-reported symptoms vs. time,
we summed the self-reported scores in the various symptom
categories (all, congestion-related, and non-congestion related),
with symptoms grouped as shown in Table I. The sum of all
symptoms is referred to below as the Composite Symptom
Score (CSS). We then fit an exponential decay model (score ~
aexp(—b(day — 1)) + €) using anonlinear mixed effect models
with subject as a random effect, using R version 3.6.3 and
nlme library version 3.1.144. Model fits and residuals were
examined for goodness of fit. The model parameter of primary
interest is b, the decay rate which captures changes in symptoms.
Separate analyses were done for each symptom group so we
could explore acoustic markers of different types of respiratory
illness (phenotypes).

E. Selection of Informative Acoustic Features and
Phonemes

We next analyzed the acoustic features described above, with
the goal of defining a distance metric that would characterize
the changes in acoustic features over time. Down-selection
procedures described below were used for identifying a subset
of phonemes, and a set of acoustic features for each phoneme,
which would optimize the correlation between this distance
metric and self-reported symptom recovery. Supplementary Ma-
terials Fig. 1 shows a detailed outline of the process; italicized
text in the discussion below refers to rows of the figure.

Analysis of in-lab data: After computing features, we trans-
formed them for normality and tested to identify features that
may change during recovery. As this was only the first round
of feature selection, our selection criteria were permissive in
order to retain all potentially useful features. The Shapiro-Wilk
test [27] was used to select the transformation (square root, log,
or none) yielding the most normally-distributed data (see Supp.
Mat. Table 1 for selected transformations). Paired T-tests were
used to identify the transformed features that changed between
sick and well visits. Because not all participants reported full
symptom recovery, we identified a “high-recovery” subgroup
of participants with above-median decrease in self-reported
symptoms (i.e. b > median(b), from the decay model above),
and accepted features with a significant (p < 0.05) change in
either the full or high-recovery group, for any phoneme. To
reduce sensitivity to recording device, we required changes to be
detected in both Samsung and Audacity data. Finally, for highly
correlated (Pearson p > 0.9) features, we picked the feature with
the most significant change.

At-home data, preprocessing: The candidate acoustic features
identified from the step above were then computed for at-home
Samsung recordings. All acoustic features (23 features for 7
phonemes) were computed for all phonemes and standardized
across the dataset, so that each feature had zero mean and unit
variance. For consistency and because of a higher rate of missing
values for recordings made during the morning hours, only
recordings made during the evening hours were used. Partici-
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pants were dropped if more than 20% of the data was missing.
Missing values for the remaining participants were imputed as
shown in Supplementary Materials Fig. 1.

At-home data, phoneme and feature selection: Identification
of the best phoneme and feature combination was done in two
steps. We first performed an exhaustive search to identify the
best phoneme combination (out of 127 possible combinations
of seven phonemes). To do this, we used principal component
analysis (PCA) to compute the first 6 principal components
(capturing > 50% of variance) for each phoneme combination
and calculated the Euclidean distance between the vectors repre-
senting acoustic features on each pair of days. We then computed
Spearman’s rank correlation between the distance metric for
each day relative to the final at-home day (representing the well
state) and self-reported symptom ratings. Favorable phoneme
combinations were those for which a) the median Spearman’s
correlation was high and b) the 25th percentile correlation score
was also high. Thus, the phoneme combination with the lowest
coefficient of quartile variation (IQR/median) was selected as the
best phoneme combination. Next, we performed unsupervised
feature selection by applying Sparse PCA [28] to the feature
space of the best phoneme combination to further reduce dimen-
sionality of the dataset. The choice of unsupervised feature selec-
tion was motivated by the fact that while self-reported symptoms
can be useful for understanding the direction of change, they
are not very reliable as an absolute measure of illness. Features
in the first 30 principal components (determined empirically)
with a non-zero weight were selected for further analysis and
represented the best phoneme and feature combination.

Finally (last row of Supplementary Materials Fig. 1) we
assessed the sensitivity of distance metric calculated on the
feature space represented by the best phoneme and feature com-
bination to detect changes in self-reported symptom severity.
We calculated area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) for a Gaussian naive Bayes classifier
trained to differentiate between all pairs of days with a score of
zero (i.e. well state) and all pairs of days that represent a change
from zero (i.e. well state to sick state). We hypothesized that
change in the distance metric would be greater for pairs of days
that had a large change in symptoms.

[ll. RESULTS

109 individuals were screened by telephone based on self-
reported respiratory symptoms prior to the first lab visit. Of
these, 56 were deemed ineligible based on inclusion/exclusion
criteria. 21 were subsequently deemed ineligible for the fol-
lowing reasons: three declined participation because of data
collection procedures, five recovered between contact and time
they came to the lab, two lived too far away from the study
site, three had no prior experience with smart-phones and no
caretaker to help, one had a BMI above the required range,
four had symptoms most likely due to seasonal allergies/other
pathology, two had very mild symptoms and one declined to
provide information necessary for enrolling in the study. 32
individuals were enrolled (24 female) in the study, carried out
between March 8th, 2018 and May 21st, 2018. The median age of

participants was 33 years (range 21-80). At screening, enrolled
participants self-reported being sick for a median of 3.5 days
(range 1-30 days) with upper respiratory symptom frequency
as follows; 32 reported a cough, 30 reported sniffling, 28 re-
ported needing to clear their throat, and 25 reported sneezing.
Three participants were excluded from analysis: one participant
dropped out of the study and two did not capture any voice data
at home.

A. Selected Acoustic Features From In-Lab Data

Multiple facets of voice were observed to change during
recovery. In addition to those shown in Table II, the log-
transformed RMS amplitude demonstrated a significant change
between lab visits. However, amplitude was not selected for fur-
ther analysis because recordings were uncalibrated and mouth-
to-phone distance was likely to be variable during at-home
recordings. Further, VLHR narrowly missed our inclusion crite-
ria (p = 0.07 in Audacity data, p < 0.05 in Samsung), but was
included as a candidate because past studies had demonstrated its
usefulness [9], [10]. We also tested whether changes in acoustic
features depended on age, sex or BMI, and did not find any
dependence, suggesting that our strategy of comparing changes
within each subject helps remove dependence on these factors.

Fig. 2 shows changes in three example acoustic features, cho-
sen to represent several aspects of voice. Jitter (a measure of pitch
instability) and shimmer (a measure of amplitude instability)
decreased during recovery across all phonemes, indicating that
participants have better voice stability after recovery. Spectral
contrast at higher frequencies increases for nasal sounds, con-
sistent with nasal resonances becoming more pronounced as
congestion reduces in recovery.

B. Correlation Between Voice Features and
Symptom-Based lliness Phenotypes In-Lab Recordings

While all individuals were screened for flu-like symptoms
prior to enrollment, their baseline condition and their degree of
recovery was variable. We hypothesized that participants may
fall into different illness phenotypes, and also that congestion
should have a noticeable effect on voice. As discussed in Meth-
ods and shown in Table I, we grouped self-reported symptoms
based on clinical input into two illness phenotypes (congestion-
specific and all others) and fitted decay models to symptom
phenotype scores for each participant. Histograms of decay
constants fitted to the Composite Symptom Score (CSS) and
other subscores (congested, non-congested) are shown in Fig. 3.
While the overall cohort clearly reports improvement, there is
noticeable variability in the recovery profiles of self-reported
symptoms.

Fig. 4 shows the correlation between acoustic features and
self-reported symptom recovery, with separate decay constants
(b values from Fig. 3 computed for the CSS (i.e. all symp-
toms), the sum of all congestion-related symptoms, and the sum
of all non-congestion-related symptoms. Spearman correlation
coefficients were computed, and all correlation values with a
trend towards significance (p < 0.1) are shown as a function of
symptom group. Absolute values of correlation are plotted; for



2792

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 6, JUNE 2022

log(Jitter (local))

E

T:ng
2:ng "~
2:/al
T:Ail
2:/il
1:/u/
2:ul ~
1:/ael
2:/ael

Vlslt Phoneme

(a) Jitter (LG)

™~
o

g
(_55 o
815-
o}
£
E10-
&
0.5
£ £ c ‘s:. 2 ‘S’ s 8 =T = 3 3 3
S & < & 2 & 2 X < & o3 £
Visit:Phoneme
(b) Shimmer, dB
o)
z
SR T ~Ea
© o “
s SIEARE
S .
==
g 7
w
o A
E £ = £ 2 2 ¥ ¥ = = 3 3 %8 3
L T S A
Visit:Phoneme
(c) Spectral contrast, 1.6-3.2 kHz
Fig. 2. Representative acoustic feature changes from visit 1 (sick, in

red) to visit 2 (well, in blue) for in-lab data based on Samsung recordings
for all phonemes. Jitter (local) (a) and shimmer (local, dB) (b) metrics
decrease in recovery for all phonemes, while spectral contrast at higher
frequencies (c) increases for nasal sounds. The tick labels for X-axis are
formatted as visit:phoneme (e.g. 1:m).
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Fig. 3. Histograms of decay constant values for the three symp-

tom phenotypes (i.e. all symptoms, congestion symptoms and non-
congestion symptoms) listed in Table I. Positive values correspond to
a decrease in symptoms; zero values correspond to no change; and
negative values correspond to a worsening of symptoms.
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Fig. 4. Patterns of acoustic feature correlation with self-reported symp-

tom change. Correlation is computed between decay constants from
exponential models fit to symptoms vs. change in lab measurement
for each acoustic feature (visit 2 — visit 1). Changes in self-reported
congestion correlate most strongly with spectral features, but also with
amplitude instability features (shimmer and 1/3 octave power standard
deviation). Formant-related metrics and several MFCC metrics appear
correlated with other (non-congestion) aspects of recovery.

most features the direction of correlation is the same between
symptom groups. An exception is the standard deviation of
formant 1 bandwidth (bwlsd), which is positively correlated
with non-congestion symptoms but negatively correlated with
congestion symptoms (and thus uncorrelated with all summed
symptoms). We observe a stronger correlation between changes
in higher-frequency spectral structure and changes in self-
reported symptoms associated with the congestion phenotype
compared to the non-congestion phenotype. A full set of tabu-
lated correlation coefficients can be found in the Supplementary
Materials.

C. Recovery-Related Acoustic Changes in At-Home
Data

As described in Methods, we extracted the candidate acoustic
features in Table II from at-home recordings and derived a
distance metric which quantifies the change in the acoustic
feature space between any pair of days for a given participant.
For analyzing changes in acoustic features in response to re-
covery, we used the distance metric between the last at-home
recording (assumed to be a “well day” because symptoms for
all but two participants had resolved significantly by the last
at-home day) and each preceding day, which was computed as
a measure of change from the ‘well’ state. An exhaustive search
was performed to determine which subset of phonemes resulted
in the best correlation. The phoneme combination /n/, /m/ and
/al gave the lowest value (0.34) of the coefficient of quartile
variation (for comparison, the median value was 0.72 and max
was 1.3) and were therefore selected for further analysis. A
second round of down-selection was performed using Sparse
PCA to identify a subset of acoustic features for each of the
three phonemes, which resulted in a total of 32 features (listed
in Table IIT). The final feature set included 12 features from /n/,
12 features from /m/ and eight features from /a/.

Fig. 5 shows the rank correlation for each participant between
the distance metric (computed using 32 features derived from 3
selected phonemes) and the CSS. Because participants varied in
their degree of recovery, they are sorted in order of increasing
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Fig. 5. Per-participant rank correlations between distance measure
and self-reported symptoms. Participants are sorted left to right in order
of greatest change in symptoms. * Indicates that rank correlation was
statistically significant (p < 0.05).

value of b using the decay model fit to CSS as described earlier.
Correlations are generally higher for participants who exhibited
a more rapid recovery (higher values of b). The average rank
correlation for participants with b value above median was
0.7(+0.13) compared to 0.46(+0.33) for participants with a
b value below median. Overall, the correlation between distance
metric and CSS was moderate (median: 0.63) with significant
variability between participants.

Fig. 6(a)—(c) shows representative time courses of three partic-
ipants with different recovery profiles. Panels a-c compare self-
reported symptoms per day (bars) to the distance metric relative
to the last day (dashed blue line). Participant 17 (Fig. 6(a)) is an
example of a participant who showed a significant and relatively
monotonic reduction in symptoms over the course of the study,
which was reflected in the distance metric. For Participant 28
(Fig. 6(b)), the reduction in symptoms was more gradual and
less monotonic compared to Participant 17, and the recovery
appears to stabilize around day 7-12 before a slight drop on
day 13. Agreement with the distance metric is moderate, but
we can still observe a transition from illness to recovery. In
contrast to these two participants, the self-reported symptoms
for Participant 20 (Fig. 6(c)) were mild (CSS = 5 on day 1)
at study onset, and non-congestion symptoms (cough and sore
throat) worsened over time. Consequently, the agreement with
the distance metric was poor. Fig. 6(d)) shows a boxplot (across
participants) of the distance metric from the last day (assumed
to be a “well day”). In this case a roughly monotonic decrease
in distance is seen across the population, reflecting an overall
trend of participants recovering from respiratory illness and
improvement in symptoms.

In practice, an important goal for monitoring health status
would be the detection of changes from sick to well, or vice
versa. Fig. 7 shows an approach for characterizing the ability of
the distance metric to detect the magnitude of change in self-
reported symptoms. Fig. 7(a)) shows the distance metric as a
function of score difference (thus a change from 14 to 15, or 5
to 4, or 0 to 1 all correspond to a score difference of 1) across
all pair of days for all participants. Fig. 7(b)) shows receiver
operating characteristic (ROC) curves for detecting each change
(as compared to no change or a score difference of 0). The area
under the curve (AUC) metric is 0.89 for a 7-point change and

Subject 17 - Rank correlation: 0.9

Composite Symptom Score
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3 3 To
Study Day

(a) Subject 17

Subject 28 - Rank correlation: 0.57

Composite Symptom Score
DistancewMetric

°
»
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(b) Subject 28
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Distance Metric
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1 v
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Distance Metric
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Study day (at-home)

(d) All subjects

Fig. 6. Distance metric for individual participants (a)—(c), comparing
the distance from the final day (lines) vs. CSS (bars). Participant 17 and
28 had excellent and moderate rank correlation coefficients respectively,
while participant 20 had poor correlation. (d) Distance metric vs. day,
across all participants. Note that distance decreases as participants
approach ‘well’ state, typically around 14 days.

a more moderate 0.72 for detecting a 3-4 point change. While
performance should be checked on a larger dataset, this result
suggests the distance metric is better able to detect changes in
illness as the magnitude of change in symptoms increases.

IV. DISCUSSION

In this paper, we analyzed changes in acoustic features of
sustained phonation during the course of recovery from acute
respiratory illness. Data collected under two conditions were
analyzed; in-lab voice recordings from sick and well lab visits,
and at-home voice recordings made between the lab visits.
Both in-lab and at-home data shows that sustained phonations
of nasal consonants and cardinal vowel appear to carry useful
cues of recovery. In both vowels and consonants, measures of
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Fig. 7. Quantification of ability to detect changes in the self-reported
CSS. (a) distance metric changes vs. change in self-report score,
showing that as the difference in self-reported status on a given day
increase, the distance between acoustic measures also increases. (b)
ROC curves and associated AUC values for detecting changes of differ-
ent magnitude in the CSS (vs. no change).

pitch variability reduce in recovery, as does amplitude variability
as measured shimmer and other metrics. Spectral cues appear
to capture congestion-induced changes in nasal resonances, as
shown in Fig. 4.

Furthermore, we derived a distance metric for tracking voice
changes that tracks well (AUC > 0.7 for detecting a 3 to 4-
point change in CSS) with self-reported symptom scores. This
is especially encouraging because self-report of congestion is
known to be quite variable, leading to difficulties in establishing
a statistically significant relationship between objective (e.g.
imaging-derived) and self-reported congestion measures [20].
Research suggests that the changes in subjective congestion
ratings may be more reliable than the absolute congestion rat-
ings [20]. In ahighly powered study (N > 2000), Kjaergaard [29]

reported correlation between objective measures of congestion
and a score based on changes in subjective measurements. This
greater reliability of changes in self-reported symptom ratings
(rather than absolute ratings) supports our use of Spearman’s
ranked correlation coefficient, which measures ordering of rank-
ings instead of absolute values.

We carried out feature down-selection to help understand
which phonemes and acoustic features were most informa-
tive. Identifying the most useful phonemes has an important
practical benefit, as recording fewer phonemes simplifies data
collection and reduces participant burden by requiring them to
complete fewer voice tasks. In addition, while machine learning
approaches can employ very large numbers of features [3], [30],
this can reduce interpretability. Therefore, we were motivated to
reduce the number of features in part to gain insight into which
features were most important.

While levels of background noise were acceptable in our ex-
periment, future lab-based studies would benefit from careful ex-
perimental characterization of the noise environment (and when
possible, reduction of ambient noise) before data collection, as
well as segmentation approaches for separating phonations from
background speech or noise. Particularly for home-based studies
(where the environment is less controlled), it is important to
select acoustic features that are robust to environmental noise as
well as variability during the data capture process (e.g. distance
between mouth and microphone). As noted above, we focused on
higher-frequency bands (1.5 — 6.4 kHz) for many of the spectral
structure metrics used (spectral contrast, entropy, etc.); this
increases robustness by removing lower-frequency background
noise, while also focusing on frequencies that are expected to
be most impacted by congestion changes [9], [10]. However,
further investigation of robust features is warranted in a larger
and more diverse population.

Shimmer and jitter are well understood to be robust metrics
as participants are not able to consciously control these voice
characteristics. In contrast, we chose not to include overall signal
power (RMS amplitude) in our at-home data analysis, even
though it appeared to increase significantly between lab visits.
Because our protocol did not control for mouth-to-microphone
distance, we felt amplitude would not be a robust feature. Future
studies would benefit from protocols for at-home recording that
would ensure consistent speaker-microphone distance during
recording, allowing use of voice amplitude as a feature. Simi-
larly, we noted that several participants were clearly controlling
the pitch of their phonemes in a musical fashion (for example,
‘singing’ the phonemes in an ascending scale). Thus, while voice
pitch has been shown to be an important cue for conditions such
as Parkinson’s [25], we felt that it might not be very robust in
our sustained phonation study; a limitation of our work is that
we did not explore data from scripted speech where pitch and
other cues may be more robust.

Our study has several limitations. Our subjects’ disease status
was established through self-report instead of clinical exams.
Subject recruitment was not balanced by age or sex, making
it difficult to assess impacts of these factors (although our ap-
proach analyzes changes in each subject relative to the subject’s
baseline data, which should reduce sensitivity to these effects).
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Our sample size was small, so performance estimates reported
here should be checked in a larger study. While the results here
suggest that acoustic features derived from voice could be useful
for tracking recovery from respiratory illness, in many cases (for
example vaccine clinical trials or pandemics) an key goal would
be detecting the onset of illness. These weaknesses could be
addressed by studies in larger cohorts to capture variability of
voice during healthy baseline, which may lead to approaches
for detecting the onset of illness as well as monitoring the
progression of symptoms.
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