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Practical Strategies for Extreme Missing Data
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Abstract—Accurate computational models for clinical
decision support systems require clean and reliable data
but, in clinical practice, data are often incomplete. Hence,
missing data could arise not only from training datasets but
also test datasets which could consist of a single undiag-
nosed case, an individual. This work addresses the problem
of extreme missingness in both training and test data by
evaluating multiple imputation and classification workflows
based on both diagnostic classification accuracy and com-
putational cost. Extreme missingness is defined as having
∼50% of the total data missing in more than half the data
features. In particular, we focus on dementia diagnosis due
to long time delays, high variability, high attrition rates and
lack of practical data imputation strategies in its diagnostic
pathway. We identified and replicated the extreme missing-
ness structure of data from a real-world memory clinic on
a larger open dataset, with the original complete data act-
ing as ground truth. Overall, we found that computational
cost, but not accuracy, varies widely for various imputation
and classification approaches. Particularly, we found that
iterative imputation on the training dataset combined with
a reduced-feature classification model provides the best
approach, in terms of speed and accuracy. Taken together,
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this work has elucidated important factors to be considered
when developing a predictive model for a dementia diag-
nostic support system.

Index Terms—Clinical decision support systems,
medical expert systems, machine learning, missing data,
data imputation, dementia, ADNI data, Alzheimer’s disease
classification, data quality.

I. INTRODUCTION

THE issue of missing data is one of the most ubiquitous
concerns in data science [1]. This is particularly the case

in clinical and medical data, which frequently has many miss-
ing values [2]–[4] (see Fig. 1a for a real-world, routine (i.e.,
not clinical trial) Alzheimer’s disease (AD) dataset). In recent
years, there has been increased effort to assure data quality and
reusability, and to automate the processes of discovering and
analysing data by publishing data annotations and analytical
workflows [5], [6].

A key clinical application of data science is in the development
and use of computerized decision support systems (CDSS),
which can enhance consistency, objectivity and standardization
[6]–[8] In developing a clinical diagnostic model for use in
a CDSS, large training dataset is typically used to build a
classification model, while test dataset is used to verify model
accuracy [9]. Generally, the training and test datasets must be
complete, with no missing values for any variables. In cases of
extreme missingness, which we define as having ∼50% of the
total data missing in more than half the data features, which
often occurs in real-world routine clinical data records, it may
not be practical or possible to acquire the missing data to improve
data modelling. Hence, computational models must incorporate
a strategy (method or combination of methods) for handling
missing data as part of their analytical workflow.

Current strategies for handling missing data include: (i) at-
tempting to acquire missing data at additional expense, e.g.,
performing an assessment which was previously not conducted;
(ii) complete-case analysis, in which any row with a miss-
ing value is dropped from analysis; (iii) data imputation, in
which missing values are replaced with an estimated value; (iv)
missing-indicator methods, in which missing values are marked
as missing and then incorporated in the training dataset; and (v)
various strategies in which missing data is tackled directly in the
analysis without an intermediate imputation step [10]–[12]. The
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Fig. 1. Sample Alzheimer’s disease (AD) dataset from a memory clinic and its breakdown of data missingness. (a) Actual sample data.
Rows: patients; columns: diagnosis category (AD MILD or AD MOD for mild or moderate AD, respectively), the various cognitive and functional
assessments, Gender and Age Black cells with “NA” label: missing data. (b-c) Simulated data with missingness correlated with diagnosis (Missing
at Random, MAR) (b), and uncorrelated with any variable (Missing Completely at Random, MCAR) (c).

latter includes maximum-likelihood methods [13], classifiers
which can account for the uncertainty caused by missing data
such as the naïve credal classifier [14], and tree-based classifiers
which use the surrogate split method [15].

Data imputation strategies can further be divided into
single imputation methods, in which a single estimate for the
missing data is generated, and multiple imputation methods,
which generate multiple estimates for each missing value and
therefore will produce multiple imputed datasets for further
analysis [2], [16]. Another crucial distinction is between
supervised data imputation methods, where the class label
is known, and unsupervised methods, which operate in the
absence of a class label [17]. It is also useful to highlight
that many commonly used imputation methods are iterative
imputation methods which impute the entire dataset repeatedly
until an optimum is reached e.g., [18], [19].

The appropriate strategy for dealing with missing data will
depend to some extent on the type of missingness. Missing data
is often categorized into three types: missing at random (MAR);
missing completely at random (MCAR); and missing not at
random (MNAR) [20]. In the case of MAR, the probability that
data is missing depends upon the variables observed within the
dataset. Fig. 1b shows a simulated sample AD dataset in which
cognitive testing variables are more likely to be missing in more
severe AD cases due to the difficulty of performing cognitive
assessments on such patients. MCAR can be understood as a
special case of MAR – in this case, the probability of missingness
is independent of all variables in the dataset. An example would
be someone being late for a medical appointment because of a
traffic jam so there would be insufficient time to complete all of
their cognitive assessments (see Fig. 1c for a simulated sample
example of MCAR). MNAR is the case where the probability
of missingness depends on a variable which is in itself missing;
this is the most complex case to handle. An example of this
might be a survey on income, in which people with a very
low or very high income refuse to report their income [2].
MNAR type missingness is also very common in longitudinal
data e.g., a clinical dataset where disease progression may lead
to subjects dropping out of the study [21], [22]. Importantly,
longitudinal studies on cognitive decline have high attrition rates
(e.g., [23]–[25]).

In practice, clinical data tends to have MAR type missingness
[2]. However the probability of missingness in clinical data
is often dependent on the outcome variable, as illness/disease
severity may impact opportunities for data gathering [26]. In

longitudinal data, this may be MNAR type missingness, such as
the case where a study participant may not be able to undergo
a specific assessment or be part of a follow up study due to an
increase in disease severity. The correlation between missing-
ness and disease severity holds true in dementia data, as shown
in [21].

Various studies have evaluated different imputation methods
for replacing missing values in clinical data [2], [16], [27]–[30].
The most effective methods are found to be multivariate, iterative
methods such as Multiple Imputation by Chained Equations
(MICE) [29] fuzzy k-means [16], [27], Bayesian Principal Com-
ponent Analysis [27] and missForest [18], and more recently,
unsupervised neural network’s autoencoders [31]. However,
most studies are focused on handling missingness in the training
dataset, despite the fact that the test dataset can have missing
values. For example, the diagnosis of a patient may involve
unknown data variables from that patient (Fig. 1).

The case of missing values in the test dataset during
classification was addressed in [32], which also notes the dearth
of literature on this issue. Specifically, [32] delineated four
different strategies for handling the situation of missing values
in the test data: (i) discarding objects with missing values; (ii)
acquiring the missing value through manual follow-up; (iii) data
imputation; or (iv) using a reduced-feature classification model
built with variables which are not missing in the test dataset,
and concluding that reduced-feature methods provide an under-
utilised and efficient solution to the problem of missing values in
the test dataset. Another study evaluated strategies for missing
values in the test data in the context of a tree-based classifier
and for eight different missing data patterns, using simple
datasets with a binary response variable [33]. The conclusion
was that a missing-indicator method was the most useful where
missingness is related to the response variable. A later study
[34] directly addressed the problem of missing values in the test
clinical dataset, using k-nearest neighbors (k-NN) imputation
method [35] to impute the dataset before testing the impact on
classification accuracy, finding that even when 25% of the values
are missing it is possible to achieve good classification accuracy.

It is clear that the above studies for handling missing test
data are limited. Specifically, [32] and [33] had yet to test their
methods on real-world clinical data, and did not discuss the issue
of missing training data, while the workflow in [34] appeared to
have training and test datasets imputed together. Additionally,
very little missing data literature deals with extreme missing-
ness. Importantly, there is no literature on missing data that deals
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with the specific prerequisites that are likely to be present in
a clinical decision-making setting, notably: (i) when a patient
is being diagnosed (corresponding to classification in machine
learning models), it is likely that there will be significant missing
data related to that patient (missing test data); (ii) patients
are diagnosed one at a time by clinicians, corresponding to
leave-one-out cross validation (LOOCV) condition for testing
machine-learning models within a CDSS (e.g., [36], [37]), and
(iii) imputation and classification of the test dataset must be
performed within a reasonable timeframe for efficient and timely
diagnosis.

In this work, we investigate strategies for handling extreme
missing data which takes these constraints into consideration,
with missing data patterns that resemble those from real-world,
routine clinical data. We focus on the diagnosis of dementia,
particularly Alzheimer’s disease (AD), due to AD being the most
common form of dementia, and AD’s long time delays and high
variability in its diagnostic pathway [22]. Additionally, there is
a substantial scarcity of practical data imputation strategies for
dementia diagnosis (e.g., [22], [38]–[44]).

II. METHODS

A. Data Description

1) Clinical Dataset to Extract Missing Data Characteristics:
Anonymous clinical data were extracted from Altnagelvin Area
Hospital’s Memory Assessment Service (WHSCT) in the form
of a CSV file. Ethics approval for this was obtained from the Of-
fice for Research Ethics Committee Northern Ireland (ORECNI,
HSC REC B reference: 17/NI/0142; IRAS project ID: 230077).
This data was used to determine the type of missingness in a
real-world, routine clinical dataset to reproduce in the ADNI
dataset. A sample of the dataset is shown in Fig. 1a. There were
189 rows in total, each representing a patient. Cells with missing
values are shown in black in the diagram. Features included 7
different Cognitive and Functional Assessment (CFA) scores as
well as Gender, Age and text-based Diagnosis information. AD
diagnosis was manually categorized into two classes, 85 AD
MILD (mild AD) and 104 AD MOD (moderate AD). Other
diagnostic categories, including non-AD dementia subtypes,
were discarded due to lack of ordinality or their small sizes.
In our previous work, we showed that CFAs are among the most
predictive features for classifying AD severity [37], [45]. For
the current clinical dataset, the CFAs included Addenbrooke’s
Cognitive Examination (ACE-III) and the Mini-ACE [46], the
Bristol Activities of Daily Living Scale [47], the Geriatric De-
pression Scale [48], the NPI-Q behavioral, distress and severity
measurements [49], and the Zarit Caregiver Burden [50]. Hence,
this study focuses on CFA features. The extracted missingness
structure of this dataset was replicated in a complete open-source
dataset, as described below.

2) ADNI Dataset: The data for evaluating the missing data
strategies was extracted from the ADNIMERGE table [51] from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) merge
R package, which amalgamates several key tables from the
ADNI open source dementia data (adni.loni.usc.edu). The ADNI

TABLE I
FEATURES SELECTED BY MUTUAL INFORMATION (MI) WITH OUTCOME

open database included clinical and neuropsychological assess-
ments with diagnosis labelled as healthy, mild cognitive impair-
ment (MCI) and early AD. It should be noted that the MCI group
may include prodromal stage of AD, and individuals who will
not progress to AD. After feature selection (see Section II.B.1)
was applied to ADNIMERGE CFA variables, we had 8 CFA
variables in the dataset (see Table I). We also included Gender
and Age in our analysis, mirroring the routine clinical dataset,
and the CFA MMSE [52] (Mini Mental State Examination;
subsequently dropped from analysis) to enable translation of
missingness structure from clinical data to ADNIMERGE data
(see section II.B.2).

We made use of CDR-SB (Clinical Dementia Rating Sum
of Boxes) instead of the more subjective clinical diagnosis
[53]. CDR-SB was re-coded from the ADNIMERGE variable
CDR (Clinical Dementia Rating) following the protocol in [54].
The mild, moderate and severe AD classes were amalgamated
creating a three-class outcome variable: Healthy Controls (HC),
MCI, and AD.

Importantly, we used the resulting ADNIMERGE data to:
(i) create synthetic missing datasets from a complete ADNI
dataset, based on the missingness structure of real-world clin-
ical data as described in Section II.A.1; (ii) evaluate the vari-
ous computational approaches; and (iii) develop our proposed
workflow.

B. Computational Methods

1) Feature Selection: Feature selection was performed on
the ADNIMERGE table using the mutual information (MI)
algorithm [55]:

MI = H(Class) +H(Attribute)−H(Class, Attribute)
(1)

where H is Shannon’s entropy [56] defined by

H(X) = −
∑

x∈X
p (x) log2p (x) (2)

H (X,Y ) = −
∑

x∈X

∑

y∈Y
p (x, y) log2p (x, y) (3)

in which P is the probability function of some random variable
X or Y for possible outcomes x and y, respectively. H can be
understood as a measure of “disorder”: the sum of the probability
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of each label multiplied by the log probability of each label, with
a value ranging between 0 and 1. The MI of a given attribute is
the reduction in disorder of the class variable, when the class
variable is separated according to that attribute.

The 8 CFAs which had the highest MI with respect to
the CDR-SB outcome variable were selected. In addition, the
MMSE score was retained to facilitate mapping of the types of
missingness from the real-world clinical dataset, as described
in Section II.B.2. Rows with original missing values for any
of these features were dropped, creating an initial complete
ADNIMERGE dataset with 1185 rows (the base dataset), with
each row representing one individual participant visit. Multiple
visits from the same participant at different time points were
considered as separate cases here, as our original clinical data
was not longitudinal. The dataset had imbalanced classes with
478 healthy controls, 614 MCI and 93 AD cases. This base
dataset provided the ground truth for our study. Synthetic miss-
ing datasets were derived from this dataset for imputation and
classification testing.

2) Missing Data: Next, we searched for the relationship be-
tween missing values and the degree of cognitive decline of
the individual/patient. Although no CFA in ADNIMERGE can
be found in the clinical dataset, a previous study has provided
a table of conversion between ACE-III scores (in our clin-
ical dataset) and MMSE scores (in ADNIMERGE) [60]. In
particular, these two CFAs were temporarily used to map the
missingness structure from the clinical dataset to ADNIMERGE
but subsequently not considered in the analysis (see below). We
used the ACE-III scores in our clinical dataset as the benchmark
for the relationship between missingness and cognitive decline,
to facilitate this mapping without using the outcome variable for
generating missingness (which would create double-dipping in
subsequent analysis).

We first performed a regression of the proportion of missing
values in the clinical dataset on ACE-III. The resultant regression
equation (see Section III.1) was then used to generate synthetic
missing data in the ADNIMERGE dataset. Specifically, the
MMSE score in ADNIMERGE was converted into an ACE-III
score using the conversion table in [60]. Missing values were
then synthetically introduced into the CFA variables in the
ADNIMERGE dataset using this conversion.

It should be noted that due to the different variables in the
ADNIMERGE data compared to our real-world clinical data, no
attempt was made to reproduce any column-wise missingness
patterns from our clinical data, as this would not have reflected
any true underlying relationships among variables in the new
dataset. We showed, in Section III.A, that the proportion of miss-
ing data for CFA values was very high. Thus, in total, 10 synthetic
ADNIMERGE datasets with different random missing patterns
were generated, to ensure robustness in the results. ACE-III and
MMSE scores were dropped from subsequent analysis, because
ACE-III was not in ADNIMERGE and MMSE was not selected
by feature selection.

3) Data Imputation Methods: We included traditional mean
and median data imputation methods [1] for analysis as they are
straightforward to interpret and can function as a benchmark. We
also used a multiple imputation method termed Predictive Mean

Matching (PMM) [61]–[64] from the multivariate imputation
via chained equations (MICE) package in R [65]. We used
PMM both in the form of a single imputation (PMM1) and
the mean of 5, 10, 15 and 50 imputations (PMM5, PMM10,
PMM15 and PMM50, respectively). It should be noted that
PMM is the default method for MICE, the most commonly used
multiple imputation package. Imputation algorithms such as the
k-NN method [35] which generalize from complete cases, were
unsuitable for our high proportion of missing data, and were not
considered.

The general steps for PMM within the context of MICE are as
follows [64]: (i) linearly regress observed values for each column
on the other columns, obtaining a set of coefficients; (ii) make a
random draw from the posterior predictive distribution of this set
of coefficients, creating a new set; (iii) use the newly generated
coefficients to generate predictive values for missing values in
this column (iv) identify a set of cases with observed variable
whose predicted values are close to the predicted values for
the case with missing data; and (v) from these cases, randomly
choose one case and assign its observed value to substitute for the
missing value. Steps (ii) to (v) are repeated for each column, and
the whole process is iterated 10 times to generate one imputed
dataset. For PMM1, one imputed dataset is generated, while for
PMM5, 5 imputed datasets are generated (see Supplementary
Fig. 1 for details).

Another algorithm which we used was the iterative missForest
[18] from the missForest package in R [66], which uses Ran-
dom Forest (RF) regression to impute missing data [67]. The
missForest imputation method was chosen as it had been shown
to outperform MICE at imputation [18], [68] and involved few
assumptions about the structure of the missing data [18]. The
MissForest method entails the following steps: (i) impute the
column mean for each missing value in dataset D to create
imputed dataset D’; (ii) copy D’ to D”; (iii) for each column
in D’ use the rows with no missing values to build a RF model,
and use the model to predict the missing values; (iv) update D’
with new predictions for the missing values; (v) test convergence
and output D” if convergence is reached – if maximum iterations
have been reached output D’; otherwise iterate steps (ii-v) (see
Supplementary Fig. 2 for details).

Finally, we also used the Bayesian Principal Components
Analysis (BPCA) [69] algorithm for imputation as it has been
found to be effective in previous studies [27], and in order to
explore whether a PCA-based method impacts imputation accu-
racy by variable. Bayesian PCA is a computationally complex
method which uses an iterative approach similar to Expectation
Maximization, combined with Bayesian modelling to estimate
the eigenvalues of the underlying principal components of the
data (see Supplementary Fig. 3 for details).

The adjusted R2 of the linear regression of the imputed values
on ground truth (complete data) was used as a measure of
imputation accuracy, with values ranging from 0 to 1 (poorest
to highest in accuracy, respectively). The mean, minimum and
maximum R2 measurements from each of the 10 synthetic
datasets were obtained. This methodology was also used to
calculate the average imputation accuracy of each variable using
the missForest algorithm.
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Fig. 2. Workflow for LOOCV (single case) classification testing, em-
ulating actual clinical decision-making conditions. Data is first split into
training and single-case test datasets. Training and test datasets are
imputed separately.

The computation time over 10 missing datasets for each
imputation method was recorded and normalized by dividing
by the time for the fastest method (mean imputation)

4) LOOCV Classification Accuracy Testing: Classification
accuracy was tested using leave-one-out cross-validation
(LOOCV) [70]. In the LOOCV condition, the test dataset is only
one row. We used LOOCV to mimic one-patient classification
condition. Further, LOOCV is suitable for smaller data sizes,
which may occur in some clinical/medical centres. Although
LOOCV is computationally intensive, it minimizes model bias
by using almost all the training data for each classification while
allowing conservative estimation [71]. The approaches we used
for handling missing values in the test row can broadly be divided
into two categories: 1) impute the missing values in the test row
using the imputation approach used for the training dataset; or
2) use a reduced-feature classifier, where a classification model
is built using only the features which are not missing in the test
row. In a dataset with N rows, a classification model will be
built N times and tested on each row in turn. A schematic of
this process is shown in Fig. 2. Hyperparameter tuning using
the bootstrap method with 3 repeats, and class balancing using
downsampling, were incorporated within the “Build Classifier”
step [68].

The workflows shown in Table II are different instantiations
of the general workflow shown in Fig. 2 (except for workflow
H where no imputation was used). The workflows consist of the
combination of training dataset imputation method, test dataset
imputation method, and classifier method. The RF classifier
(from the caret R package [72]) was used in most cases, as it
is versatile and adaptable to a wide variety of different datasets
[18], with the SVM classifier (also from the caret package)
used in some workflows to test whether imputation strategies
have different compatibility with different classifiers. The naïve

TABLE II
IMPUTATION AND CLASSIFICATION WORKFLOWS

Bayes (NB) classifier (from the e1071 R package [73]) was used
in (H) as it does not require a strategy for handling missing
values; the classifier can skip a missing value while still making
use of values in the same row of the dataset due to the conditional
independence assumptions in the naïve Bayes algorithm. The RF
imputation method was used as it was the most effective single
imputation method, as well as multiple imputation with PMM-5
(higher values of multiple imputation were not considered here
due to the impact on classification speed) and single imputation
with the mean of PMM-15, which although not intended for
single imputation was found to be both faster and more accurate
as an imputation method than RF. For the RF imputation method,
the code for the missForest method [66] was rewritten to make it
possible to specify a test dataset when the method was called; the
test dataset was excluded from the iterative imputation process
and imputed with the final version of the missForest imputation
model (see Supplementary Fig. 2). For the PMM-5 and PMM-
15 imputation methods, the class variable in the test set was
removed to avoid double-dipping, and the iterative imputation
algorithm in Supplementary Fig. 1 imputed the training and test
data together. This process means that imputing missing values
includes imputation of the class variable in the test dataset; the
value of this imputation process as a classifier was tested in
Workflow F.
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Multiclass area-under-the-ROC curve, AUC [74], over the
1185 cases was calculated using the pROC package [75]. 95%
AUC confidence intervals were bootstrapped with 500 resam-
ples. We also provide in Supplementary Table I, sensitivity
and specificity results, as well as a baseline comparison using
RF, SVM and naïve Bayes classifiers on the complete dataset
with no missing values. In a clinical decision support setting,
imputation and classification will occur in different contexts, so
the computation times for imputation and classification in each
workflow were recorded separately. The mean computation time
in seconds (s) for each of the 1185 classification and imputation
cases was recorded.

C. Software and Hardware for Analysis

The above analyses and algorithms were run within R Studio
version 1.146 on a Windows machine with eight memory cores,
Intel i7 processor, 16GB Ram and R version 3.5.2 installed. The
analyses were all single threaded to allow for straightforward
comparison of computational cost. The codes are available at
https://github.com/mac-n/BHI-missing-data.

III. RESULTS

A. Synthetic Missing Data With Missingness Type From
Clinical Data

To reduce the size of the ADNIMERGE dataset to better
resemble the real-world clinical dataset, we performed feature
selection using the mutual information algorithm [55] which
selected the best features with respect to the class variable (CDR-
SB scores in our case), and identified the 8 most relevant CFA
features. Table I shows the selected CFAs in descending order of
their mutual information with the class variable. Interestingly,
most of the selected CFAs were completed by study partners,
who accompanied the patients to the study site throughout the
ADNI study, as opposed to being completed by the patients
themselves (Table I, column 2). Next, we used the top 8 CFAs,
plus Gender and Age variables and our class variable from the
ADNIMERGE data to form our baseline dataset which resem-
bled the types of features in the memory clinic data. We then
investigated the missingness in our memory clinic data, in order
to reproduce the same missingness patterns in the ADNIMERGE
data.

Using the memory clinic data, we regressed the number of
missing values in each row, normalised by the number of CFA
columns, on Addenbrooke’s Cognitive Examination (ACE-III).
The ACE scale was used because there is known mapping from
ACE to MMSE scores [60]. Although there are no common
CFAs between the memory clinic data and ADNIMERGE,
MMSE scores are available in ADNIMERGE to recreate the
same type of missingness in ADNIMERGE as found in our
memory clinic data. Higher order fits were tested but higher
order terms were found to be non-significant in the polynomial
regression (2nd order: p-value = 0.051; 3rd order: p-value =
0.39).

We found that the resulting regression equation could be
described by Nmiss = 0.48 + (0.06 ACE-III), where Nmiss

Fig. 3. Imputation accuracy R2 and computation time depend on im-
putation methods. Grey (black) bars: accuracy R2 (computation time).
Left-to-right bars: mean imputation, mean by class imputation, median
imputation, RF imputation, PMM averaged over 1, 5, 10, 15 and 50
imputations, and BPCA.

was the proportion of CFA values missing in each row, and
ACE-III consisted of its normalized score. The 0.48 constant in
the equation meant that 48% of the CFA values were missing.
The low p-value (p = 2 × 10−16, n = 189) and low R2 (0.02502)
of the regression indicated that cognitive decline (as measured
by ACE-III scores) could not explain most of the missingness
in the data. This could be due to ACE-III being an incomplete
instrumental variable for identifying disease severity and that
the size of the clinical dataset was not too large. Moreover, our
experience in clinical practice would expect that only a small
amount of the missingness in the data would be attributed to
cognitive decline. Hence the data could be considered either
MCAR or MAR. A conversion table to convert MMSE scores
in ADNI to ACE-III scores [60] was used. The regression above
was then used in combination with the generated ACE-III scores
to generate a probability of missingness, Pmiss,i. for every row
i in ADNIMERGE. Each variable in each row i was substituted
with a missing value, with probability Pmiss,i. In this manner, 10
missing datasets were generated from the original complete AD-
NIMERGE data with the same degree and type of missingness
as in our clinical data (see Section II.A.2).

B. Computationally Expensive Imputation Methods are
Not Necessarily More Accurate

Based on the synthetic missing datasets, we performed var-
ious imputation methods. We found that the Predictive Mean
Matching (PMM) and Random Forest (RF) imputation methods
provided the highest accuracy when tested against the complete
dataset (ground truth) (Fig. 3). PMM imputation methods were
further divided into PMM5, PMM10, PMM15, PMM50 - the
mean of 5, 10, 15 and 50 multiple imputations, respectively.
Specifically, the regression of the mean of the PMM50 imputa-
tion method against ground truth was the most accurate, with a
mean R2 over 10 synthetic datasets of 0.86 (Fig. 3). This was
non-significantly (p = 0.204) higher than the accuracy when
using PMM15 imputation (mean 0.861), but significantly higher
than the accuracy for PMM10 (0.856) (t-test p-value over 10

https://github.com/mac-n/BHI-missing-data
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Fig. 4. Imputation and classification workflows evaluated for multiclass AUC (light grey, left axis; linear scale), imputation time and classification
time (respectively dark grey and black, right axis; logarithmic scale.) Details of the workflows are explained in Table II. Workflows marked with ∗
impute the test dataset alongside the training dataset, with the test dataset class variable removed; hence imputation and classification must be
performed together. Horizontal dashed lines: AUCs using complete dataset with RF and SVM (top), and with Naïve Bayes (NB) (bottom).

datasets= 0.002). The PMM15 method was in turn significantly
(p = 0.001) more accurate than the RF method (mean 0.849)
although the RF was the only method with accuracy close to
the PMMs. Thus, PMM’s accuracy marginally increased when
more multiple imputations were generated. All PMM methods
involving more than 15 imputations were significantly more
accurate than RF.

The next most accurate method, Bayesian Principal Compo-
nent Analysis (BPCA), was found to have an R2 of 0.773. The
BC mean (mean by class) imputation method had a reasonable
accuracy for a computationally simple method (R2 = 0.735), but
as an imputation method it had the disadvantage that it could not
be used to impute the test row as the class value of the test row
was not known. Finally, the median and mean methods did not
achieve high accuracy.

Given that many of the mean R2 values were between 0.8-0.9
(Fig. 3, grey bars), we next investigated the computational cost of
individual imputation methods. We found that there was a wider
range of computational times across the various imputation
methods (Fig. 3, black bars; note the logarithmic scale). In
particular, BPCA and PMM50 had similar timescales, while RF
was about twice as fast. PMM15 was twice as fast as RF. The
mean, BC mean and median methods, as might be expected, were
not computationally costly. Overall, computationally expensive
methods could achieve higher accuracy than simpler methods
(e.g., RF and PMMs cf. mean, median and BC median), but
algorithmic complexity did not guarantee high accuracy (e.g.,
BPCA).

C. Running Time Varies Logarithmically Across
Workflows

Next, we investigated the most effective data imputation meth-
ods, with respect to classification accuracy and computational

cost. We tested various workflows A-P (Table II; see Supple-
mentary Table I for additional results) for classification and
imputation of training and test datasets in the LOOCV condition,
where each case in the dataset was classified one at a time,
mimicking handling a single patient/individual (Section II.B.4).
To demonstrate this, it sufficed to use just one of the synthetic
datasets. The test dataset, consisting of only 1 row, was imputed
either with the same imputation algorithm as the training dataset,
or was not imputed and was classified using a reduced-feature
classifier which used only features which were not missing in
the test dataset. Class balancing and parameter tuning were
incorporated within the classification step.

Among the workflows we tested, the multiclass AUC ranged
between 0.83 and 0.896. Given the extreme (48%) missingness
that was introduced, this was a surprising result and comparable
to the AUCs using the complete dataset (see horizontal dashed
lines in Fig. 4 and Supplementary Table I). Most of the work-
flows performed at similar levels, and the bootstrapped confi-
dence intervals overlapped substantially. An outlier performing
below the others was workflow F (AUC = 0.839) which did
not use a conventional classifier but a mode of multiple imputed
values. Workflows J (mean imputation plus SVM classifier) and
D (mean imputation + reduced feature random forest classi-
fier) both performed relatively poorly with AUC below 0.87 -
perhaps poor performance was unsurprising with simpler mean
imputation, although it should be noted that mean imputation by
class combined with a reduced feature random forest classifier
(workflow B) performed better than many workflows deploying
more sophisticated imputation methods.

We found workflow L (AUC = 0.896) to be ranked top in our
results. Workflow L was a mixture of methods: RF imputation
with a reduced feature SVM classifier. However, no particular
approach substantially stood out in terms of AUC measure,
we then investigated the computation time. In particular, the
running time for the LOOCV workflows had been divided into
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classification time (time to build the classifier and perform
classification) and imputation time (time to impute the training
set) (presuming that in a clinical decision support setting, impu-
tation was executed during off-peak times). Hence, workflows
F, G, M and O, with test dataset imputed iteratively alongside
the training dataset, might be impractical for use in a clinical
decision-making setting if the dataset was large (Fig. 4) and
we included them here primarily for benchmarking purposes. In
terms of imputation time, RF imputation and PMM imputation
methods were the slowest, and mean imputation methods were
orders of magnitude faster.

An interesting outlier in terms of computation time was work-
flow H (naive Bayes classification), which used no imputation
and was an exceptionally fast classifier with AUC = 0.885.
Other outliers in terms of classification time were workflows
G and I which used an ensemble of RF classifiers and were
hence considerably slower than other methods.

IV. DISCUSSION

Clinical datasets such as in electronic health records often
have a significant proportion of missing data [3], [4], [6]. Various
strategies have previously been proposed, however, there is no
study that deals with the practical problem of missing dementia
data in the test dataset, even though this is very likely to occur
in clinical practice. This “test dataset” comprises the individual
patient to be diagnosed. Missing data in the test dataset may
prohibit the use of many popular imputation methods, which
are computationally costly when datasets are large. In this
work, with a focus on AD diagnosis, we have replicated the
missingness structure of a real-world routine (memory) clinical
dataset and proposed practical strategies for dealing with a
significant proportion (48%) of missing data in training and
test datasets. Moreover, we evaluated the approaches under
the LOOCV condition (Fig. 1), mimicking real-world clinical
decision-making (Fig. 2). We found that, despite the extreme
missingness introduced, the AUC results from our proposed
workflows were comparable to those produced using the original
complete dataset (see Supplementary Table I).

Overall, we found that various strategies for imputation and
classification in these conditions were able to maximise the clas-
sification AUC, but these methods varied widely in computation
time (Fig. 4), and this might likely be an important factor when
developing or maintaining a clinical decision support system.
In addition, an interesting finding from our feature selection
was that partner evaluation was more informative regarding AD
severity than self-evaluation, which may inform future design
of dementia assessments.

In particular, reduced-feature methods for dealing with miss-
ing test datasets performed equally well to methods that involved
imputing the test dataset, although this was sensitive to the
imputation method. Reduced-feature methods might be the best
solution for building a clinical decision support tool with large
data as they did not involve real-time imputation of the test
dataset. Specifically, we found RF imputation of the training
dataset combined with a reduced-feature SVM classification

(workflow L in Table II) was the best performing workflow in
terms of AUC. However, a drawback for reduced-feature meth-
ods is that either a large number of models must be stored, one
for each possible combination of columns, or the classification
model must be trained on-the-fly, and this will constitute part of
the cost-benefit analysis when choosing a workflow for practical
applications.

Mean imputation by class performed surprisingly well in
our testing. This was despite the relatively low accuracy of
mean imputation (Fig. 3) and was consistent with previous
work suggesting that imputation accuracy did not always have a
large effect on classification performance [76]. It could perhaps
be argued that mean imputation may function in some ways
like missing-indicator imputation, as any missing value in a
given column will have the same imputed value. Despite the
potential for non-missing data with the same values to also signal
as missing indicators, the extreme level of missing data (and
hence low non-missing data) limits such possibilities. Thus, the
classification model receives a signal that the original value may
have been missing, which may improve classification in some
circumstances. Future work using a less extreme proportion of
missing data will confirm this. When real-time computational
speed is at a premium and the dataset has large number of
features, mean imputation by class combined with a reduced-
feature RF classifier (workflow B) may be worth investigating.
However, the naïve Bayes classifier without imputation (work-
flow H) performed better than workflow B and had remarkably
fast computation times. It may be the case that variants on the
naïve Bayes approach, such as model averaged naïve Bayes [77],
can provide an optimal solution in terms of both classification
performance and computation time, especially when the num-
ber of features is large, and this will be investigated in future
work.

Our present study has several limitations and could be ex-
tended in several ways. So far, we have only used one dataset
from a memory clinic. In future studies, different clinical
datasets with different types of clinical features will need to
be explored to validate our results. Moreover, we have only
investigated limited types of extreme missingness. Future work
will investigate cases with less, and different types of missing-
ness. This may involve more sophisticated models to generate
complex missingness structures (e.g., column-wise missingness
relationships). We have also not completely evaluated other
imputation methods, such as those using unsupervised learning
with autoencoders [31]. Their performance should be compared
with the methods used in our current study. Further, this work
has not completely explored the impact of relationships between
features on the imputation process, which we have examined in
more detail in [78].

In conclusion, we have suggested data imputation strategies
for handling extreme missingness in both training and test data.
Importantly, the strategies were proposed with practical applica-
tions in mind, especially for clinical decision support systems in
dementia diagnosis. In terms of practical evaluation, we found
that more complex and computationally costly methods did not
offer significant advantage over more efficient methods.
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