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Abstract—To cope with the lack of highly skilled pro-
fessionals, machine learning with proper signal process-
ing is key for establishing automated diagnostic-aid tech-
nologies with which to conduct epileptic electroencephalo-
gram (EEG) testing. In particular, frequency filtering with
the appropriate passbands is essential for enhancing the
biomarkers—such as epileptic spike waves—that are noted
in the EEG. This paper introduces a novel class of neural
networks (NNs) that have a bank of linear-phase finite im-
pulse response filters at the first layer as a preprocessor
that can behave as bandpass filters that extract biomarkers
without destroying waveforms because of a linear-phase
condition. Besides, the parameters of the filters are also
data-driven. The proposed NNs were trained with a large
amount of clinical EEG data, including 15 833 epileptic
spike waveforms recorded from 50 patients, and their labels
were annotated by specialists. In the experiments, we com-
pared three scenarios for the first layer: no preprocessing,
discrete wavelet transform, and the proposed data-driven
filters. The experimental results show that the trained data-
driven filter bank with supervised learning behaves like
multiple bandpass filters. In particular, the trained filter
passed a frequency band of approximately 10–30 Hz. More-
over, the proposed method detected epileptic spikes, with
the area under the receiver operating characteristic curve
of 0.967 in the mean of 50 intersubject validations.

Index Terms—Epilepsy, spike detection, electro-
encephalogram (EEG), linear-phase filter, convolutional
neural network (CNN).

I. INTRODUCTION

E PILEPSY is a neurological disorder that is said to affect
50 million patients worldwide. In particular, childhood
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epilepsy affects an individual’s cognitive activity. Early appro-
priate diagnosis helps patients reduce future brain damage. In the
diagnosis, the measurement of an electroencephalogram (EEG)
along with a medical examination is essential for determining
the type of seizure symptom. The examination requires clinical
knowledge and experience, but epilepsy specialists with these
skills are in chronically short supply. This has motivated the
development of an automated diagnostic tool to support epilep-
tologists.

One of the essential biomarkers in diagnosing epilepsy is
an epileptic spike called a paroxysmal discharge, which is
frequently present in a patient’s interictal EEG [1]. To sup-
port the detection of epileptic spikes, several automated de-
tection approaches are making great advances. To implement
the automatic detection of epileptic spikes, supervised learn-
ing is one effective method. To efficiently train the machine
learning models, the EEG signal is generally decomposed into
standard clinical frequency bands of interest—such as δ, θ,
α, β, and γ—before the learning [2]. While conducting such
training, it is necessary to select the frequency bands appro-
priately, which depends on several factors, such as the EEG
measurement method, measurement environment, the type of
epilepsy, and epileptologists’ skills. However, in various studies,
a range of frequencies or frequency bands of interest has been
empirically selected. Douget et al. [3] used discrete wavelet
transform (DWT) to obtain a set of subbands with a range of
4–32 Hz for the analysis of both intracranial and scalp EEG.
Carey et al. [4] used an infinite impulse response Butterworth
bandpass filter with a frequency band of 1–30 Hz. In addition,
Maurice et al. [5] employed 0.5–70 Hz band-pass filter with a
third-order Butterworth and 60 Hz notch filter with a fourth-
order Butterworth to detect spikes from an intracranial EEG.
For epileptic seizure detection, Iesmantas et al. [6] used seven
bandpass filters to divide the EEG into seven frequency bands
of <4 Hz, 4–7 Hz, 7–13 Hz, 13–15 Hz, 14–30 Hz, 30–45 Hz,
and 45–70 Hz.

With the advent of deep neural networks, model parameters
could learn from observed data, including feature extraction
methods. In particular, convolutional neural networks (CNN)
can extract features by applying filters to input data [7], [8].
However, each filter in the convolutional layer has a high degree
of freedom, even though the predefined filters in previous studies
have been designed with a linear-phase constraint to preserve the
waveform shape. It is undesirable to destroy the waveform shape
using unconstrained filtering, because the manual identification
of epileptic biomarkers by clinical experts is also an essential
requirement of the diagnosis.

This paper hypothesizes that the frequency subbands can
be estimated on the basis of the data from an epileptic EEG
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labeled by clinical specialists. To this end, we propose the use
of supervised learning to find filter coefficients regarded as a
one-dimensional (1D) convolutional layer under a linear-phase
constraint. This layer can be connected to general neural net-
works, such as CNN and artificial neural networks (ANN), as
a classifier. Furthermore, because no dataset of epileptic spike
detection is, to the best of our knowledge, publicly available, this
paper built a large medical dataset—containing 15 833 epileptic
spikes, 15 004 nonepileptic discharges, and the correspond-
ing 30 837 labels—to train the parameters in the proposed
model.

II. RELATED WORK

A. Feature Extraction

Recently, many studies of epileptic EEGs have applied signal
decomposition methods using DWT in a preprocessing stage [3],
[9]–[15]. However, in these cases, the parameter selection fre-
quency range of the bandpass filters is empirically given.

Cheong et al. [16] used DWT to decompose the signal into
frequency subbands from the delta band to the gamma band
(0–63 Hz). Gutierrez et al. [9] applied a bandpass filter in the
range of 0.5–70 Hz. Then, they obtained wavelet coefficients
from the filtered signal to classify epileptic spikes. Similarly, a
range of 0.5–70 Hz was extracted with a Butterworth filter to
obtain wavelet coefficients [15].

Other studies have utilized narrow bandpass filter ranges
for preprocessing. Polat et al. [17] applied a bandpass filter
range of 0.53–40 Hz and then used the discrete Fourier trans-
form to extract the features for the decision tree classifier.
Khan et al. [12] used the range of 0–32 Hz decomposed by
DWT because most of epileptic information lies in the range of
0.5–30 Hz. Similarly, Douget et al. [3] and Indiradevi et al. [18]
adopted DWT with Daubechies 4 (DB4) to extract the frequency
band of 4–32 Hz. Moreover, Fergus et al. [19] used the range of
only 0–25 Hz, although they did not use DWT but a Butterworth
filter. Thereafter, they employed the holdout technique and
k-fold cross-validation, passing into many different classifier
models for distinguishing seizure and nonseizure EEG records.

In these studies for the classification or detection of epilepsy,
DWT decomposition and other filtering methods were effec-
tive. As seen above, although the frequency range, including
the epileptic information, is roughly known to be less than
about 60 Hz, the selection of cut-off frequencies depends on
several factors, such as the designer of the automated system,
the type of epilepsy, the epileptologists on diagnosis, and so
forth. This motivated us to identify the filter parameters based
on data.

B. Convolutional Neural Networks

A type of neural network (NN) that demonstrates excellent
performance—especially in the field of image or video recog-
nition [20], [21]—is the CNN. The CNN is an extended NN
that has an input layer, multiple hidden layers, and output layer.
In general, the hidden layers consist of convolutional layers,
and a fully connected layer is used as the output layer. The
convolution layer applies a convolution to the input and for-
wards the result to the next layer. Let X = {x0, x1, . . . , xN−1},
Y = {y0, y1, . . . , yM−1}, andH = {h0, h1, . . . , hL−1} be a 1D
input signal, a 1D output signal, and a convolutional kernel,
where N , M , and L are the length of X , Y , and H , respectively.
For the sake of simplicity, L is assumed to be even. Focusing on

TABLE I
SUMMARY OF THE DATASETS ON EPILEPTIC SPIKE DETECTION IN

OTHER STUDIES

one layer, the input X is convolved with the kernel H , and the
output Y is generated as follows:

ym =

L−1∑

l=0

hlxm+l. (1)

The flattened layer smoothes multiple convolved signals into a
single dimension. Then, the fully connected layer multiplies all
input neurons by their weight coefficients and connects them to
the output.

Some recent studies have applied a CNN-based model to EEG
signals [7], [8], [22], [23]. Ullah et al. [7] used 1D convolution
to extract features by filtering time series EEG. Zhou et al. [23]
directly input both of the multichannel time series EEG signals
and their frequency domain signals into a CNN-based model.
Such studies using CNN to detect epileptic seizures or epileptic
spikes have been gaining interest.

C. Dataset of Other Works

This section summarizes datasets of recent studies of epileptic
spike detection. The most common task is the classification of
epileptic spike waveforms and nonepileptic waveforms. Table I
summarizes the datasets from similar studies. It should be em-
phasized that the dataset constructed in this paper achieved a
much larger dataset (15 833 epileptic spike waveforms from
50 patients) than previous studies, in which the largest dataset
in terms of spike waveforms consisted of 7500 samples [22] and
the largest one in terms of patients consisted of 50 patients [24].
Note that neither of the datasets from the previous studies is
publicly available.

III. METHOD

A. Dataset

EEG recordings were collected from 50 patients (24 males
and 26 females) with childhood epilepsy with centro-temporal
spikes (CECTS) [26] at the Department of Pediatrics, Juntendo
University Nerima Hospital. The age range of the patients at the
time of the examination was 3–12 years. The data were recorded
from 16 electrodes with the international 10–20 methods using
the Nihon Koden EEG-1200 system. The sampling frequency
was 500 Hz. This dataset was recorded and analyzed with the
approval of the Juntendo University Hospital Ethics Commit-
tee and the Tokyo University of Agriculture and Technology
Ethics Committee. Details of these EEG recordings are given in
Appendix A.

First, two neurosurgeons, one pediatrician, and one clinical
technologists selected a focal channel associated with the origin
of the epileptic spike. In particular, CECTS is a type of focal
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Fig. 1. Typical waveforms of detected peaks. Each waveform is clipped into a 1-s segment.

Fig. 2. Diagrams of the two prediction models. The colored blocks contain parameters to be trained.

epilepsy in which spikes appear only in a certain channel. There-
fore, the annotators chose the most epileptic intense channel
as the annotation channel. Peaks (minima and maxima) of the
EEG at the channel were detected by a peak search function im-
plemented with Scipy [27]. This function extracts both upward
and downward peaks with a minimum distance of 100 points.
Using a threshold determined at the 80th percentile value in the
absolute amplitude of all peaks, meaningless peaks caused by
noise, and so forth were removed. Second, the annotators labeled
each peak as either an epileptic spike (spike or spike-and-wave)
or nonepileptic discharge. These non-epileptic waveforms were
carefully selected by the annotator from noise peaks excluding
extreme voltage fluctuations caused by body movements and
sweating and other possible interferences. Then, a 1-s segment
was extracted at every detected peak, including 300 ms before
and 700 ms after the peak. Fig. 1 illustrates an example of typical
waveforms. Z-score normalization was applied with the mean
value and standard deviation for each segment. It should be noted
that each segment represents one candidate spike.

B. Preprocessing and Subband Decomposition

We considered two models, as shown in Fig. 2. The first
model uses a predefined bank of filters. It is based on the method
adopted in several previous studies. The second model involves

a special convolution layer called the linear-phase convolutional
layer (LPCL) in which the parameters are searched based on the
dataset.

1) Fixed Approach: The first approach employs a hand-
engineered preprocessing technique for each segment. DWT is
applied to extract the subbands from the EEG. In this paper, the
Daubechies wavelet of order 4 (DB4), which has been reported
to be appropriate for analyzing EEG signals [3], [28], [29],
is adopted as the mother wavelet. The input EEG is decom-
posed into six coefficient levels—D6, D5, D4, D3, D2, and
D1—and one approximation level, A6. Then, four subbands
corresponding to D6, D5, D4, or D3 are generated. Each subband
represents the θ band (4–8 Hz), the α band (8–16 Hz), the β
band (16–32 Hz), and the γ band (32–64 Hz), respectively [16].
The approximation level, A6, and the coefficient levels, D2 and
D1, are eliminated because the low-frequency band may include
breathing and eye movements. The high-frequency band can be
considered noise.

2) Novel Data-Driven Approach Using Linear-Phase Convo-
lutional Layer: The convolutional layer described in Section II-B
can behave as a finite impulse response (FIR) filter. However,
each weight in a convolutional layer is fitted with a high degree
of freedom, although FIR filters are designed with a linear-phase
(LP) constraint to preserve the waveform shape. This paper
proposes a convolutional layer with LP constraints, that is, the
LPCL, and its implementation.
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Fig. 3. Lattice structures of the LP convolution.

The FIR filter is realized by convolution of the
discrete signal X = {x0, x1, . . . , xN−1} and the kernel
H = {h0, h1, . . . , hL−1}, and the output discrete signal
Y = {y0, y1, . . . , yM−1} is calculated based on the current
and past L− 1 inputs, much like (1). Generally, the kernel
described above causes phase distortion, which can be avoided
by imposing an LP constraint. When the length of the filter is
even, the even symmetry and odd symmetry of the kernel yields
the LP FIR filter of type-II and type-IV [30], that is:

hl = hL−1−l, (2)

and

hl = −hL−1−l, (3)

respectively. The idea behind using type-II and type-IV sym-
metric filters is twofold: (a) In generalizing the Haar transform
to a bank of FIR filters, the multistage Haar wavelet transform
is equivalent to an orthogonal matrix [31], including type-II and
type-IV FIR filters with different lengths, and each filter corre-
sponds to a bandpass filter. (b) By using type-II and type-IV, it is
possible to compose a bank of lowpass, bandpass, and highpass
filters because type-II and type-IV are inherently unable to yield
a highpass filter and a lowpass filter, respectively [30].

From (1) and (2), an even symmetric convolution Y e =
{ye0, ye1, . . . , yeM} is described as follows:

yem =

L/2−1∑

l=0

hl

(
xm+l + xm+(L−1)−l

)
. (4)

This convolution can be implemented using a lattice struc-
ture [32], as shown in Fig. 3(a). As shown in this figure, even
symmetric convolution can be regarded as the product of the
vector expressed by the addition of the two components in
X and kernel H . This is the same operation as a weighted
full connection (namely, a fully connected layer). Therefore,
this can be implemented by repurposing a conventional neu-
ral network framework with the addition of X elements, as
illustrated in Fig. 3(a). Similarly, an odd symmetric convolution

TABLE II
PARAMETER FOR THE RANDOM FOREST TO BE TUNED BY GRID SEARCH

Y o = {yo0, yo1, . . . , yoM} is described as follows:

yom =

L/2−1∑

l=0

hl

(
xm+l − xm+(L−1)−l

)
. (5)

Fig. 3(b) illustrates the lattice structure for (5). As this figure
shows, the odd symmetric convolution can be implemented by
repurposing a conventional neural network framework with the
subtraction of X elements. These LPCLs can replace the fixed
(predesigned) subband filters, as illustrated in Fig. 2. The idea
is hypothesized that the LPCL can derive the frequency bands
of interest from the epileptic EEG dataset.

C. Classifier Models

Random forest (RF), ANN, and CNN are adopted as the clas-
sifiers. Although the ANN and CNN can be combined with either
a traditional preprocessing technique or the proposed method,
RF can be combined only with the traditional preprocessing
technique.

The RF parameters are tuned using a grid search for the
parameters listed in Table II. To adjust the grid search, the F1
score is used as the ranking score, and fivefold cross-validation
with two subsets is used. The model architectures of the ANN
and CNN are depicted in Fig. 4. To generate the initial weights
of these models, the He initializer [33] is used for the layers
that employ the rectified linear unit (ReLU) as the activation
function. The Xavier initializer [34] is used for the other layers.
These neural networks are fitted by the Adam optimizer [35] (the
learning rate η and the scale parameters β1 and β2 are 0.001, 0.9,
and 0.999, respectively) with batch size 256 while suppressing
overfitting using early stopping [36].
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Fig. 4. The model architectures, where N and C are the length of the input segment and the number of input subbands to the following model,
respectively. When “None” is selected as the preprocessing, the raw EEG is output without any changes (C = 1); when “DWT,” four clinical frequency
bands are extracted (C = 4); when “LPCLs,” the raw EEG is preprocessed by the eight LPCLs in Table III (C = 8). Then, the three-stacked ANN
and CNN output a prediction value in the range of 0 to 1.

TABLE III
SETTINGS OF THE LPCLS

D. Application of the Linear-Phase Convolutional Layer

In this paper, eight LPCLs are connected in parallel to the
classification model, as illustrated in Fig. 2(b). Each LPCL
setting is as shown in Table III. As in this table, there are LPCLs
with different filter lengths to let the model select filters that
contribute to the classification. These kernel lengths are set based
on the length of the Haar transform matrix induced from the
Haar wavelet [31]. That is, filter lengths of 8, 16, 32, and 64 are
expected to extract the standard clinical bands of γ, β, α, and
θ, respectively. At the LPCL’s filtering, the stride length is 1,
and the input signal is padded with zero to keep the input and
output lengths invariant. For the initialization of the coefficients
in these LPCLs, the Xavier initializer [34] is used.

E. Evaluation

To validate the effectiveness of the proposed method, an
experiment is performed using the dataset described in Sec-
tion III-A. Recall that the classification is binary: an epileptic
spike or a nonepileptic discharge. For comparison, three ap-
proaches are used: the fixed approach, the proposed data-driven
approach, and an approach without preprocessing. Combining

TABLE IV
METHODS OF EXPERIMENTAL COMPARISON. THE PROPOSED DATA-DRIVEN

METHOD IS COMBINED ONLY WITH THE NEURAL NETWORK MODELS

these approaches with the three classification models, a total of
eight methods are compared, as shown in Table IV. In the fixed
approach, a 1-s raw EEG is decomposed into four frequency
bands (θ, α, β, and γ bands) using DWT. In the proposed
approach, because the LPCLs act as a bank of FIR filters, a 1-s
segment is input to this layer. Furthermore, in the third approach,
a 1-s segment is input directly into the classification model. This
approach is similar to our previous work [8].

In the experiment, intersubject validation in all combinations
is performed, in which 49 patients are used as training data and
the remaining patient is used for the test data. To evaluate the
models, the area under the curve (AUC), F1 value, sensitivity,
and specificity are employed. AUC is the area of the curve drawn
by the false positive rate (FPR) and the true positive rate (TPR=
Sensitivity) when the discrimination threshold is changed, and
it is calculated in the following manner:

FPR =
FP

FP + TN
, (6)

TPR =
TP

TP + FN
(7)

= Sensitivity, (8)
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TABLE V
NUMERICAL EVALUATION RESULTS. TOTAL OF 50 INTERSUBJECT VALIDATIONS ARE CONDUCTED, WITH 30 INDEPENDENT RUNS PER TEST PATIENT DATA.

THUS, A MEAN OF 1500 RUNS IS CALCULATED (MEAN ± STD). THE HIGHEST VALUES FOR EACH METRIC ARE BOLDED.
THE INDIVIDUAL VALUES OF THE INTERSUBJECT VALIDATIONS ARE GIVEN IN APPENDIX B

Fig. 5. Visualized results in understanding the differences between preprocessors. Statistical significance is indicated by an asterisk (*: p < 0.05,
**: p < 0.01).

where TP, FP, FN, and TN are the numbers of a true positive,
false positive, false negative, and true negative, respectively.
The specificity is the true negative rate, which is calculated as
follows:

Specificity =
TN

TN+ FP
. (9)

The F1 value is calculated as the harmonic mean of the precision
and sensitivity. These metrics are defined as follows [37]:

Precision =
TP

TP + FP
, (10)

F1 =
2 · Precision · Sensitivity
Precision + Sensitivity

. (11)
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Fig. 6. An example of the predicted spikes. The circles and triangles indicate nonepileptic discharges and epileptic spikes, respectively. The bars
at the bottom indicate that the classification failed.

Fig. 7. An example of mean filter spectrums at the LPCL combining with ANN.

Fig. 8. An example of mean filter spectrums at the LPCL combining with CNN.

In particular, this paper employs the mean AUC and the mean
F1 value (by taking 30 independent realizations) in evaluating
the ANN, CNN, and LPCLs because the initial weight and
initial kernel value affect the learning. In addition, because
the convolution filter can be regarded as an FIR filter, the
frequency response of each filter of the eight LPCLs is an-
alyzed after training. Similar to evaluating the AUC and F1
values, the frequency response is meaned by 30 independent
runs.

All experimental results are computed on a high-
performance computer built with an AMD(R) EPYC(TM) 7742
CPU@2.25 GHz, 512 GB RAM, and four NVIDIA(R) A100
GPUs. The models in the experiment are constructed using
Python 3.7.6 with Keras [38] and Scikit-learn [39].

IV. EXPERIMENTAL RESULTS

Table V represents the AUC, F1 value, sensitivity, and
specificity by each model and preprocessing technique. This
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table shows the mean values of all intersubject validations.
The detailed values of the intersubject validations are given
in Appendix B. A statistical tests including Friedman’s one-
way analysis of variance (ANOVA) [40] showed that the ef-
fects of the methods on the four metrics were significant
(FAUC(1, 7) = 294, pAUC = 7.21× 10−59, FF1(1, 7) = 197,
pF1 = 2.41× 10−38, Fsen(1, 7) = 205, psen = 5.89× 10−40,
Fspe(1, 7) = 120, and pspe = 3.10× 10−22). Because the main
effect of the models has been observed, a Bonferroni post-hoc
test [40] was performed to better understand the changes in
cross-correlation across the different preprocessors. Fig. 5 vi-
sualizes the numerical results and their analysis of variance of
50 intersubject validations. As shown in Fig. 5(a), significant
differences in the AUC results were observed when using the
preprocessors, especially for RF and ANN. Moreover, signifi-
cant differences in the F1 results were observed for all classifi-
cation models when using the preprocessors. In particular, the
F1 results using LPCLs tended to be statistically higher than
DWT in the ANN-based comparison. This is because LPCLs
statistically increased specificity, as shown in Fig. 5(d). From
these results, it can be seen that the preprocessing of EEG affects
the classification performance, even with manually designed
filters such as DWT. Furthermore, the optimal preprocessing
could be learned in a data-driven method with LPCLs.

Fig. 6 provides an example of prediction by CNN combined
with the LPCL. In this figure, a relatively sharp waveform
indicates an epileptic spike, regardless of its amplitude. Figs. 7
and 8 illustrate examples of the frequency responses at the
proposed layers. In addition, Figs. 7 and 8 show clearly that
the proposed method’s filter emphasizes the low-frequency band
(around 12 Hz). Thus, while the conventional method manually
focuses on the low-frequency band, it can be said that the
proposed method automatically extracts this frequency. More-
over, Figs. 7(b) and 8(b) show that filters with odd symmetric
constraints pass different frequency bands according to the filter
length.

V. DISCUSSION AND CONCLUSION

The experimental results show that the filters with an odd sym-
metry constraint have a different passband, as shown in Figs. 7
and 8. This behavior is similar to a bank of filters. As Fig. 8(b)
shows, three of the frequency bands, approximately 12, 24, and
50 Hz (the focus bands of nos. 7 and 8 are similar), are focused on
by the odd symmetry LPCLs. Focusing on the adjacent peak fre-
quencies in the spectrum, the lower frequency is approximately
half of the higher frequency. Their three frequency bands can
be regarded as corresponding to the standard clinical frequency
bands of α, β, and γ, respectively. This paper’s finding showed
that the filters learned from the raw EEG and that the experts’
labels can be decomposed into the frequency bands contributing
to the inspections. That is, the data-driven filters may emulate
the logic of the physician’s analysis. Another advantage of the
proposed work is that fine-tuning of the frequency bands is
accomplished in a data-driven manner, such that the performance
of the classifier is enhanced (AUC = 0.967, F1 = 0.880), as
shown in Table V. Considering medical applications, the fact
that the combination of LPCLs with CNN has achieved higher
sensitivities than other methods [3], [8] is promising, as shown
in Fig. 5(c).

Moreover, the LPCLs achieves these advantage points with
a small computational complexity. As shown in (4) and (5), an
LPCL consist of L/2-time additions (or subtractions) and an

Fig. 9. The mean spectrum of all 15 004 segments of nonepileptic
discharges and the mean spectrum of all 15 833 segments of epileptic
spikes. The areas where p < 0.01 in the t-test between the two classes
at each frequency are filled in with yellow, and the bottom of the graph
shows its effect size. .

inner product calculation of size L/2. That is, only L/2 pa-
rameters (h0, h1, . . . , hL/2−1) are increased at the inner product
calculation as learning parameters. In the proposed model shown
in Fig. 4, there are a total of eight LPCLs with four different
lengths (L = 8, 16, 32, and 64) and two constraint types, even
and odd. In this case, the total number of parameters in the LP-
CLs is 120 only. Note that since the total number of parameters
in the CNN-based model is approximately 3500, the ratio of the
number of parameters in the LPCLs to the all model’s parameters
is less than 4%. Therefore, the ratio of the LPCL parameters in
the overall architecture is relatively low. However, because the
proposed method is designed based on neural networks, it cannot
be combined with traditional classifiers like RF. In addition,
similar to standard convolutional layers, it still requires a manual
setting of hyperparameters such as the kernel size and number of
filters. Considering these limitations, using DWT to decompose
the EEG into clinical frequency bands [3], [28], [29] would prove
to be better when it comes to versatility.

Next, we investigated the characteristics of the 1-s segments
to consider the effectiveness of the frequency band extracted by
the LPCLs. To determine the differences of spectra between the
nonepileptic discharge segments and epileptic spike segments,
statistical analyses were performed on the amplitude distribu-
tions at each frequency using Welch’s t-test [41]. Then, the
effect sizes were calculated using Cohen’s d [42]. Fig. 9 shows
the mean spectrum of all 15 004 nonepileptic discharges, the
mean spectrum of all 15 833 epileptic spikes, the areas where
p < 0.01 in the t-test, and the effect sizes. Fig. 9 shows that there
are significant differences (p < 0.01) in the amplitudes of almost
all frequencies. In addition, in the range of 5–15 Hz, there is a
large difference (d ≈ 0.8) between the two classes. Similarly,
the LPCLs, especially no. 8, as shown in Fig. 7(b), showed
a strong response to this significantly different low-frequency
band. This resulted in LPCLs that can extract the frequency
bands of statistical interest in the proposed data-driven approach.
Furthermore, because the methods using the LPCL and the
predefined filter of 4–64 Hz exhibit comparable performance,
as shown in Fig. 5, a frequency band such as those shown in
Figs. 7 and 8—less than 30 Hz, as roughly estimated—rather
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TABLE VI
DATASET INFORMATION OF 50 EPILEPTIC EEG RECORDS DIAGNOSED WITH CECTS

than a much higher frequency band is sufficient for epileptic
spike detection.

Finally, we consider the advantage of the dataset. In this
paper, EEGs were measured from 50 CECTS patients, and
15 833 epileptic spikes and 15 004 nonepileptic discharges were
then extracted as 1-s segments. To the best of our knowledge, the
number of epileptic spike segments is the largest in the literature
on epileptic spike detection, as described in Section II-C. This
number of segments strongly supports the credibility of the
statistical validation in this paper. However, more non-epileptic
labels would be needed for the task of finding epileptic spikes
in whole EEG recordings, rather than for the EEG segment
classification task, as in this work. Moreover, the results of this
paper may be limited by the fact that all patients’ symptoms are
CECTS.

In the design of this dataset, we set the segment’s length as
1 s, following other studies [3], [23] and the annotation tasks
performed by the five specialists. Of course, certain studies have
used different length segments [14], [22]. As the results of this
paper show, 1-s extraction is sufficient to achieve a high AUC
(> 0.9 in most cases) for CECTS spikes. In particular, because
epileptic spike-wave discharges in CECTS patients are known
to contain a 3–4 Hz component [43], a segment length of 1 s can
fully contain one of these discharges. Furthermore, even if the
position of extracting the spike waveform is slightly misaligned,
it is unlikely that any part of the waveform will be lost; thus, the
1-s extraction is appropriate.

In conclusion, we proposed a method to combine a bank
of LP filters with a NN-based model and the ability to learn

its coefficients from the data. To the best of our knowledge,
we have built the largest dataset in the literature, containing
30 837 samples annotated by two neurosurgeons, one clinical
technologists, and one pediatrician. The proposed model classi-
fies 1-s segments as epileptic spikes or nonepileptic discharges
with high performance (AUC> 0.9 in most cases). Furthermore,
the filter’s frequency response fitted from the EEG is strong in
the low-frequency range (around 12 Hz). This band coincided
brilliantly with the frequency band of interest in the raw EEG
segments of epileptic spikes.

APPENDIX A
EEG DATASET

Table VI shows the dataset information used in the exper-
iment. This dataset was labeled by two neurosurgeons, one
clinical technologists, and one pediatrician. The total number
of labeled samples is 30 837. The EEG recordings contain both
awake and sleep—rapid eye movement (REM) or non-REM—
states. This paper did not separate these states because each peak
can be observed in both states.

APPENDIX B
NUMERICAL RESULTS

Tables VII to X list the results of individual intersubject
validations as AUC, F1, sensitivity, and specificity, respectively.
Table V and Fig. 5 are created based on these tables.



1054 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 3, MARCH 2022

TABLE VII
AUC EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD)

TABLE VIII
F1 VALUE EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD)
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TABLE IX
SENSITIVITY EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD)

TABLE X
SPECIFICITY EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD)
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