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Abstract—Each year there are nearly 57 million
deaths worldwide, with over 2.7 million in the United
States. Timely, accurate and complete death reporting is
critical for public health, especially during the COVID-19
pandemic, as institutions and government agencies rely
on death reports to formulate responses to communicable
diseases. Unfortunately, determining the causes of death
is challenging even for experienced physicians. The novel
coronavirus and its variants may further complicate the
task, as physicians and experts are still investigating
COVID-related complications. To assist physicians in
accurately reporting causes of death, an advanced Artificial
Intelligence (AI) approach is presented to determine a
chronically ordered sequence of conditions that lead
to death (named as the causal sequence of death),
based on decedent’s last hospital discharge record.
The key design is to learn the causal relationship among
clinical codes and to identify death-related conditions.
There exist three challenges: different clinical coding
systems, medical domain knowledge constraint, and data
interoperability. First, we apply neural machine translation
models with various attention mechanisms to generate
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sequences of causes of death. We use the BLEU (BiLingual
Evaluation Understudy) score with three accuracy metrics
to evaluate the quality of generated sequences. Second,
we incorporate expert-verified medical domain knowledge
as constraints when generating the causal sequences of
death. Lastly, we develop a Fast Healthcare Interoperability
Resources (FHIR) interface that demonstrates the usability
of this work in clinical practice. Our results match the
state-of-art reporting and can assist physicians and experts
in public health crisis such as the COVID-19 pandemic.

Index Terms—Cause of death, COVID-19 pandemic, deep
learning, fast healthcare interoperability resources (FHIR),
population health data analytics.

I. INTRODUCTION

THERE are more than 2.7 million deaths in the United
States [1] and nearly 57 million deaths around the world per

year.1 As of March 23rd, 2022, coronavirus has taken the lives
of nearly 6.1 million people among 472 million confirmed cases
globally.2 Even though COVID-19 is ranked as the third leading
cause of death [2][3], detailed information on COVID-19 related
complications and causes of death are still under investiga-
tion [4]–[7]. Therefore, accurate death reporting is essential for
public health institutions such as the U.S. National Center for
Health Statistics (NCHS) and the Centers for Disease Control
and Prevention (CDC) to formulate effective recommendations.

The U.S. death reporting system requires two types of causes
of death to be filled on death certificates: a single medical
condition that is the underlying cause of death, and an ordered
sequence of medical conditions (a sequence of ordered causes,
which is termed “causal sequence” in our context) that lead to
the death. These sequences of causes of death form the basis of
the NCHS Multiple Causes of Death data, which is a critically
valuable data source in public health.

A causal sequence of death consists of one underlying cause
of death, and other potential immediate causes of death. The
immediate causes of death are typically caused by the underlying
cause of death. An example causal sequence of death is “chronic
obstructive pulmonary disease, unspecified (ICD10: J44.9) →
other disorders of lung (ICD-10: J98.4)”. Here ICD-10 stands
for “10th revision of the International Statistical Classification

1[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/the-
top-10-causes-of-death

2[Online]. Available: https://covid19.who.int/
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TABLE I
SUMMARY OF CHALLENGES IN GENERATING THE CAUSAL SEQUENCE OF

DEATH AND PROPOSED SOLUTIONS

of Diseases and Related Health Problems,” a common coding
system used in death reporting.3

The process of determining causal sequences of death is
challenging, even for experienced physicians, as this process
involves careful reasoning using medical domain knowledge and
experience. In addition, limited electronic health records in cases
of sudden death may significantly complicate the determination
of correct sequences.

Complete and accurate reporting of condition sequence lead-
ing to death provides an invaluable public health resource for
tracking disease prevalence, developing public health interven-
tions, and tracking intervention efficacy over time. Thus, it im-
proves both clinical care and patient well-being. For physicians
and public health experts, frequently reported sequences can as-
sist in grouping disease conditions, and discovering underlying
causal relationships that have not been previously observed. At
the patient level, such sequences can alert individual patients for
early actions before symptoms shown.

To assist in timely, accurate, and complete reporting of deaths
and to reduce the subjectivity by reporting physicians, we de-
velop a decision support system with deep learning approaches
that learns the causal relationship between death and available
clinical codes, and generates the causal sequence of death based
on the decedent’s disease histories. Table I summarizes three
challenges and the proposed solutions.

The first challenge is due to the use of different coding
systems of clinical conditions. The existing causes of death in
the U.S. have been using the tenth revision (ICD-10) codes since
January 1999 [8]. On the other hand, healthcare institutions and
practitioners in the U.S. were still filing patients’ health record
using the ninth revision (ICD-9) codes until October 2015 [9].
ICD-10 codes are quite different from ICD-9 codes in both
coding structure and quantity: ICD-10 has nearly five times as
many diagnosis codes as ICD-9.4

One solution to this challenge is natural language translation.
The input sequence to our model is diagnosis codes from the
last hospital discharge record of the deceased, and the output
sequence is the corresponding causes of death for that decedent.
Similar to translating English sentences to French sentences, we
propose a succinct causal sequence of death in ICD-10 codes
from the priority-based discharge records of ICD-9 codes. The
area of Natural Language Processing (NLP) contains extensive
studies for machine translation, such as autoregressive [10]–[13]
and autoencoder models [14]–[16]. The former factorizes the
probability of a given corpus into a series of conditional proba-
bilities while the latter generates output through reconstructing
corrupted input.

3[Online]. Available: https://www.cdc.gov/nchs/icd/icd10 cm.htm
4[Online]. Available: https://www.cdc.gov/nchs/icd/icd10cm_pcs_faq.htm

The second challenge is the domain knowledge requirement.
As a data-driven approach, a deep learning model can sometimes
generate confusing sequences to the physicians or results con-
tradicting medical domain knowledge. Consequently, the physi-
cians may find it difficult to trust the generated results. To solve
this problem, we incorporate medical domain knowledge in the
deep learning framework. Particularly, we use an external source
of expert-curated rules, which are pairs of causal relationships
between clinical condition codes. When the deep learning model
searches for the next clinical condition in generating the output
sequence, only clinical conditions following medical domain
knowledge can serve as candidates.

The last challenge is the data interoperability in death report-
ing. Currently, the U.S. National Center for Health Statistics
coordinates with 57 reporting jurisdictions across the United
States to aggregate mortality data [17]. These reporting jurisdic-
tions have different regulations and local laws. To streamline the
data storage and transmission between hospitals and these public
health institutions and to make data comprehensive for future
Big Data analytics, we use Fast Healthcare Interoperability
Resources (FHIR) [18] to standardize mortality data reporting.
We have developed one web-based FHIR application [19] to
access electronic health records data. The newly developed
Android version mobile application is FHIR compatible; it can
pre-populate different sections of death certificate to extract
essential information of health history of the decedents. Further-
more, it serves as a graphical user interface for physicians that
the mobile application can automatically query the deep learning
models to provide clinical decision support. Implementation
details, graphic user interface and video demo information are
included in the supplementary file.

In this work, we predict the sequence of causes of death from
decedent’s last hospital discharge record using encoder-decoder
models with attention mechanism. We also visualize the
attention scores to identify death-related conditions from
unrelated symptoms. We further demonstrate the feasibility of
the encoder-decoder models for ICD-10 input data by mapping
ICD-9 codes to ICD-10 codes to meet current electronic health
records (EHRs) data. In addition, we learn the expert domain
knowledge graph from an ACME (Automatic Classification of
Medical Entry) decision table to constrain model predictions to
known relationships. The overall structure is shown in Fig. 1.

In summary, this work has the following contributions:
1) This is the first work to develop encoder-decoder mod-

els for predicting causal sequences of death based
on death reports and decedents’ last hospital visit
records;

2) This is the first work to identify death-related conditions
from available health records using attention visualiza-
tion. Our approach improves model interpretation and
can potentially benefit physicians in predicting causes of
death;

3) This is the first work to use the modified BLEU (BiLin-
gual Evaluation Understudy) score, a popular score for
sequence-to-sequence translation task in natural language
processing, to evaluate the performance of deep learning
prediction of causal sequence of death;

4) This work improves data interoperability by implement-
ing a user-friendly, FHIR-based application to utilize AI
solutions.
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Fig. 1. Overall Structure of this paper. The encoder-decoder model is the main framework for generating sequences of causes of death. Validity
check is an optional preprocessing step and domain knowledge constraint is an optional step in decoding.

II. RECENT WORK

Intelligent death reporting has been a rising research theme
in recent years. Jiang et al. [20] applied topic modeling on
the multiple causes-of-death U.S. mortality data from NCHS
between 1999 and 2014. The authors successfully grouped co-
morbidities based on their correlation and explore the temporal
evolution of these morbidity groups. Unfortunately, due to the
nature of unsupervised learning, the author failed to determine
the optimal number of topic groups, reducing its potential impact
on clinical practice. Wu and Wang [21] designed a convolutional
neural network (CNN) with dynamic computation graph to infer
the underlying cause of death using the same NCHS mortality
data. Using a list of relevant medical conditions, the proposed
CNN model was able to achieve 75% accuracy in predicting the
single underlying cause of death. Meanwhile, Hoffman et al.
[22] revealed the poor quality of death reporting data by showing
20.1% discordance of cause of death. The author also proposed
validity checking on death reporting data to remove invalid
causal pairs of death codes. One limitation is that, the author did
not validate any downstream tasks, such as predicting the single
underlying cause of death, to further demonstrate the value of
validity checking.

A recent yet interesting work published on Journal of Biomed-
ical and Health Informatics [23] is to automatically extract the
single cause of death from verbal autopsy questionnaire using
recurrent neural network (RNN) with attention. The RNN model
with attention is able to learn the textual representation from
the free-text questionnaire data and visualize attention scores to
improve outcome interpretation. RNN models are also applied
to mortality prediction. Yu et al. [24] proposed a multi-task
RNN model with attention mechanisms that predicts patients’
hospital mortality and achieved higher sensitivity than the sim-
plified acute physiology score (SAPS-II). The auxiliary task in
the proposed multi-task RNN model is the reconstruction of
patients’ physiological time series data.

III. CAUSAL SEQUENCE OF DEATH

A. Data

In this work, we use last hospital visit discharge records from
Michigan Vital Statistics Data that covers 181,137 decedents.

This dataset was collected by CDC and its collaborators be-
fore 2017 and contains important demographic information,
diagnostic codes and procedural codes. However, this dataset
does not include decedents’ past medical histories (no temporal
information; last hospital visits only). As shown in Fig. 2, each
decedent has exactly one line of last hospital visit essential
information, including up to 45 clinical diagnosis codes, one
underlying cause of death and up to 17 related causes of death.
On average, each decedent has 18.84 diagnosis codes and 2.25
causes of death (including the underlying cause of death). In
line with the ICD-9-CM Official Guidelines for Coding and
Reporting,5 the diagnosis codes are in priority-based sequence
of ICD-9 codes. The causes of death are in ICD-10 codes.
Typically, we have a longer input source sequence around 16
to 20 codes, and a much shorter output target sequence with
roughly two to three codes. Such a short sequence of death
codes is expected in death reports. We accessed the ten years’
(2009 to 2018) NCHS Mortality Multiple Cause Files database6

and calculated that the average length of death code sequence
among 26,322,220 decedent samples to be 2.95 codes. (Note that
discharge codes on last hospital admission may contain previous
admission discharge codes.)

ACME (Automatic Classification of Medical Entry) is an on-
tology of medically valid causal relationships between ICD-10
codes developed, improved, and promulgated by an international
team of medical experts [25]. The ACME decision table was
used to learn the medical domain knowledge constraint [22].
It contains 95,321 lines of causal relationship. Specifically, if
rules are of length 2, it can be interpreted as F2 → F3 (cause of
death code F2 leading to cause of death code F3); if rules are
of length 3, it can be represented as (F1:F2) → F3 (all codes
within the subset are cause of death that lead to cause of death
code F3). The ACME decision table was transformed into a
knowledge graph; nodes are diagnosis codes and directed edges
were pairwise rules.

5[Online]. Available: https://www.cdc.gov/nchs/data/icd/icd9cm_guidelines
_2011.pdf

6[Online]. Available: https://www.cdc.gov/nchs/data_access/vitalstatsonline.
htm#Mortalit_Multiple
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Fig. 2. Sample data from the Michigan data set. The casual sequence of death in ICD-10 for this decedent is I500 > R688 (Heart failure > Other
general symptoms and signs), outlined in green. This decedent had a total of 30 ICD-9 diagnostic codes assigned during the last visit to hospital,
outlined in blue.

Fig. 3. Neural machine translation consists of an encoder (stacked
recurrent networks in blue) and a decoder (stacked recurrent networks
in red). The symbol < eos > is a special token referring to the end of a
sentence. Adapted from [13].

B. Generating Causal Sequences Through Translation

We can define the generation of causal sequences as follows:
Definition 1: [Generation of Causal sequences] Given a de-

ceased’s medical history represented as a collection of clinical
codes x = x1, . . . , xm, the goal of causal sequence generation
is to identify a list of clinical codes y = y1, . . . , yn that orders
the conditions leading to death.

The objective is to generate the causal sequence of death,
an ordered sequence of causes of death codes in ICD-10. The
input is a sequence of diagnosis codes in ICD-9. To generate the
output sequence from one domain based on the input sequence
from another domain, we apply the state-of-the-art algorithms
from neural machine translation.

Input and output sequence data are split into training, valida-
tion and testing set at the ratio of 7:1:2. We applied five-fold
cross validation. We achieved similar results using ten-fold
cross validation (the split is 8:1:1). More results are in the
supplementary file.

IV. METHODOLOGY

A. Neural Machine Translation: Encoder and Decoder

The goal of translation is to find a target sentence y =
y1, . . . , yn which maximizes the conditional probability p(y|x)
given a source sentence x = x1, . . . , xm. Neural machine trans-
lation (NMT) aims to maximize this conditional probability of
source-target sentence pairs by using a parallel training corpus
to fit a parameterized model. As shown in Fig. 3, there are two
basic components of an NMT system:

1) An encoder encodes the input sequence x into represen-
tation s

2) A decoder generates the output sequence y
The conditional probability of the decoder is formulated as:

log p(y|x) =
n∑

t=1

log p(yt|y1, y2, . . . , yt−1, s) (1)

The probability of the next generated word yi, is jointly
decided by the learned representation vector s and all previously
generated words y1, . . . , yt−1.

1) LSTM Encoder - LSTM Decoder: In an long short-term
memory (LSTM) Encoder-Decoder framework [26], [27], the
encoder reads and encodes an input sequence of embedded
vectors x. The encoder will then generate a hidden state ht at
time t from the current input xt and the previous hidden state
ht−1:

ht = f(xt, ht−1) (2)

The source input representation vector s shall have the form:

s = q(h1, . . ., hm) (3)

Here f and q are some non-linear functions. For the basic
recurrent neural network RNN/LSTM model, the conditional
probability of output sequence y at time t can be written as:

p(yt|y1, . . ., yt−1, s) = g(yt−1, ht, s) (4)

Here g is a (multi-layered) nonlinear function.
Generic RNN or LSTM encoder-decoder framework has to

process the sentence word by word using fixed length vectors,
failing to preserve long-term dependency. Bahdanau et al. pro-
posed soft alignment (soft attention) [10] in a bi-directional RNN
model that enables the model to search for a (sub)set of input
words or encoded representation vectors when generating each
target word. The soft attention score is calculated as:

score(st, hi) = vTa tanh (Wast−1 + Uahi) (5)

Where st = f(st−1, yt− 1, ct) is the hidden state of output
word yt at position t, the context vector ct is the weighted sum of
hidden states of the input sequence, andWa, Ua, va are trainable
matrices.

Luong et al. [12] proposed global attention which predicts the
position of alignment for the current word before computing the
context vector using the window centered around that source
position. The general attention score, a sub-category of the
global attention mechanism, is calculated as:

score(st, hi) = sTt Wahi (6)

Here Wa is a trainable weight matrix in the attention layer.
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Fig. 4. Overall structure of a transformer. Here we have five identical
encoders and five identical decoders in this transformer.7

Global attention [12] and soft attention [10] are “similar in
spirit,” but there is a major difference. Global attention uses
hidden states from the top LSTM layers of both encoders and
decoders, while soft attention uses the concatenation of forward
and backward hidden states in the bi-directional RNN encoder.

Overall, the LSTM encoder-decoder model is easy to under-
stand, and can be applied on most sequence-to-sequence tasks.
Yet such a model has limited performance, especially on long
sentences.

2) Bidirectional RNN Encoder - LSTM Decoder: A major
disadvantage of the traditional encoder-decoder model is that
the neural networks compress source sentences into fixed-length
vectors. This may significantly limit the capability of trans-
lating long sentences [28]. Bahdanau proposed a bidirectional
RNN [10] with soft alignment so that the model can learn to align
and translate jointly. A bi-directional RNN encoder model can
better learn the embedding of words, but it is less efficient than
the LSTM encoder-decoder framework, and has less accurate
results than transformer models.

3) Transformer Model: Still, RNN-based encoder-decoder
models fail to perform well on long sentences. To overcome this
problem, Vaswani et al. proposed the transformer framework
with multi-head self attention module [29] that enables encoding
words of the same sentence in parallel. As shown in Fig. 4, a
transformer consists a stack of encoders and the same number
of decoders. The embedded input is passed to the encoder at the
bottom; the output from the encoder on the top will be passed
to all decoders. The decoder on the top will pass the output to a
linear layer and a softmax layer to generate a predicted sentence.
The encoder has two layers: a multi-head self-attention layer
and a feed forward layer. The decoder has an extra multi-head
attention layer that processes both the output from the encoder
stack and the output from previous attention layer.

The self attention module is the core component of the trans-
former model. The attention score is a scaled dot-product of
matrices Query, Key matrices Q,K, or the weighted sum of the
Value matrix V .

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (7)

The Query, Key and Value matrices are generated through
linear transformation Q = XWQ,K = XWK , V = XWV ,
Where WQ,WK ,WV are learnable parameters.

7Adapted from https://towardsdatascience.com/transformers-141e32e69591

The transformer model is more time-consuming to train than
RNN-based encoder-decoder frameworks, but can achieve far
better results [29]. BERT (Bidirectional Encoder Representa-
tions from Transformers) [14] is a transformer encoder model
that has been pre-trained on large datasets (BooksCorpus with
800 M words and English Wikipedia with 2,500 M words). The
pre-trained BERT model can be further fine-tuned to improve
performance on multiple NLP tasks.

B. Decoding and Translation

A straightforward method of decoding is to predict only one
word with the highest score based on previous steps. It is efficient
and easy to understand; yet a small mistaken output might
corrupt all remaining predictions. Thus, a better strategy named
“beam search” [30] is adopted. In each step of the decoding
process, the decoder generates multiple candidates based on a
previous output, and each of these candidate has a non-zero
probability value. Beam search keeps the top k candidates for
each step, keeps track of all paths of candidate outputs, and
selects the path of highest overall probability when reaching the
end of the sequence. Here, k is the beam size. The larger the
value of k is, the more robust the decoding process is; yet this
may require more memory and increase computational time.

We also include medical domain knowledge as constraints
during translation. The ACME decision table specifies all the
“feasible” pairwise causal relationships between ICD diagnosis
codes [22][25]. Using this decision table, we construct a domain
knowledge graph on all diagnosis codes from Michigan data
before training. With diagnosis codes as nodes, we add directed
paths between them only if such causal relationship can be
found in the ACME decision table. When decoding, the networks
are required to look up the knowledge graph and only include
“feasible” codes in the top k hypotheses.

C. Evaluation

For quantitative evaluation, we evaluate how well our pro-
posed causal chain Ŷ = {Ŷ1, .., ŶM1

} aligns with the physi-
cians’ decision, i.e., Y = {Y1, .., YM2

}. Here Yi is the indi-
vidual codes, and M1,M2 are the respective length of the
chains. A perfect alignment means M1 = M2, and Ŷi = Yi, for
i = 1, . . .,M1. However, this is rarely the case, thus we compute
a weighted average precision of our alignment in sub-sequences
of variable lengths, i.e., the BLEU score [31]. Following natural
language processing literature, we call sub-sequence of length i
“i-grams”. BLEU score ranges from 0 to 1 or (or from 0 to 100
if multiplied by 100), and the higher BLEU, the higher we have
an alignment with physicians clinically.

A simple example follows illustrates the computation of the
BLEU score. In our proposed candidate sequence, the under-
lying cause of death, Asphyxia and Hypoxemia (R909) leads
to Pneumonia, Unspecified Organism (J189) which leads to
Respiratory failure, unspecified (J969).

Ŷ = R909 → J189 → J969

The reference sequence, determined by the physician, consists
of Asphyxia and Hypoxemia (R909), Pneumonia, Unspecified

https://towardsdatascience.com/transformers-141e32e69591
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TABLE II
AN EXAMPLE OF 1-GRAM PRECISION AND 2-GRAM PRECISION IN BLEU

SCORE

Organism (J189) and then Acute Respiratory Failure (J960).

Y = R909 → J189 → J960

As shown in Table II, we first list 1-grams and 2-grams from
Ŷ and Y , and we compute the precision for the two cases. Here
the definition of precision is similar in the classification setting:
among all the predictions we made in candidate sequence Ŷ , the
number of candidate sequences we get correct in the reference
sequence Y . After we compute all the precision metrics, we
calculate the geometric average of them as the BLEU metrics,
approximately 0.47.

In natural language settings, people usually calculate BLEU
score for the geometric average up to 4-gram precision. In our
case, however, we only compute the geometric average up to 2-
gram precision, and apply clipping to each of the precision. This
is due to the fact that the average length of causal chain of death
in Michigan dataset is 2.25 codes so including 3-gram precision
will lead to substantially inaccurate evaluation. Furthermore, we
also include a brevity penalty to penalize sentences that are too
short.

According to [31], the modified i-gram precision is defined
as:

pi =
∀ i-grams in Ŷ that appear in Y

∀ i-grams in Ŷ
(8)

The brevity penalty BP is defined as:

BP =

{
1, if c > r

exp (1− r/c), if c ≤ r
(9)

Here c is the length of candidate sequence (the number of
words in the proposed candidate sequence), and r is the length
of the reference sequence (the number of words in the reference
sequence).

Then the BLEU score is defined as:

BLEU = BP · exp
(

N∑
u=1

wi log pi

)
(10)

In this equation, exp is the natural exponential function; log
is the natural logarithm function; the weight is wi = 1/i; we set
N = 2.

For clinical interpretation, our modified BLEU score indi-
cates how well our proposed sub-sequences of causal conditions
match the physicians’ results. The 1-gram precision emphasizes
individual condition codes matching, while 2-gram precision
evaluates the causal relationship between two neighboring con-
dition codes. Physicians can manually check whether the gener-
ated causal relationship between any two neighboring condition
codes fulfills or contradicts their medical domain knowledge;
in addition, a data-driven algorithm can incorporate ACME

TABLE III
OUR MODIFIED BLEU SCORE FOR DIFFERENT CANDIDATE SEQUENCES

decision table as medical domain ground truth to assess the
validity of two neighboring condition codes.

In Table III, we show an example of different candidate se-
quences that have perfect 1-gram precision but different 2-gram
precision. The reference sequence from underlying cause of
death to immediate cause of death is: I251 (Atherosclerotic heart
disease of native coronary artery), I38 (Endocarditis, valve un-
specified), I429 (Cardiomyopathy, unspecified) and I469 (Car-
diac arrest, cause unspecified). The 2-gram precision in the
modified BLEU score favors candidate sequences that have more
feasible condition codes with pairwise casual relationship.

In addition to our modified BLEU score, we also include three
other evaluation criteria: the accuracy for predicting the entire
output sequence correctly, the accuracy of predicting individual
codes correctly in the output sequence (sequence order not con-
sidered), and the accuracy for predicting the underlying cause
of death correctly.

V. EXPERIMENTS

By using OpenNMT package [32], We have trained the LSTM
encoder-decoder models and bi-directional RNN (BRNN)
encoder-decoder models with different attention mechanisms.
In addition, we also train and evaluate the transformer model
with multi-head self attention module on the Michigan dataset.
All these experiments are evaluated by BLEU score and three
accuracy metrics.

To extend the scope of this work, we explore the feasibility of
applying encoder-decoder frameworks on current EHRs data in
ICD-10 codes. As the input sequence of the Michigan dataset is
coded in ICD-9, we choose to map the input ICD-9 codes into
ICD-10 codes using General Equivalence Mappings published
by Centers for Medicare & Medicaid Services (CMS).8 Specif-
ically, we conduct four experiments on ICD-9 input codes (four
combinations with or without validity check, with or without
knowledge constraint) and one experiment on ICD-10 input
codes without validity check or knowledge constraint.

In addition to OpenNMT, we incorporate the state-of-the-
art pretraining model named cross-lingual language model
(XLM) [16] on our data set. Lastly, we visualize the attention
scores and mapped the relationship between source sequence
and output sequence.

A. Opennmt

OpenNMT serializes the training, validation, and vocab-
ulary data into PyTorch files for preprocessing. As the

8[Online]. Available: https://www.nber.org/research/data/icd-9-cm-and-icd-
10-cm-and-icd-10-pcs-crosswalk-or-general-equivalence-mappings
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TABLE IV
AVERAGE BLEU AND ACCURACY SCORES AND STANDARD DEVIATION IN PARENTHESES ACROSS FIVE FOLDS

Michigan dataset has a relatively small sample size comparing
with datasets used in similar natural language processing tasks,
our models have a small number of parameters but similar
architecture as the state-of-the-art models. During training, we
use the 2-layer LSTM model, with 500 hidden units in each layer
for the LSTM encoder-decoder framework (Luong et al. used
4-layer LSTM model with 1000 units [12]). For bidirectional
RNN encoder, a 2-layer bidirectional LSTM with 500 and 250
hidden units is implemented. The transformer has six stacking
layers, with 2,048 hidden units in feed forward layers and eight
heads in multi-head attention layers.

We use one Nvidia GPU Tesla K80 to train and evaluate the
models. Typically it takes around one hour to train an LSTM or
bidirectional RNN model for 10,000 steps, and about six hours
to train a transformer model. Yet it takes less than five minutes
to translate all 36,000 testing data using any of these models.

B. Optional Preprocessing: Validity Check

In search for better prediction performance, we add an extra
pre-processing step, the validity check. For training and valida-
tion data, we adapt the same algorithm in [22] to remove the pairs
of sentences that include “invalid” causal relationship between
diagnosis codes in target sentence. In this way we reduce the
number of sentences in the training set from 136,753 to 107,711
and those in the validation set from 34,385 to 27,009. We then
follow the same pipeline to train and translate with the same
encoder-decoder models.

C. XLM: Pretraining

XLM [16] incorporates masked language modeling (MLM)
proposed in BERT (Bidirectional Encoder Representations from
Transformers) [14] with the transformer model to improve
translation performance. The preprocessing includes tokenizing
and applying fastBPE (byte pair encoding) [33] to monolingual
and parallel data. MLM is the core strategy in monolingual
language model pretraining. Training consists of three major
steps: denosing auto-encoder, parallel data training, and online
back-translation.

Due to the limited size of our data set, we concatenate all
training, validation, and testing data into two corpora for mono-
lingual pre-training. MLM perplexities are used for validation
during pre-training. We train the cross-lingual model with par-
allel validation data and predict on parallel test data. We set the
transformer framework with 512 embedding size and 4 attention
heads. We vary the encoder-decoder stacking size from 6 layers
to 1 layer. The drop out rate was set to 0.1, attention dropout
to 0.1, batch size to 32, and sequence length to 128. We used
GELU for activation and adam as optimizer.

VI. RESULTS

A. Attention Comparison

As shown in Table IV, bi-directional RNN (BRNN) encoder-
decoder model with soft attention achieves the highest BLEU
score, followed by the transformer model and BRNN with
no attention. When comparing different attention mechanisms,
LSTM model with soft attention or with general attention has
higher BLEU scores than without attention; BRNN models
with different attention mechanisms have similar BLEU scores.
Comparing LSTM models against BRNN models, LSTM with
no attention or with soft attention has lower BLEU scores
than BRNN model counterparts, but LSTM model with general
attention has very close BLEU score to the BRNN model with
general attention. The best model performance has a BLEU
score of 17.87, better than the performance of the state-of-the-art
in the natural language domain (English-Czech translation task
achieving BLEU score 17.7 with same vocabulary size around
10,000) [13].

In addition, we also include the results for the other three
evaluation criteria. BRNN model with general attention has the
highest accuracy in generating the entire sequence correctly and
the highest accuracy in generating individual codes correctly.
BRNN model with soft attention has the highest accuracy in
predicting the underlying cause of death correctly.

One thing to notice is that all these models with different
attention mechanism have very close performance (less than
5% difference). Comparatively, BRNN models with either soft
attention or general attention have the best performance among
all these frameworks.

B. Validity Check, Domain Knowledge Constraint and
ICD-10 Input Sequence

As shown in Table V, we calculate the average BLEU score
and its standard deviation (in parenthesis) for each encoder-
decoder framework across five folds. For Experiment 1 (no
validity check in training/ validation data and no knowledge con-
straint in decoding), the transformer model achieves the highest
BLEU score. Comparing Experiment 1 and Experiment 2,
validity check, the preprocessing step on training and validation
data increases the average BLEU score for LSTM and BRNN
models, but decreases the performance of the transformer model.
This indicates that validity check has mixed impact on average
performance of different models.

It is worth noticing that in Experiment 3 and Experiment
4, the average BLEU score drops significantly for LSTM and
BRNN models, while their standard deviation increases signif-
icantly. As for the transformer models, knowledge constraint
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TABLE V
AVERAGE BLEU SCORES AND STANDARD DEVIATION IN PARENTHESES FOR FIVE EXPERIMENTS

decreases the average BLEU score. Consequently, we show that
the encoder-decoder frameworks can learn the causal relation-
ship between diagnosis codes well enough that it is not nec-
essary to learn and incorporate the medical domain knowledge
constraint from the ACME decision table during the decoding
process.

In addition, it is interesting to compare the results in Experi-
ment 1 and Experiment 5. After mapping the input ICD-9 codes
into ICD-10 codes, LSTM, BRNN and transformer models have
similar average BLEU scores with those in Experiment 1. These
results are significant: 1) the encoder-decoder frameworks are
promising and stable in generating the causal sequence of death,
no matter whether we have input and output data in the same or
different coding systems. 2) When having no access or limited
access to the newest EHRs data, we can use data before 2015 to
train the models and generate the causal sequence of death.

C. Attention Visualization: A Case Study

To better understand the causal relationship between clinical
conditions on the discharge records, we visualize the attention
scores generated by the bi-directional RNN model. In this case,
there are ten diagnosis codes in ICD-9 on the decedent’s dis-
charge record. The generated causal sequence of death is exactly
the same as the ground truth (annotated by physicians). We map
the attention scores for all diagnosis codes in the input sequence
(x-axis) against the causes of death codes in the output sequence
(y-axis). As shown in part (A) of Fig. 5, a higher attention score
is painted in darker blue, indicating that the input diagnosis code
is more related with the code in causal sequence of death. If we
empirically set a threshold of 0.1, we can identify five diagnosis
codes as death-related conditions (shown in part (B) of Fig. 5).
Four of five are severe cardiac conditions, aligned with the causes
of death. The other five diagnosis codes are not considered as
death-related conditions due to lower attention scores.

The attention scores improve model interpretation by showing
the relationship between diagnosis codes and causes of death.
Attention visualization also helps the researchers and clinicians
identify death-related conditions from available symptoms on
discharge records.

D. XLM

To our surprise, the state-of-the-art algorithm XLM performs
much worse than the other encoder-decoder frameworks. All
BLEU scores are less than 1 after trying different combinations
of hyper-parameters.

The core algorithm behind BERT and XLM, masked language
model, may not work on our data set. The idea of masked
language modeling is to randomly mask a few words in the sen-
tence (either source or target sentence) during the training stage

and then to recover these masked words based on surrounding
context. Since, on average, our target sentence has 2.25 words,
masking one word can make it extremely difficult to recover.
Even worse, over 31% of our target sentences consist of only one
word: masking the only word makes it impossible to recover.

VII. DISCUSSION

According to [13], larger vocabulary size tends to allow
models to achieve higher BLEU scores. Their proposed hybrid
NMT model achieved 17.7 BLEU score with 10,000 vocabulary
size on English-Czech translation task. Our vocabulary size in
source set is 7616 and that in target set is 2649. Thus, our results
are better than the state-of-the-art results in natural language
processing with similar vocabulary size. Even compared with
other neural machine translation models [10] [33] with larger
vocabulary size (except English-French translation), our results
are very similar. A possible extension to the causal relationship
is to apply causal inference algorithms [34][35] on causes of
death codes and evaluate the average treatment effect.

Wu et al. [21] sought to predict the underlying causes of death
achieves higher accuracy (75%), but our accuracy in generating
individual codes is higher (81%). Blanco’s recent publication on
Journal of Biomedical and Health Informatics [23] used similar
RNN model to predict the single cause of death codes from ver-
bal autopsy questionnaire data. Their work achieved accuracy of
45.6% and 53.3% for adult and children groups correspondingly,
similar to our accuracy for predicting the underlying cause of
death. We argue that our models are able to generate most of the
individual causes of death codes while covering the underlying
cause of death.

Meanwhile, medical domain knowledge as constraint is incor-
porated when generating output sequence. Even though domain
knowledge constraint has a negative impact on the encoder-
decoder models, we show that the encoder-decoder frameworks
can learn the causal relationship between diagnosis codes from
the data. Meanwhile, we demonstrate that validity check can be
a critical step in the pipeline which may slightly improve results.

Still, there are a few limitations with this work. First, the
medical domain knowledge constraint has a negative impact on
generating causal sequence of death. As the causal relationship
learned from ACME decision table was only applied on beam
search process during decoding, domain knowledge constraint
failed to influence the model performance in a positive direc-
tion. Alignment or attention mechanism, the core component
of encoder-decoder framework, did not use with the domain
knowledge constraint. Furthermore, even though that XLM has
proven its efficacy in natural language translation, it fails on our
task. One potential cause is that the masked language modeling
might not work on extremely short sentences (average 2.25
words per sentence).
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Fig. 5. Attention visualization and explanation. In part (a), the attention score matrix is visualized. From top to bottom are the underlying cause of
death and immediately causes of death. Darker blue color indicates higher attention scores (the input code is more related with the output code).
In part (b), we provide human-readable description to all ICD codes. The identified causes of death for this decedents are cardiovascular diseases.

One potential solution is to apply more recent models and
pretrained embeddings. Specifically, Med-BERT [36] is a pre-
trained embedding of the BERT model on diagnosis codes from
structured electronic health records of over 28 million patients.
Med-BERT is pretrained on in-hospital length of stay (LOS)
prediction tasks and fine tuned with disease prediction tasks.
This pretrained embedding of a more advanced model may
potentially improve the performance of generating the causal
sequence of death.

One unsolvable problem is the one-word target sentence.
Rarely do we see sentences consisting just one word in natural
language processing tasks; yet 31.77% of our training data,
31.68% of validation data and 31.27% of testing data are one-
word target sentences. These samples significantly undermine
the perceived efficacy of neural machine translation models.

VIII. CONCLUSION

In this paper, we are the first to successfully predict the causal
sequence of death using neural machine translation frameworks

to support the timely, accurate, and complete death reporting.
We also evaluate the model performance using three different
accuracy scores, achieving 81.68% accuracy in generating the
individual codes in output sequence. Furthermore, we visualize
the attention scores to interpret the causal relationship of diagno-
sis codes from the discharge records. Specifically, we identify the
death-related conditions from available symptoms by mapping
all diagnosis codes in the input sequence against all causes of
death codes in the output sequence. Lastly, we demonstrate a
FHIR-based mobile app to retrieve, modify, and upload cause
of death data to improve clinical integration.

There are multiple potential directions for future work. 1) The
clinical domain knowledge constraint may be implemented to in-
teract with the attention scores in order to constrain the casual re-
lationship during the model learning stage. 2) Using more recent
models or pretrained embeddings, such as Med-BERT. 3) As our
dataset does not include temporal diagnosis codes, future work
may find data with time-stamped information. 4) Our dataset was
collected before 2017 and thus has no COVID-related death.
Future collaboration will include discharge records and death
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certificate records collected during and after the pandemic. In
this way we can test our approach to identify COVID-related
severe symptoms and causes of death.
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