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Anomalous Gait Feature Classification
From 3-D Motion Capture Data

Suil Jeon, Kyoung Min Lee, and Seungbum Koo

Abstract—The gait kinematics of an individual is affected
by various factors, including age, anthropometry, gender,
and disease. Detecting anomalous gait features aids in the
diagnosis and treatment of gait-related diseases. The ob-
jective of this study was to develop a machine learning
method for automatically classifying five anomalous gait
features, i.e., toe-out, genu varum, pes planus, hindfoot
valgus, and forward head posture features, from three-
dimensional data on gait kinematics. Gait data and gait
feature labels of 488 subjects were acquired. The orien-
tations of the human body segments during a gait cycle
were mapped to a low-dimensional latent gait vector us-
ing a variational autoencoder. A two-layer neural network
was trained to classify five gait features using logistic re-
gression and calculate an anomalous gait feature vector
(AGFV). The proposed network showed balanced accura-
cies of 82.8% for a toe-out, 85.9% for hindfoot valgus, 80.2%
for pes planus, 73.2% for genu varum, and 92.9% for forward
head posture when the AGFV was rounded to the nearest
zero or 1. Multiple anomalous gait features were detectable
using the proposed method, which has a practical advan-
tage over current gait indices, including the gait deviation
index with a single value. The overall results confirmed the
feasibility of using the proposed method for screening sub-
jects with anomalous gait features using three-dimensional
motion capture data.

Index Terms—Human gait, anomalous gait, feedforward
neural networks.

I. INTRODUCTION

THE HUMAN gait is one of the fundamental motor skills
acquired through repetition. Although gait is a complex

motion involving interactions between the environment and
multiple segments of the body [1], we can maintain robust and
stable locomotion even when experiencing large perturbations
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[2]. A gait can be affected based on the physical conditions
of the human body, including age, anthropometry, gender,
disease, leg function, cognitive and affective function, and
mental condition [3]. Gait kinematics are highly variable, even
in healthy populations. Although an extreme range of joint
motion, or an anomalous gait, can exist in healthy individuals,
it can also indicate a potential risk of joint disease [4]. The
association between gait kinematics and musculoskeletal
disorders has been comprehensively investigated [5]–[7].

In a previous study, the dynamic gait index (DGI) was devel-
oped to assess the gait, balance, and risk of falling [8]. As a single
value, the DGI score is calculated based on eight different gait
tests: walking on level surfaces, changing speeds, head-turning
in the horizontal and vertical directions, walking and turning 180
degrees before stopping, stepping over and around obstacles,
and ascending and descending stairs [8]. Clinical assessments
of gait anomalies, which are conducted by clinical experts or
physicians, can be affected by their level of expertise or other
human factors [9].

Motion capture systems with multiple high-speed cameras
have been adopted for a clinical gait assessment. The accuracy
and objective measurements of gait kinematics in motion capture
systems have been favored for clinical gait assessments [10]–
[12]. The gait deviation index (GDI) was proposed to obtain
an objective and quantitative measure of gait disorders using
3D motion capture data [13]. The GDI is calculated from the
kinematic patterns of the lower limbs, such as the temporal
sagittal angle of the knee, the sagittal angle of the ankle, and
the phasic progression angle of the foot. To obtain a GDI, the
measured lower limb kinematics of a patient were compared
with the range of motion of the healthy subjects. Although the
measurements from the motion capture system are accurate, the
kinematics graphs were again interpreted by a clinician, and a
level of expertise can be factored in.

Most clinical gait assessments, including a DGI and a GDI,
use manually designed features. Meanwhile, symptoms in a joint
can affect the kinematics of multiple joints owing to the nature
of gait dynamics [14]. Machine learning methods have been
used to provide indices for multiple aspects of an abnormal gait.
Previous studies have shown that supervised learning can be used
for anomalous gait detection. In the method proposed by Chen
et al. [15], a classification network that classifies five abnormal
gait kinematics with an accuracy of approximately 88% was
implemented using an inertial measurement unit attached to the
foot. In addition, a neural network applied to anomalous gait
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detection was studied by training autoencoders using the 3D
kinematics of a normal gait [16]; however, its performance has
yet to be tested for practical clinical applications.

In this study, we propose a method for classifying multiple
types of anomalous gaits using a machine-learning algorithm
and evaluate its classification performance using the gait data of
488 subjects. In addition, a method for extracting an anomalous
gait feature vector (AGFV) from high-dimensional gait data with
4848-dimensions is proposed.

Gait data are converted into lower-dimensional vectors
through a stack of variational autoencoders (VAEs). The trans-
formed data were then used as inputs into a logistic regression
network for AGFV prediction. The logistic regression network
predicted the AGFV as continuous values, which could be used
to predict the presence of five types of anomalous gait features.
The continuous AGFV value can be used as an index of indi-
vidual anomalous gaits and assist in automated and consistent
diagnosis.

II. RELATED STUDIES

Many previous studies have utilized gait kinematics to under-
stand gait problems in patients [5]–[7]. The association between
gait abnormalities and spatiotemporal gait parameters in patients
was investigated. The foot orientation and trajectory of the gait
were estimated with temporal detection of the toe-off and heel-
strike events from the signals of a shoe-attached IMU sensor
[17]. A neural-network-based prediction of the foot clearance
parameters in a human gait has been studied to forecast the
risk of falling [18]. Spatiotemporal gait parameters such as the
walking velocity and step length for 86 subjects with MS were
calculated using a pressure sensor, and a statistical analysis was
conducted to determine the extent to which each parameter is
related to multiple sclerosis [19].

Detection of a freezing of a gait from sensor data in patients
with Parkinson’s disease has been studied [20]–[24]. Distinct
spatiotemporal gait parameter differences were revealed be-
tween freezing and non-freezing gaits using wearable sensor
data [20]. A quantitative characterization of the freezing of the
gait was also conducted. A threshold-based model for predict-
ing the freezing of a gait was proposed under the assumption
of a high correlation between the degradation and freezing
of the gait [21]. Inertial sensors attached to the lower back
and ankles were used to record signals during a gait, and a
binary classification of the freezing of a gait was conducted
using an autoregressive predictive model and machine learning
[22]. A binary classification-based method was investigated for
the diagnosis of Parkinson’s disease using a machine learning
network, including a support vector machine for clinical gait
parameters [23]. The freezing of a gait can be classified using
a logistic regression classifier from the five gait parameters
acquired from the acceleration profile of the ankle obtained using
a Bluetooth IMU sensor attached to the ankle [24]. Furthermore,
deep neural networks have been used to extract gait features
and predict gait scores from 3D body poses obtained from
two-dimensional videos in patients with Parkinson’s disease
[ 25], [ 26], [ 27 ].

The detection of abnormal gait patterns using sensors such as
a pressure sensor and inertial measurement unit built into a shoe
insole was also studied [15]. A 3D gyroscope, accelerometer, in-
ertial measurement unit, and bending sensor were used to predict
a normal gait and four abnormal gaits, i.e., toe-in, toe-out, over-
supination, and heel walking gaits. Using this method, abnormal
walking can be classified with an accuracy of approximately
89.9% to 93.38% using a support vector machine.

Currently, gait analyses utilize the three-dimensional kine-
matics of body segments. Marker-based clinical gait motion
capture systems can provide three-dimensional rotations of a
full-body human model including the rotation along the segment
longitudinal axis [28]; however, the cost of obtaining motion
capture data is a bottleneck for collecting a large number of
samples [29]. Meanwhile, three-dimensional gait data obtained
through a 19-point human stick model are commonly applied
for computational human motion studies [16], [30]–[35]. When
the positions of the human stick model were sampled at 101
time points of a gait cycle, the 3D gait data had dimensions of
19 × 3 × 101 = 5757. The dimensions of the gait data should
be further decreased to train a network for gait feature detection
with a limited sample size of the motion capture data.

Many previous studies using a gait analysis extracted only
clinical parameters such as joint angles, step length, and cadence
[23], [36], [37]. A recent study attempted to classify an anoma-
lous gait from 3D walking data using an autoencoder, which is
a machine learning technique. The detection of an anomalous
human gait using a sparse deep autoencoder was attempted
[16]. The study used only normal walking data for training the
autoencoder and assumed that the trained autoencoder would
show a poor reconstruction for an anomalous gait. Based on this
assumption, a model was proposed for classifying anomalous
gaits using the error between the original human gait data and
the reconstructed gait data obtained by inputting the data into
the autoencoder [16].

III. METHODS

A. Data Acquisition

This study was approved by the Institutional Review Board
of the Seoul National University Bundang Hospital. Healthy
subjects were recruited from the city of Sungnam. The inclu-
sion criteria were no orthopedic disease affecting comfortable
walking and between 13 and 75 years in age. The subjects were
also screened based on their medical histories. The exclusion
criteria were the existence of neuromuscular diseases, history
of fracture in the lower limbs, and congenital bone deformities.
Diseases unrelated to gait were not included in the criteria. The
subjects were tested at the Seoul National University Bundang
Hospital. Informed consent was obtained from each subject prior
to the test. A total of 500 subjects participated in the study and
were tested between 2015 and 2020.

A single operator with 9 years of experience placed photo-
reflective skin markers according to the Helen Hayes Marker
set [38]. Three-dimensional motion capture data of two gait
trials were obtained for each subject using an optical motion
capture system (Motion Analysis Co., Santa Rosa, California,
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Fig. 1. Nineteen anatomical points including the mid-shoulder and
pelvis at the center of the body.

Fig. 2. Illustration of five anomalous gait features (A) toe-out, (B)
genu varum, (C) pes planus, (D) hindfoot valgus, and (E) forward head
posture.

USA, 100 Hz) with ten cameras. Videos from the front and lateral
views were recorded. The subjects walked at a comfortable self-
selected speed on a 10-m long flat surface. In the data processing,
motion data from 12 subjects were excluded because some of
the markers could not be labeled in the motion capture software
because of the absence of markers or incomplete trajectories in
the motion capture data. Motion data from 488 subjects (248
males, 240 females, average age of 37.1 ± 16.8 years) were
used for this study. Trajectories of the 19 anatomical points
shown in Fig. 1 were calculated using motion capture software.
Two gait cycles were extracted from each gait trial when the
subject walked in the middle of the motion-capture laboratory.
Gait data with two gait cycles were split into two one-cycle gait
data points. Each gait cycle was from a right heel strike to right
heel strike. Thus, four one-cycle gait data were collected from
each of the 488 subjects and used in this study.

B. Data Labeling

Five anomalous gait features, that is, toe-out, genu varum,
pes planus, hindfoot valgus, and forward head posture (FHP),
as illustrated in Fig. 2, were evaluated for all gait data acquired
by an orthopedic doctor at Seoul National University Bundang
Hospital. The doctor watched the gait videos taken from the
front and lateral views of patients to evaluate the presence
(1) or absence (0) of each feature. A vector with five binary

TABLE I
PREVALENCE OF ANOMALOUS GAIT FEATURES IN THE TESTED SUBJECTS

Fig. 3. A gait vector with 4848 components was created from the
motion capture data of a gait cycle.

components was used as the AGFV. The percentages of each
anomalous gait feature of the subjects are summarized in Table I.

C. Preprocessing

The start position and progression lines of each gait cycle were
identified. The three-dimensional position and orientation of
each gait cycle were transformed into the origin of the laboratory
coordinate system, and the progression line was aligned to the
x-axis. The frames of one gait cycle, from a right heel strike to
the next right heel strike, were uniformly resampled to obtain
101 frames and normalize the time of a gait cycle. Sixteen body
segments were defined by connecting the 19 anatomical points
to obtain a stick model representation, as shown in Fig. 3. The
orientations of the line segments were represented as direction
cosines in the laboratory coordinate system along the progres-
sion line of the gait and the z-axis along the vertical group-up
direction. Thus, the body configuration can be described as 48
direction cosines. A gait vector with 4848 components can be
constructed for a gait cycle with 101 frames.

D. Anomalous Gait Detection Network

The proposed network contains two feed-forward networks
to predict the presence of five gait features in a gait cycle, i.e.,
an encoder network and a classification network, as shown in
Fig. 4. The VAE contains encoder and decoder networks [20]
and is trained to reconstruct the original input vector. The output
of the encoder is a low-dimensional latent vector, which is the
means of a multivariate Gaussian distribution. A gait vector with
4848 components was divided into 16 motion vectors for the 16
body segments. Each motion vector contained 303 components.
Sixteen VAE networks were trained to reconstruct the motion
vectors of the 16 body segments. By dividing a gait vector into 16
motion vectors, we trained the VAE networks using a relatively
small number of gait samples. The 16 VAE encoders trained in
the 16 VAE networks were used as the encoder network of a
one-cycle gait vector, as shown in Fig. 4.
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Fig. 4. Anomalous gait detection network.

The latent gait vectors from the encoder network were input
into the classification network to predict the presence of five
anomalous gait features. The classification network had two
hidden layers, 256 × 64 and 64 × 5, as shown in Fig. 4, and a
binomial logistic regression was conducted against the labeled
anomalous gait features. The ReLU activation function was used
in both the encoder and the classification networks. The sigmoid
activation function was applied at the end of the classification
network to calculate the AGFV. The network was implemented
using PyTorch [39]. The loss function of the VAE was repre-
sented as a combination of the Kullback–Leibler divergence and
the log-likelihood of the training data and the extracted features
[40]. All deep learning models were trained using the Adam
optimizer with a learning rate of 5e-4 and a maximum of 1e+5
iterations. The running average coefficients for the gradient and
its square of the Adam optimizer were set to 0.9 and 0.999,
respectively.

Subjects with anomalous gait features accounted for relatively
small portions of the data (Table I). The imbalance between the
truth and falsity in each feature degraded the prediction accuracy
when we used the cross-entropy loss in training the classification
network. We used the weighted cross-entropy loss [41], which
is defined as follows: Here, γk is the weight of the k-th feature
used to adjust the imbalance.

Loss = −
5∑

k=1

{γk · pk (x) · log (qk (x)) + (1− γk)

· (1− pk (x)) · log (1− qk (x))}

γk =
number of negativek

number of positivek + number of negativek

Here, rk is the ratio of the k-th anomalous gait feature in
the training dataset, pk is the k-th component of the predicted
AGFV, and qk is the k-th component of the actual AGFV, which
was labeled by an orthopedic doctor. Gait data from 366 subjects
(75%) were used for training, and data from 122 subjects (25%)

were used for testing. This training and testing process was
repeated to conduct a four-fold cross analysis.

E. Model Evaluation

The performance of the proposed network was compared with
that of a previous study that used autoencoders for abnormal gait
detection [16]. The study used three autoencoders trained for
the x-, y-, and z-coordinates of 17 anatomical positions during a
normal gait. The reconstruction error for an abnormal gait was
higher than that for a normal gait for the trained autoencoder.
The model was used to determine an abnormal gait by comparing
the reconstruction errors. The method in [16] was implemented
for a direct comparison with the proposed network. Three au-
toencoders were trained for the x-, y-, and z-coordinates of 17
anatomical positions using the previous method [16]. For each
of the five anomalous gait features, the dataset was divided into
two groups, with and without the presence of gait features. The
3D anatomical points of all gait datasets were projected onto
the X-, Y-, and Z-axes using the proposed method, and their
scales were normalized between zero and 1. The Deep Learning
Toolbox in MATLAB (MathWorks, Natick, MA, USA) was used
to train three autoencoders, the structure of which is defined
in [16]. The Kullback–Leibler divergence penalty term and
L2-regularization proposed in [16] were applied. The weighted
reconstruction error of each gait cycle was calculated using the
learned autoencoder, and the gait anomaly was evaluated. Its
performance was also calculated through four-fold training and
testing.

To adjust for the effect of imbalanced data on the performance
measurement, we calculated the balanced accuracy as defined
below in addition to the sensitivity and specificity [42], [43]. The
balanced accuracy of the imbalanced data matches the precision
of the balanced data.

Balanced Accuracy =
1

2
(Sensitivity + Specificity)

In addition, the area under the ROC curve (AUC) was calcu-
lated as a general indicator of the performance of the proposed
and previous methods [44].
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Fig. 5. The AGFV values predicted using the anomalous gait detection network for five gait features (middle). The left column shows the AFGV
values before applying the sigmoid function. The receiver operating characteristic curves were calculated depending on the threshold for the AFGV.

IV. RESULTS

The trained network model predicted the AGFV using five
components of between zero and 1. The results of the four-fold
training and testing of 488 subjects are shown in Fig. 5. The first
and second columns show the distribution of the five individual
components in the AGFV before and after applying the sig-
moid function. Subjects with (positive) and without (negative)
anomalous gait features are shown with gray and white bars,
respectively.

There were significant overlaps in the AGFV between the
positive and negative groups for all five features when the
threshold was set to 0.5. Nevertheless, the AGFV for the positive
group was predicted to have higher values on average compared
to the negative group. For the positive groups (gray bars in the

middle column of Fig. 5), the average predicted values were
0.932 for toe-out, 0.985 for hindfoot valgus, 0.974 for pes planus,
0.961 for genu varum, and 0.979 for FHP. For the predictions in
the negative groups (white bars in the middle column of Fig. 5),
the average values were 0.443 for toe-out, 0.351 for hindfoot
valgus, 0.486 for pes planus, 0.640 for genu varum, and 0.257
for FHP.

For individual gait vectors, the sensitivities, specificities, and
balanced accuracies of the AGFV features with a threshold value
of 0.5, are summarized in Table II. The proposed network had
balanced accuracies of 82.8%, 85.9%, 80.2%, 73.2%, and 92.9%
for toe-out, hindfoot valgus, pes planus, genu varum, and FHP,
respectively. When the same dataset was classified using the
previous method [8], the balanced accuracies were found to be
approximately 50% for all features.
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TABLE II
PREVALENCE OF ANOMALOUS GAIT FEATURES IN THE TESTED SUBJECTS

The receiver operating characteristic (ROC) curves were cal-
culated by changing the threshold values, as shown in Fig. 5.
To use the proposed network as the first screening process for
anomalous gait feature detection, when the sensitivity was set
to 95%, the specificities were 67.5% for toe-out, 73.7% for
hindfoot valgus, 63.7% for pes planus, 50.5% for genu varum,
and 86.2% for FHP. At an equal error rate (where the sensitivity
equals the specificity), the balanced accuracy was 80.9% for
toe-out, 76.6% for hindfoot valgus, 73.6% for pes planus, 68.6%
for genu varum, and 88.1% for FHP.

The performance statistics were also calculated for individual
participants. When three or four predictions were true out of the
four gait vectors for an individual, the prediction was regarded
as true for that person. The balanced accuracies for toe-out,
hindfoot valgus, pes planus, genu varum, and FHP were 81.2%,
85.9%, 80.0%, 71.3%, and 92.2%, respectively.

V. DISCUSSION

The proposed network achieved a relatively high accuracy
and was shown to be superior to a previous method [16] in
detecting the five types of anomalous gait features from a cycle
of gait kinematics data. Our method can calculate the presence
of five individual clinical gait features related to possible gait
diseases [45]. Although the GDI is widely used for a clinical
gait assessment [13], it provides only a single number for the
gait status. Meanwhile, the proposed method provides scores for
five different types of features, which can be further increased if
data from a larger cohort are available. An example of using an
AGFV is shown in Fig. 6. The AGFVs for six distinct subjects
in our dataset were visualized using radar charts. Here, higher
values represent the possibility of anomalies in the gait features.

In previous studies, anomalous gait data were acquired by
attaching weights to particular body parts of a person without
gait abnormalities [16] or by imitating anomalous gait kinemat-
ics according to the prescribed protocols [15], [46], [47]. In our
study, to reflect the incidence of abnormal gait in the population,

a large number of subjects representing the age and gender
distributions of the community in Seongnam, South Korea were
recruited over a 5-year period. In addition, gait features were
labeled by a physician experienced in gait analysis.

The anomalous gait features in our study are highly practical
for clinical applications compared with those used in previous
studies [9], [15], [46], [47]. Five types of gait features were
chosen according to their prevalence within the population [45].
As a potential reason for the lower accuracy of the previous
study [16] in application to our dataset, the method in [16] was
a semi-supervised learning method [48], [49], and the network
was not explicitly trained using positive and negative data, as in
the supervised learning.

The body pose during a gait was represented as three direction
cosines for each se g ment orientation, assuming a stick figure
model. Body segment lengths were not included because they
were not features representing abnormal conditions. The rotation
along the segment axis could have been included in the gait
vectors because we used a marker-based motion capture method,
which might increase the classification accuracy while also
limiting the application of the suggested method to marker-based
motion capture data. The gait vector representation in this study
is also applicable to stick figure models obtained from a single
camera 3D motion prediction method [50] or marker-less motion
capture methods [51].

The acquisition of clinical gait data is extremely expensive
[29]. Although we extracted four one-cycle gait data samples
from multiple trials of each subject, we acquired only 1952 gait
samples. We had to reduce the 4848 dimensions of the original
gait vector using dimension-reduction techniques. In this study,
to generate a latent gait vector using the VAE, which has been
used in previous studies for anomalous feature detection, the
number of dimensions of the gait vector was reduced to 256 [41],
[52]. The hyperparameters of our VAE and classifier network
were adjusted by testing the effect of the number of hidden
layers and their sizes [53]. The use of one large VAE incurred a
high reconstruction error compared with the separate 16 VAEs
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Fig. 6. The radar graphs show the predicted AGFV for five anomalous gait features altogether for six representative subjects. The numbers in the
parentheses are the labels done by an orthopaedic doctor. This representation would help understand the state of gait healthiness of patients.

applied in this study. Our study focused on the application of
machine methods for clinical applications, and thus a limitation
remains in that we did not conduct extensive hyperparameter
comparisons. Although the adjacent values of a point in the
4848-dimension gait vector were temporally related, their rela-
tionship was not explicitly modeled in our VAE network. Other
dimension-reduction methods may generate a more informa-
tive latent vector and increase the prediction performance. We
did not apply any data augmentation techniques in the present
study [54], and if such a suitable method exists, the dimension-
reduction network can be removed, and the prediction accuracy
can be increased.

VI. CONCLUSION

Classification networks combined with VAE networks can
transform 19-point stick model-based gait data from motion
capture systems into latent gait vectors and generate anomalous
gait feature vectors with average balanced accuracies of 83.0%
for a gait vector and 82.1% for an individual. Although a motion
capture system provides accurate temporal joint kinematics,
anomalous gait feature detection from clinical gait data has been
applied by clinicians. This study showed the possibility of using
machine learning algorithms to screen potential gait disorders
from clinical motion capture data.
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