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Machine Learning Algorithms Versus
Thresholding to Segment Ischemic Regions in

Patients With Acute Ischemic Stroke
Luca Tomasetti , Liv Jorunn Høllesli, Kjersti Engan , Senior Member, IEEE, Kathinka Dæhli Kurz ,

Martin Wilhelm Kurz, and Mahdieh Khanmohammadi

Abstract—Objective: Computed tomography (CT) scan
is a fast and widely used modality for early assessment in
patients with symptoms of a cerebral ischemic
stroke. CT perfusion (CTP) is often added to the
protocol and is used by radiologists for assess-
ing the severity of the stroke. Standard paramet-
ric maps are calculated from the CTP datasets.
Based on parametric value combinations, ischemic
regions are separated into presumed infarct core (irre-
versibly damaged tissue) and penumbra (tissue-at-risk).
Different thresholding approaches have been suggested
to segment the parametric maps into these areas. The
purpose of this study is to compare fully-automated
methods based on machine learning and thresholding
approaches to segment the hypoperfused regions in
patients with ischemic stroke. Methods: We test two
different architectures with three mainstream machine
learning algorithms. We use parametric maps as input
features, and manual annotations made by two expert
neuroradiologists as ground truth. Results: The best
results are produced with random forest (RF) and
Single-Step approach; we achieve an average Dice
coefficient of 0.68 and 0.26, respectively for penumbra and
core, for the three groups analysed. We also achieve an
average in volume difference of 25.1 ml for penumbra and
7.8 ml for core. Conclusions: Our best RF-based method
outperforms the classical thresholding approaches, to
segment both the ischemic regions in a group of patients
regardless of the severity of vessel occlusion. Significance:
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A correct visualization of the ischemic regions will guide
treatment decisions better.

Index Terms—Computed tomography perfusion,
Ischemic stroke, Machine learning, Thresholding.

NOMENCLATURE

BT Brain Tissue.
CBF Cerebral blood flow.
CBV Cerebral blood volume.
CNN Convolutional Neural Network.
CT Computed Tomography.
CTA Computed Tomography Angiography.
CTP Computed Tomography Perfusion.
DT Decision Tree.
DWI Diffusion-weighted Imaging.
LVO Large Vessel Occlusion
MIP Maximum Intensity Projection.
ML Machine Learning.
MRI Magnetic Resonance Imaging.
MTT Mean transfer time.
NCCT Non-contrast Computed Tomography.
NIHSS National Institutes of Health Stroke Scale.
RF Random Forest.
SLIC Simple Linear Iterative Clustering.
SMOTE Synthetic Minority Over-sampling Technique
SVM Support Vector Machine
Non-LVO Non-Large Vessel Occlusion.
TMax Time-to-maximum
TTP Time-to-peak.
WIS Without Ischemic Stroke.

I. INTRODUCTION

C EREBRAL stroke is the second leading cause of death and
the third leading cause of disability worldwide [1]. Despite

significantly reduced incidence over the past years in the entire
world, the worldwide prevalence of cerebral stroke is estimated
to be 17 million strokes causing 6.5 million deaths per year [1],
[2]. In Norway, acute cerebral stroke is the third leading cause of
death in adults and the leading cause of disability and admission
to nursing homes [3], [4]. Changes in demography will result in
a predicted 34% increase in stroke incidence in Europe between
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2015 and 2035, which is likely to be mirrored in other parts of
the world [2]. Thus, cerebral stroke has a huge socio-economic
impact on society and a tremendous impact on the quality of life
for every single patient [5].

There are two broad categories of cerebral stroke; hemor-
rhagic and ischemic stroke. Approximately 20% of all strokes
are due to hemorrhage, while approximately 80% are due to
ischemia [6]. Both groups can further be divided into different
subtypes. Ischemic stroke may be caused by arteriosclerosis,
thrombi, emboli, dissections, or systemic hypoperfusion, all of
them leading to ischemia due to reduced blood flow in regions
of the brain.

The severity of ischemia usually varies within the area of
reduced blood flow, and for clinical use, the area is divided into
two distinct regions: ischemic core and penumbra. The ischemic
core is defined as irreversibly damaged brain tissue [7]. The
tissue within the penumbra is critically hypoperfused and is
located around and adjacent to the infarct core. If blood flow is
restored timely, this tissue may regain neurological function [7].
If the blood flow remains low, however, the area of penumbra will
transfer into an irreversibly damaged infarct core. The ischemic
penumbra was introduced by Astrup et al. as “a region of
hypoperfused, electrically silent, and functionally impaired but
viable tissue” [8]. Restoring blood flow and thereby preventing
the penumbra from proceeding to irreversibly damaged infarct
core, is the main treatment goal in patients with acute ischemic
stroke (AIS). Penumbra may change into infarct core rapidly in
AIS patients. Therefore, rapid recognition of stroke symptoms
and acute treatment in a stroke center are of vital importance.

According to the European Stroke Organization guidelines,
Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI) are the two modalities recommended for diagnostic imag-
ing in acute stroke patients [9]. MRI with diffusion-weighted
imaging (DWI) is superior to Computed Tomography (CT) scans
for detection of small acute infarctions and identification of some
stroke mimics. Nevertheless, CT is the preferred imaging modal-
ity in many centers for acute stroke patients due to its widespread
availability, rapid scan times, and its high sensitivity for detect-
ing hemorrhage. DWI has been considered the gold standard for
ischemic core estimation [10]–[14]; however, there are very few
hospitals where MRI are used as the first imaging tool in acute
stroke patients, since it is not always timely available on a 24/7
basis, plus, some patients have contraindications for this type of
modality. MRI is usually performed within the first days after
an AIS. Treatment, timing of treatment, and other variables will
affect further development of the penumbra. Hence, any core of
follow-up MRI might have developed after the acute imaging
and might not be comparable with the imaging results in the
acute setting. In the last years, DWI has been contested as the
de-facto gold standard since it cannot accurately differentiate
irreversibly ischemic tissue from salvageable tissue [15], [16],
and it has been shown that the detected ischemic regions can
be partially reverse, especially if DWI is performed in the early
window time [16]–[18].

At Stavanger University Hospital (SUS), patients with sus-
pected acute stroke are routinely investigated with non-contrast
computed tomography (NCCT) of the head, CT angiography

Fig. 1. Parametric maps of a single slide of a patient’s brain. In this
patient there is an ischemic area on the right side in the vascular territory
of the middle cerebral artery (pointed by a red arrow). Time-to-peak
(TTP) = time-to-peak; time-to-maximum (TMax) = time-to-maximum;
Cerebral blood flow (CBF) = relative cerebral blood flow; Cerebral blood
volume (CBV) = relative cerebral blood volume.

(CTA) of the precerebral and cerebral arteries, i.e. arch to vertex
angiogram, and CT Perfusion (CTP) immediately after hospital
admission. In most cases MRI including DWI is performed
during the next days. In patients with suspected stroke with
unknown time of symptom onset, MRI with DWI is used as
a first-line diagnostic tool upon hospital admission.

Whether treatment is applied depends on time from symp-
tom onset to hospital admission, but also largely depends on
imaging results with CT Perfusion being the key-modality for
patient selection. In CTP a time series of three-dimensional
(3D) datasets are acquired during contrast agent injection. Based
on the changes in the tissue density over time, color-coded
parametric maps are calculated. The different parametric maps
highlight spatio-temporal information from the passage of the
contrast agent within the brain tissue. Generally, parametric
maps based on CTP are generated in two steps: the first step
acquires a time-density curve for each pixel based on the track
of the contrast agent. The second step consists of extracting
specific information from the generated time-density curves.
Cerebral blood flow (CBF), cerebral blood volume (CBV), time-
to-peak (TTP), mean transit time (MTT) and time-to-maximum
(TMax) are all examples of parametric maps [7]. Radiologists
use parametric maps for diagnosis and treatment planning and
are indirectly assessing penumbra and core by evaluating such
parametric maps. An example of the parametric maps of a single
brain slice, involved in this study, is given in Fig. 1.

Time is a fundamental factor for patients affected by an
ischemic stroke. Automation of the recognition process for
the ischemic regions, penumbra and core, can be immensely
helpful for medical doctors for treatment decisions. Over the
last decades, different methods and parameters were tested to
find the most suitable approach to segment the ischemic regions
using parametric maps as input.

Region growing is a technique to extract connected areas in
an image based on pixel information; this method is defined as
semi-automatic because the user manually selects a seed for the
growing region algorithm. This technique was used by Matesin
et al. [19] in relation with CT head images of stroke lesions, and
by Dastidar et al. [20], for measuring the volumetric infarction
using 3D T2 Fast Spin Echo MRI in patients affected by stroke.
Their goal was to delineate ischemic areas, and not to distinct the
core from the penumbra. The first delineation of both areas, using
a region growing technique in combination with the parametric
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maps acquired by CTP analyses, was implemented by Contin
et al. [21].

A series of studies have proposed experiments with threshold
values on the derived parametric maps to improve the results
achieved by the region’s growing approaches. Different thresh-
olds have been proposed for different parametric maps, gener-
ated from different vendors, and applied to various datasets [10]–
[12], [22] to estimate both the ischemic regions, or the infarct
core, or penumbra. These studies have used follow-up images
(such as DWI or NCCT), acquired hours later after the stroke
onset, to delineate the ground truth of the infarct regions and
used them as a comparison for their predictions. For this reason,
studies using DWI as follow-up imaging present some limita-
tions: they only included patients who were later identified with
infarct lesions in follow-up images, excluding the ones who
underwent the same routine at the time of hospital admission
but did not show any lesion in the follow-up DWI; they also
excluded patients with contraindication for MRI. Moreover,
since the threshold values were compared with final infarctions,
assessed after the patient’s treatment, they do not present a per-
fect estimation of the infarctions before treatment decision; thus,
they are not the best candidates to help medical doctors during
the treatment making decision. Furthermore, the studies have
proposed quite distinct thresholding values due to the different
vendors used for post-processing evaluation and the distinct
window of time (≤ 1hour to 7 days) used for follow-up images to
evaluate the ground truth for the ischemic regions. Thus, there is
no real consensus to properly define the ischemic regions based
on threshold values on the parametric maps derived from CTP.

In recent years, Machine Learning (ML) and neural network
algorithms have achieved promising results in a large number
of medical image analysis applications, and have also made
their way into the stroke application [23]–[27]. Kemmling et al.
proposed a generalized linear model using the parametric maps
as input and clinical data to quantify changes of tissue in-
farction [23]. Qiu et al. implemented a ML-based algorithm
to detect early infarction in patients with AIS using NCCT
as input and follow-up DWI as ground truth [24]. Kasasbeh
et al. used a semi-automatic approach based on a convolutional
neural network (CNN) with the entire set of parametric maps
as input to classify the infarct core using follow-up DWI as
ground truth [26]. However, these ML and CNN based methods
were only trained to classify the infarct core regions and did
not find the penumbra areas. Differently, Qiu et al. developed
two distinct ML models, using a multiphase CTA as input and
DWI/NCCT follow-up images as ground truth, to predict core
and penumbra [25]. Their primary goal was to demonstrate the
validity of using multiphase CTA in comparison to CTP imaging
for evaluating ischemic regions, but they stated limitations in
their data material. Nevertheless, using follow-up images for
delineating the ischemic regions limits the usability for medical
doctors since they might not be helpful for treatment decisions
but just for comparison with the clinical outcome. Our research
group was, to the best of our knowledge, the first using the
entire 4D CTP data as input to a neural network to segment both
penumbra and core simultaneously. A modified U-Net model
was used in a small pilot study to segment both penumbra and

core regions using the entire 4D CTP volume as input and with
ground truth generated with manual expert assessment directly
from the parametric maps [27]. The results were promising, but
they were based on a very small pilot study and need to be
validated on a larger sample size.

Before continuing to use the entire 4D dataset as input, we
wish to study the utility of automatically segmenting the penum-
bra and core based on the parametric maps that are already cal-
culated in the standard software used in clinical practice. Based
on the ideas and the shortcomings of the published methods, we
propose in this paper a ML-based method using the parametric
maps as input and both core and penumbra regions as output, in
addition to healthy tissue. One can argue that CNN naturally
fits this type of problem; nevertheless, several examples of
classical ML methods with this application can be found in
the literature [23]–[25] using follow-up images as ground truth,
bearing with them the same issues mentioned earlier. Moreover,
learning good CNN models usually require large datasets, and/or
transfer-learning, and we have a limited dataset to work with.
Thus, we aim to properly understand if well-established ML
models, less data-hungry and complex than CNN models, can
help to predict both the ischemic regions and have the potential
to assist medical doctors during treatment decisions. We give a
comparison of the proposed method with different parameters
and with thresholding methods from the literature. This paper
contributes with the following:

� Proposing a fully-automatic ML-based algorithm to seg-
ment both penumbra and infarct core regions in patients
affected by AIS, since a correct visualization of the sal-
vageable tissue will guide treatment decision better,

� Using the parametric maps as input, due to their wide
usage by medical doctors for early assessment of ischemic
strokes,

� Training the models using a dataset with different groups
of patients based on their level of vessel occlusion, gener-
alizing the models and the training data and not restricting
the type of patients that can be tested,

� Adopting as ground truth, images annotated by expert
neuroradiologists directly from the parametric maps based
on CTP,

� And finally, testing different ML algorithms and parame-
ters to find the most suitable approach. Both a single-step
approach, segmenting normal brain, penumbra, and core
in one go; and a two-step approach, segmenting penumbra
and core individually before combining them, were tested.
This was further compared to thresholding approaches.

II. DATA MATERIAL

A. Dataset and Ground Truth

1) Context: Stavanger University Hospital (SUS) serves a
population of 365.000. Close to 450 patients with AIS are
annually admitted to the hospital. All consecutive patients with
suspected AIS having received intravenous thrombolytic therapy
are prospectively listed in a population-based database. Informa-
tion about clinical severity measured by the National Institutes of
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TABLE I
PATIENT CHARACTERISTICS

Health Stroke Scale (NIHSS, scoring scale assessing neurolog-
ical deficit) on admission, and at discharge are available. Long
term functional outcome measured by the modified Rankin scale
(mRS, scoring scale assessing long term functional outcome)
at 90 days are also registered, in addition to mRS on hospital
admission.

2) Dataset: The dataset in this study comprises CTP scans
from 152 patients between January 2014 and August 2020.
137 of these patients had an AIS with visible perfusion deficit.
Patients with AIS were divided into the following groups: 77
patients with large vessel occlusion (LVO), and 60 patients
with non-large vessel occlusion (Non-LVO) Additionally, 15
patients without ischemic stroke (WIS) who were admitted with
suspicion of stroke, but turned out not to have a stroke in the
diagnostic workup, were included in the dataset. Age, gender,
and NIHSS score for the groups are shown in Table I.

LVO was defined using CT angiography; occlusion of the
internal carotid artery, M1 and proximal M2 segment of the
middle cerebral artery, A1 segment of the anterior cerebral
artery, P1 segment of the posterior cerebral artery, basilar artery,
and vertebral artery occlusion were regarded LVO. Non-LVO
was defined as patients with perfusion deficits and affection of
more distal arteries or with perfusion deficits without visible
proximal artery occlusion.

3) Ground Truth: Ground truth images are manually anno-
tated by two expert neuroradiologists. The manual annotations
are done using the entire set of the CT examination including
the parametric maps from the CTP (CBV, CBF, TTP, TMax), the
maximum intensity projection (MIP) images, calculated as the
maximum Hounsfield unit value over the time sequence of the
CTP, providing a 3D volume from the 4D acquisition of CTP.
Furthermore, the MRI examination performed within 1 to 3 days
after the CT examination was used in assistance to generate the
ground truth images. In-house developed software was used for
the annotations.

B. Imaging Protocol and Analysis

The CT scanners used for image acquisition were Siemens
Somatom Definition Flash (installed in 2012) and a Siemens
Somatom Definition Edge (installed in 2014), Erlangen, Ger-
many.

Patients with suspected acute cerebral stroke with symptom
onset within 4,5 hours prior to hospital admission were routinely
investigated by NCCT of the head. If contraindications were ex-
cluded, intravenous thrombolysis bolus-dose was administered

TABLE II
COMPUTED TOMOGRAPHY TECHNICAL PROTOCOL FOR ACUTE

ISCHEMIC STROKE

TABLE III
INFORMATION ABOUT THE DATASET AND THE THRESHOLD VALUE(S) OF THE

VARIOUS RESEARCH METHOD ANALYZED

in the CT lab. Then CTA and CTP were performed. Technical
details about the protocols are shown in Table II. Further, the
CTP images were analyzed using the software “syngo.via”
from Siemens Healthineers with manufacturer default settings to
generate color-coded parametric maps (CBF, CBV, TTP, MTT,
and TMax).

III. ISCHEMIC SEGMENTATION BY THRESHOLDING

Several studies define threshold values on some of the para-
metric calculations or on a combination of them to segment the
ischemic stroke regions. The variability in the chosen thresh-
olding value(s) is mainly due to the various vendors used for
post-processing the parametric maps, the different definitions
of the ground truth for the ischemic regions. It also lies in
the decision of using the entire brain or just the ipsilesional
hemisphere in statistical evaluations. Table III lists some of them
in addition to information about their dataset, the number of
patients, NIHSS score, time of stroke onset, vendor used, and
their defined threshold values on different parametric maps. It
also shows the different optimal thresholds that are proposed in
each of these studies to segment either core, penumbra, or both.

Most of the listed studies evaluated their method by testing the
mismatch between values from parametric maps derived from
CTP images and the corresponding follow-up DWI, as the gold
standard. The only study which did not use DWI as ground truth
for the ischemic regions is Murphy et al. [22]. They defined the
core region 5 to 7 days after the onset of stroke in the NCCT im-
ages, while the penumbra was the difference between the infarct
and ischemic region. Nevertheless, they state that this difference
“could lead to an underestimation of the final infarct size”. All
the approaches displayed in Table III, with differences in their
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chosen parametric maps and the optimal values, demonstrate
the lack of a consensus to define the ischemic regions based on
thresholds.

Only the default setting used by “syngo.via” to define
the ischemic regions after the parametric maps generation
(CBF < 27 ml/100 ml/min to define tissue at risk and
CBV<1.2 ml/100 ml for non-viable tissue) and the thresholds
proposed by Bathla et al. [28] were implemented for comparison
with our best method due to the usage of the same vendor
and software system as our input. We compare with a gold
standard based on expert assessment of the parametric maps and
manual delineation of the regions since these expert assessments
are used normally for treatment decisions and are clinically
relevant.

IV. MACHINE LEARNING APPROACHES

Applying ML algorithms in the field of medical image analy-
sis is rapidly growing [29]. To train state-of-the-art ML models,
patient data sets that have the necessary size and quality of
samples are needed. Given that the patient data is protected by
strict privacy and security rules this can be a challenge, however,
if the necessary training set is available to train appropriate ML
algorithms, good prediction models can be obtained. The ML
models tested in this study include Support Vector Machine,
Decision Tree learning, and Random Forest. Each ML algo-
rithm uses in input a training set T = {(x1, y1), . . . , (xT , yT )},
composed of xi features vectors and the relative yi class label.

Support Vector Machine (SVM) is an algorithm used for
binary classification that creates a line or a hyperplane, which
separates the features from the input data into classes. In 1992,
Boser et al. [30] proposed a supervised classification algorithm
that has evolved into SVM as we know it today.

Decision Tree learning (DT), firstly introduced by Breiman
et al. [31], is an efficient classification technique that creates
a tree-like structure by computing the relationship between
independent features and a target. DT covers both binary and
multi-class classification. The tree splits into branches by using
conditions at each internal node and the end of the branch that
does not split anymore is the decision (leaf).

Random Forest (RF) is a supervised learning algorithm and
the “forest” consists of an ensemble of decision trees. To classify
a new object from an input vector, the input vector is fed to each
tree in the forest and each tree casts a unit vote for the most
popular class at the input vector. Finally, the forest chooses
the classification having the most votes. [32] proposed this
algorithm to minimize a possible overfitting problem generated
by the usage of a single DT [32].

V. PROPOSED METHOD

In this paper, we test a single and a two-step method for
segmenting core and penumbra in patients suspected of AIS
using machine learning based on the parametric maps (CBF,
CBV, TTP, and TMax), derived from CTP datasets acquired
at admission, the MIP map, and the NIHSS score. Various
stages are performed during the proposed methods: (1) Brain
extraction and data imbalance: extracting the brain tissue from

the parametric maps to use only the pixel values inside the brain
as input features, (2) SLIC: obtaining the 3D superpixel version
of the parametric maps (CBF, CBV, TMax, and TTP), (3) Machine
Learning algorithm: Feeding the features from the parametric
maps and their generated superpixel to our implemented ma-
chine learning algorithms to predict the ischemic regions.

Fig. 2 shows the flowchart of our proposed methods. In the
reminder of the paper, we call them Single-Step and Two-Step
approaches. The features used for the proposed methods are
the four parametric maps, the MIP map, and the NIHSS score.
The input to the Single-Step method is all the aforementioned
features (top part of Fig. 2) and it classifies both core and
penumbra simultaneously. The Single-Step approach was tested
with the DT and RF algorithms, but not with the SVM model
since our implemented SVM model performs only binary classi-
fications. In addition to the Single-Step method, we test another
multi-stage classification method, which is simply adapted from
the way neuroradiologists at SUS perform during the treatment
decision process. The Two-Step approach is based on:

Step1: Takes as input the MIP, TTP, and TMax maps, plus the
NIHSS score; it performs a prediction of the penumbra region
and outputs a binary image showing the predicted penumbra.

Step2: CBV and CBF parametric maps are used as input; it
predicts the ischemic core resulting in a binary image.

A. Brain Extraction and Data Imbalance

We introduce a preprocessing step to extract the brain tissue
from the whole image and work with pixels within the brain tis-
sue (BT). In the reminder of the paper, the set of pixels belonging
to the brain tissue for all patients p is called BT =

⋃
BTp, while

the various parametric maps are called CBF p,CBV p,TTP p,
and TMax

p. This step helps to balance the classes inside the
dataset. Moreover, we convert the pixel values into a [0,1]
interval for each input feature based on the color bar on the right
of each corresponding parametric map. Each input feature is
mapped with the corresponding color in the bar and transformed
into a value in the [0,1] interval, where the value 0 corresponds
to the bottom value in the bar, while the value 1 indicates the
top value. This was performed to reduce each input feature into
a single value instead of keeping all three color channels.

B. Superpixel (SLIC)

A modified version of the Simple Linear Iterative Cluster-
ing (SLIC) algorithm [33] is employed to generate superpixel
regions in the parametric maps. The regions are based on the
initial segmentation of the intensity values of the maps. Using
SLIC, we stacked each slice to obtain a 3D superpixel version for
each parametric map and used it as extra features as input to the
model. These new features should help the models to consider
the adjacent pixels along the third dimension (z-axis). In the
reminder of the paper, the superpixel version of the parametric
maps for a patient p are called: CBF p

SLIC,CBV p
SLIC,TTP p

SLIC,
and TMax

p
SLIC. SLIC generates superpixel regions by clustering

pixels utilizing their proximity and similarity in the image
plane. An example of a normalized TTP map from one of the
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Fig. 2. Visual description of the proposed multi-classification methods: for the Single-Step approach, all the parametric maps are adopted as input
features for the Machine Learning (ML) algorithm to generate a final prediction image. The Two-Step approach works in a different way: Step1 takes
in input six features for each pixel inside the brain and generates a binary map to classify the penumbra region(s) in a brain slice; Step2 takes in
input 4 features, for each pixel, from different parametric maps and returns as output a binary map containing the predicted core region(s) if any.
The final prediction combines the two binary maps only including the core regions that are inside the penumbra regions. A final post-processing
step using a 3D mode filter is implemented. Simple Linear Iterative Clustering (SLIC) refers to the algorithm to extract superpixel regions.

Fig. 3. Visual comparison of a TTP map in grayscale (left) and the
generated superpixel image (right) after the brain extraction.

patients analyzed and the generated superpixel image is given
in Fig. 3.

C. Machine Learning for Core and Penumbra

We implement three mainstream classical ML methods in-
cluding, support vector machines, decision tree, and random
forest. To the best of our knowledge, there exists no defined
convention on which of the parametric maps should be used to
detect core and which shows penumbra better. Let Lp be the
number of pixels in BTp. In the training phase, the totality of
input features to these ML approaches are defined as a matrix.
For a patient p, let the input features vector for CBV be:

xp
CBV = stack(CBVp(i, j))∀(i,j)∈BTp

where xp
CBV is a vector of size Lp. The stack function concate-

nates all the pixels in an image, row-by-row, into a vector. The

input features totality of the parametric maps for a patient p is
given by the matrix Xp. For simplicity we omit the p in the
following notation where all definition are on a single patient:

X=[xCBV xCBF xTTP xTMax xMIP xNIHSS]

Defining [1] as a all-ones vector of length Lp, xNIHSS is defined
as xNIHSS = NIHSS · [1]. In the same way, the input features
totality for the superpixel version of the parametric maps is given
by the matrix Xp

SLIC, defined as:

XSLIC = [xCBVs
xCBFs

xTTPs
xTMaxs

]

where xCBVs
is represented as a vector:

xCBVs
= stack(CBVp

SLIC(i, j))∀(i,j)∈BTp

The total matrix XT is given by the combination of the two
input features matrices depending on the model trained: XT =
[X XSLIC].

In the prediction phase, as shown in Fig. 2, the input features
matrix Xp used for Step1 has 6 columns since the CBF and
CBV parametric maps are excluded. Then, the model generates
a binary map for the penumbra region over the entire image.
Subsequently, the input feature matrix for the second step is
derived only from CBV and CBF parametric maps plus their
corresponding superpixel versions. This matrix has 4 columns
as illustrated in Fig. 2. The selection of parametric maps is also
in line with proposed methods in the literature [12]–[14] since
TTP and TMax are often used for detecting penumbra, while the
other parametric maps are used for segmenting core regions.
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TABLE IV
DIVISION IN TRAINING, VALIDATION, AND HOLDOUT DATASET

To create the final prediction image, in the Two-Step approach,
the binary predictions of core and penumbra are logically com-
bined so the common white areas in both predictions indicate
ischemic core in the final result. The logical AND combination
simulate the medical constraint, where the ischemic core is
limited to be inside the penumbra since the hypoperfused tissue
always contains the dead tissue. For both the approaches (Single-
Step and Two-Step), the patient’s predictions pass through a 3D
mode filter. This post-processing step helps to reduce unwanted
noise and it also allows the predictions from a ML method to
rely on the adjacent voxels in the z-axis, i.e. between adjacent
slices.

VI. EXPERIMENTS AND RESULTS

A. Dataset Division

In this paper data from 152 patients were used, 137 from AIS
patients divided into two groups (LVO and Non-LVO) and 15
patients WIS but who were admitted with suspicion of stroke.
The dataset was randomly split into a training, validation, and
holdout set, as described in Table IV, carefully dividing the LVO,
Non-LVO, and WIS patients over the sets. The idea behind this
division is to create a model that generalizes the classification
of the ischemic regions working for all.

As many have reported, DWI is a questionable measure to
describe the ischemic core [10], [15]–[18], thus we propose to
use manual annotations made by two expert neuroradiologists
as the golden ground truth to assess both the ischemic regions
during early stages and with different level of severity.

Even with removing the background and only considering
the pixels inside the BT, the core and penumbra classes are
still undersampled, leading to a class imbalance problem in the
dataset. To overcome this problem, during the training phase
we implement the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm [34] to over-sample the classes with a minor
number of occurrences. SMOTE relies on the generation of
synthetic examples on the difference between the feature vector
under construction and its nearest neighbor. We over-sample the
penumbra by a maximum of 5 times its standard amount and the
core by a maximum of 20 times. These maximum values were
chosen for their class importance and amounts. Before applying
the SMOTE algorithm, the core and penumbra classes represent
only 0.5% and 9.4% of the entire set respectively. After the
application of the algorithm, they represent 7.6% and 36.5% of
the dataset respectively.

B. Evaluation Metrics

In all the experiments the predictions are compared with
the ground truth and multi-class confusion matrices are

TABLE V
EXAMPLE OF MULTI-CLASS CONFUSION MATRIX FOR THE CORE CLASS.

TP =TRUE POSITIVE, FP = FALSE POSITIVE, FN = FALSE NEGATIVE, AND
TN = TRUE NEGATIVE

generated. Our dataset is composed of three classes C ∈
{core, penumbra, healthy brain}.

Table V presents a multi-class confusion matrix example for
the core class: TPc (True Positive) indicates the number of pixels
predicted correctly as the core; FPc (False Positive) represents
the number of pixels classified as core class but belonging to
a different class; FNc (False Negative) is the number of pixels
predicted as a different class but labeled as the core in a ground
truth image; TNc (True Negative) displays the number of pixels
that are classified as not core and belonging to one of the other
classes. All the values in each multi-class confusion matrix
are calculated based only on the number of voxels inside the
BT, excluding all non-brain tissue voxels as the binary mask
of brain vs background is found during pre-processing. From
each confusion matrix of class c ∈ C, we calculate the recall
recc =

TPc

TPc+FNc
, the precision precc =

TPc

TPc+FPc
, and the Dice

coefficient (equivalent to the F1-score) Dicec =
2·precc·redc

precc+recc
=

2·TPc

2·TPc+FPc+FNc
. The range for these values is [0,1]. We also

consider the Hausdorff distance between predictions and ground
truth regions [35], and the absolute difference in the volume
among the predictions (Vp [ml]) and the ground truth (Vg [ml]):
ΔV = |Vg − Vp|. The range value for the Hausdorff distance
and ΔV is [0,∞] Bland-Altman plots were used to illustrate
mean differences and limit of agreement between predicted
volume and volume calculated from ground truth images.

C. Hyper-Parameter Optimization of ML Algorithms

Before evaluating our methods, a series of hyper-parameter
optimizations on the ML algorithms were performed using a
Bayesian optimization. The input features for these optimiza-
tions, for a patient p, were solely based on Xp, without the
usage of SLIC nor SMOTE algorithms. For DT and RF models,
the hyper-parameters taken into consideration during the opti-
mization were:

� the minimum number of leaf, with a range [1, Lp/2],
� the maximum number of decision splits, in the range
[1, Lp − 1],

� Gini’s diversity index, Twoing rule, and Cross-entropy for
the split criterion to use,

� the number of decision trees in the model (1 for the DT
algorithm, a range of [1, 500] for the RF).

Differently, for the SVM model, we considered the following:
� Gaussian, Linear, and Polynomial kernel functions,
� the maximum penalty on the observations with a range of
[0.001, 1000],

� standardized vs not standardized features.
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TABLE VI
OPTIMAL HYPER-PARAMETERS FOR THE DECISION TREE (DT) AND

RANDOM FOREST (RF) ALGORITHMS DIVIDED BY SINGLE-STEP AND
TWO-STEP APPROACHES

TABLE VII
OPTIMAL HYPER-PARAMETERS FOR THE SUPPORT VECTOR MACHINE

(SVM) MODEL WITH THE TWO-STEP APPROACH

Fig. 4. Description of the models implemented to test the two ap-
proaches, the input features used (the parametric maps with or
without the superpixel regions), the usage of data augmentation
(SMOTE). Filled circle corresponds to including the corresponding in-
put/augmentation box. Experiments’ names are included in the reminder
of the paper. DT = Decision Tree; RF = Random Forest; SVM =
Support Vector Machine.

The values display in Table VI show the best hyper-parameters
for the DT and RF algorithms divided by Single-Step and
Two-Step approaches, after an exhaustive set of experiments.
Table VII presents the optimal hyper-parameters for the SVM
model. All the experiments described in the next sections use the
same set of hyper-parameters defined in Table VI and Table VII.

D. Experiment 1 - ML Algorithms and Feature
Combination

For both the Two-Step and the Single-Step approaches, a series
of six experiments were conducted to determine whether the
inclusion of superpixels as extra features is beneficial and to see
if using SMOTE to balance the classes during training gives
better models. These six experiments were repeated for the
different ML algorithms except SVM for Single-Step approach,
due to our implementation of the approach which performs only
binary classification.

Fig. 4 illustrates the 30 conducted experiments: (Two-Step×3
ML algorithms)×6 + (Single-Step ×2 ML algorithms)×6. The
number of superpixel regions used for this set of experiments
is 10. Fig. 5 shows the results for all models during the first
experiment set taking into account all the various groups (LVO,
Non-LVO, and WIS) together. The best model was selected
mainly based on the averaging metrics in Fig. 5 for both the

classes. Looking at Fig. 5, Mdl-5.1 shows the best performances
both for core and penumbra regardless of the group. Neverthe-
less, Mdl-5.2 offers comparable results to Mdl-5.1 in the majority
of the metrics. Moreover, Mdl-5.2 uses the superpixel regions as
input features, on the contrary of Mdl-5.1, and the best number
of superpixel regions should be investigated further.

E. Experiment 2 - Number of Superpixels

After the first experiment set, we performed a series of em-
pirical analyses on Mdl-5.2 to choose the most adequate number
of superpixel regions for the SLIC algorithm that produces the
best results. We repeat a series of experiments using the Mdl-5.2
starting with 25 total number of 3D superpixel regions and
continue by increasing the number until 600. The increment
is 25 for each iteration. Fig. 6 presents the results obtained with
different numbers of superpixel regions including 10 and also
the total number of pixels in the image for Mdl-5.2. Fig. 6 shows
the average metrics for the LVO and Non-LVO groups, and the
average for the entire validation set (LVO, Non-LVO, and WIS).
The combination of statistical metrics for both penumbra and
core classes shows a clear difference when superpixel is used
as shown in Fig. 6. As highlighted in the figure, 100 superpixel
regions give slightly better results compared to the others. It is
noticeable that 100 superpixel regions yield the lowest volume
difference for the penumbra class, which highly influenced the
selection decision, the highest Dice coefficient for the core class
on average, and significant results for the other metrics, and as
such we propose to use 100 in further experiments.

F. Experiment 3 - Validate the Superpixel Result

The chosen number of superpixels, 100, was validated by
repeating all the thirty experiments described in Fig. 4 and using
100 superpixel regions instead of 10 regions, which was used
during the first evaluation round. Due to ineffective performance,
SVM has been exempt from this validation step. Results are
depicted in Fig. 7 showing the overall metrics for both the
two ischemic regions. The model Mdl-5.2 still shows the most
promising results even compared with Mdl-5.1. It achieves the
highest Dice coefficient and precision values for both the classes,
and excellent ΔV results.

G. Hyper-Parameter Optimization on the Best Model

The selected Mdl-5.2 model went under a final step of per-
forming optimization of its hyper-parameters with the current
setting (100 superpixel regions) validated in the previous ex-
periment set. We have taken into consideration the same hyper-
parameters defined in Sec. VI-C for RF. The new optimal hyper-
parameters for Mdl-5.2 are 48 number of DT, cross-entropy as
the selected split criterion, 68982 as the maximum number of
decision splits, and 315 as the minimum number of leaves.

H. Final Test of the Best Model

We test the holdout set proposing Mdl-5.2 as the best model,
100 as the most efficient number of superpixel regions, with
the hyper-parameters defined in Sec. VI-G. A visual result of



668 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 2, FEBRUARY 2022

Fig. 5. Results generated with the validation set on the 30 experiments described in Fig. 4. The x-axis contains the experiment IDs, while the
y-axis refers to the statistic values. Each value represents the average of the patients in the validation set, including all the different severities. Note
that for the top subplot we want high values, but for the mid and bottom subplots we want low values. All the experiments were tested with a number
of superpixel regions equal to 10. The colored regions in the plot represent the division of the various experiments: blue, green, and red contain
the experiments with the two steps approach using DT, RF, and SVM models respectively; yellow and purple have the experiments for DT and RF
with the Single-Step approach. The colored horizontal lines display the average for the corresponding statistical measures. Solid lines are used
for penumbra and dashed for core average measures, top image in order (solid) recall, Dice, precision; (dashed) recall, Dice, precision. With the
only exception of Mdl-5.1, Mdl-5.2 (inside a red rectangle) is the one that presents the best tradeoff for all the evaluation metrics among the set of
experiments.

two sample predicted images along with ground truth and their
corresponding parametric maps are shown in Fig. 8.

Furthermore, we remove the post-processing step (3D mode
filter) and predict the regions to understand how the results are
influenced by this step. Table VIII presents the results of the pro-
posed best model, i.e. the Single-Step method with RF, Mdl-5.2,
and 100 as the number of superpixels, in comparison with the
same model without any post-processing step, the “syngo.via”
default setting to define the ischemic regions, and the threshold-
ing values proposed by Bathla et al. [28], since it is, to the best of
our knowledge, the only research using “syngo.via” as vendor.
Table VIII also depicts reported results from other thresholding
methods ([11]–[13], [22]) which used other vendors for para-
metric maps acquisition and post-processing steps, thus a direct
comparison with our model is not possible. Bland-Altman plots
are used to visualize the predicted volume in comparison with
the ground truth volume between the four methods compared in
Table VIII, shown in Fig. 9. For all rows, the statistical results are
based solely on our holdout set to establish fair comparability
with the other approaches. The results for two subsets of the
data (LVO, Non-LVO) are presented separately, while for the
WIS subset only ΔV is displayed.

Inter-observer variability

33 randomly selected patients (19 from the LVO subset, 11
from the Non-LVO subset, and 3 from the WIS group) were
manually annotated by two different neuroradiologists, using
the same criteria adopted for the creation of the ground truth
images. The aim is to understand the inter-observer variabil-
ity between two neuroradiologists. We investigate the inter-
observer variability and compare it with the metrics of the au-
tomated method. Table VIII shows the inter-observer variability
in the measurements of the ischemic regions for the two subsets
of the data, LVO and Non-LVO, in comparison with the results
achieved with our best method Mdl-5.2.

VII. DISCUSSION

We have proposed a multi-stage algorithm based on ML that
automatically classifies ischemic core and penumbra regions in
parametric maps generated from CTP images. The CTP scans
were acquired from patients with AIS and WIS. In a real-life
situation, medical doctors need to decide the treatment for a
patient in a small time window; thus, an automatic approach
can be valuable. Expert assessments used as ground truth are
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TABLE VIII
PATIENTS INCLUDED IN THIS TABLE ARE ALL PART OF THE HOLDOUT SET. THE RESULTS ARE PRESENTED FOR PENUMBRA (CORE) REGIONS. COMPARISON

BETWEEN VARIOUS RESEARCHES USING THRESHOLDING VALUES WITH THE SAME VENDOR “SYNGO.VIA” (DEFAULT SETTING AND [28]) AND OUR BEST
MODEL (MDL-5.2). PREDICTIONS FROM [11]–[13], [22] ARE PRESENTED BUT THEY ARE NOT FOR COMPARISON DUE TO THE USAGE OF DIFFERENT

VENDOR AND/OR POST-PROCESSING STEPS FOR GENERATING PARAMETRIC MAPS. ‡ MARKS THE RESULTS FOR THE MDL-5.2 METHOD WITHOUT USING
ANY POST-PROCESSING STEP. INTER-OBSERVER VARIABILITY FOR TWO EXPERT NEURORADIOLOGISTS (NR1, NR2) AND THE SELECTED MODEL MDL-5.2 IS

ALSO PRESENTED. NOTE THAT FOR THE DICE COEFFICIENT HIGHER VALUES ARE BETTER (⇑), WHILE FOR HAUSDORFF
DISTANCE AND ΔV LOWER VALUES ARE PREFERABLE (⇓)

Fig. 6. Various plots (Dice coeff., Hausdorff dist., ΔV ) achieved with
the validation set for selecting the best number of superpixel regions
for Mdl-5.2. The x-axis indicates the number of superpixel regions.
Results achieved by the best-performed model are highlighted with a
red rectangle. Solid lines represent the average of the patients in the
validation set, including all the different severities. Three top lines in all
plots corresponds to penumbra, lower corresponds to core.

commonly implemented in clinical use in many applications. We
consider it to be a good method to interpret the ischemic regions,
due to the lack of consensus on thresholding methods and the
recent oppositions over the de-facto DWI as the gold stan-
dard [15]–[18]. Nevertheless, these assessments present some
variability among the experts (Table VIII), thus an automatic
approach might present some advantages during analysis and
can aid medical doctors in rapid recognition of ischemic regions.
We have trained our method with ground truth images directly
acquired from the CTP parametric maps, MIP, and follow-up
images. This results in better and more precise visualization of
the two ischemic regions in the brain: the salvageable (penum-
bra) and the irreversibly damaged tissue (infarct core). Fast and
correct visualization of the penumbra will guide the treatment
better since it is fundamental to treat patients where relevant
tissue can be saved, and not invest a lot of resources and time
in trying to save tissue that is already irreversibly damaged and

where the treatment might even harm the patient due to the risk
of hemorrhage.

The criteria to select the best method was based on a study
of various implemented experiments and their relative statis-
tical results. First, we performed a set of thirty experiments
described in Sec. VI-D and in Fig. 4, to select the right fea-
tures and model. From the relative outcomes in Fig. 5, the
results provided by Mdl-5.2 (RF with Single-Step approach
using all parametric maps at once) produces considerable sta-
tistical measures in the majority of the metrics, regardless of
the severity group or class. It is interesting to notice that the
Single-Step approach generates better results or all metrics but
the Two-Step approach with RF produces slightly better results
in the Hausdorff distance for the core class. Results for irre-
versibly damaged tissue for SVM models were not taken into
consideration since these models fail to predict the mentioned
class.

Subsequently, we applied a different number of superpixel
regions to Mdl-5.2 to find one that gives the best prediction
results (Sec. VI-E, and in Fig. 6). It is clear that the results are
not the best without applying superpixel, however, there is not
a clear difference between different numbers of superpixel re-
gions; Dice coefficient and Hausdorff distance outcomes do not
present large discrepancies during the increment of superpixel
regions; the metric influencing the final decision was the volume
difference due to its drastic drop for the selected number of
superpixels for the penumbra class and a significantly low value
for the core class. Another important factor that helped to select
the best number of superpixel regions was how the performances
of the models differ with the various stroke severity groups. From
Fig. 6 it is clear to notice that, among all the experiments in this
set, Mdl-5.2 presented the best tradeoff between the difference
in volume and Dice coefficient for both the classes. One can
argue that 125 superpixel regions give more or less similar
results as 100 regions, however, ΔV is higher especially for
penumbra regions, meaning that 125 superpixel regions provide
an overestimation of the tissue at risk, especially for the LVO
group.
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Fig. 7. Statistical measures to select the best input data combination to use. All the methods were tested with the best number of superpixel
regions (100). Solid lines are used for penumbra and dashed for core average measures; top image in order (solid) recall, Dice, precision; (dashed)
recall, Dice, precision. The best model (Mdl-5.2) is highlighted inside a red rectangle.

Finally, we validated the selected superpixel number by apply-
ing it to the other experiments (Sec. VI-F). SVM was excluded
from this step as it performed poorly from the beginning (ref-
erence to Fig. 5). As shown in Fig. 7, increasing the number
of superpixel regions slightly improved the statistical mea-
sures for both classes. Moreover, results achieved by Mdl-5.2
present higher precision and lower ΔV in comparison with the
other models. The proposed method can classify correctly both
penumbra and core in patients affected by a large vessel occlu-
sion. The differences between the healthy and the ischemic tissue
are more noticeable, in contrast with ischemic regions in patients
with Non-LVO; an example is given in Fig. 8 for two brain slices
of two patients affected by LVO (Fig. 8 (a)) and Non-LVO (Fig. 8
(b)). From the examples in Fig. 8 and the results in Table VIII,
our best method is shown to predict penumbra regions more
precisely than core areas. In patients with LVO, the prediction of
core regions achieved promising results. However, the detection
of core regions in patients with Non-LVO is more challenging;
the small core area can be difficult to classify correctly. This
issue might be related to the limited number of samples for that
particular class, since patients in the Non-LVO group does not
always have a core region. We compared the performance of the
proposed RF-based method with approaches based on thresh-
olding suggested in the literature and the results are presented
in Table VIII; comparison is only performed with the default
setting and values from Bathla et al. [28] due to the usage of

the same vendor. Predictions from the other methods [11]–[13],
[22] are just presented for visualization purposes; a comparison
does not apply to the utilization of different vendors to generate
the parametric maps, but it illustrates an important limitation of
thresholding.

The proposed method (Mdl-5.2) performs better than the
thresholding approaches concerning the evaluation metrics. The
use of a post-processing step slightly increment the perfor-
mances of the best method, as it is possible to evince from
Table VIII and Fig. 9. The Mdl-5.2 method (using a 3D mode
filter as a post-processing step) achieved the highest metrics for
all the classes regardless of the stroke severity level. The sole
exception where the model does not perform well is with the
core class for Non-LVO group since, as it is possible to evince
from Table VIII, it is the hardest class to predict correctly due
to its limited number of samples and its narrow size in the BT.

Core predictions are slightly better than the one presented
by the thresholding methods regardless of the group, while
penumbra predictions are superior. This indicates a reliable
understanding and agreement among ML predictions, threshold
values, and neuroradiologists’ annotations for the core regions.
While, at the same time, it presents some uncertainties regarding
the penumbra’s definition. This might be related to the fact that
the infarct core and penumbra are two dynamic regions inside
the brain and highly dependent on the acquisition time of CTP
and DWI. The perfusion examination shows the perfusion at that
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Fig. 8. Visual comparison with four parametric maps (top), ground
truth images (left), and the corresponding predicted image with the best
method (right) of one slice for two patients included in the testset, one
labeled as LVO (a), the other as Non-LVO (b). The dark grey area is
healthy brain tissue, the light gray area represents the penumbra, and
the white region indicates the ischemic core.

specific time, the penumbra and core size may change rapidly.
In many studies, MRI is not performed immediately after CTP.
DWI, often used as the gold standard for defining the ischemic
core, cannot define penumbra. Our method, relying the ground
truth on both CTP generated right after hospital admission
(parametric maps derived from CTP, and MIP) and follow-up
images, seems to provide a reliable method to predict both
penumbra and core. Note that we propose to make predictions
only based on data available right after hospital admission. The
areas defined as ground truth from the DWI sequence can over- or
underestimate the ischemic core in individual patients, making

Fig. 9. Bland-Altman plots of the volume calculated between the pre-
dictions and the ground truth images for model Mdl-5.2 with (b), without
(a) post-processing step, the “syngo.via” default setting (c), and the
values presented by Bathla et al. [28] (d).

it unrealistic to expect perfect concordance between ischemic
core measurements on CTP and DWI [10], [16]–[18]. Other
reasons are: first, they are not taking into consideration any
spatial characteristics of an image; second, the values are very
sensitive to image artifacts. Third, patients with contraindication
to MRI, i.e. heart pacemaker, metal foreign body, might be
excluded from studies where MRI and DWI images are used.
Moreover, it is complicated to find an optimal threshold value
for any group of patients. All the methods rely on selected
thresholds, which might produce good results for a particular
and predefined group, but it might not be the best for a single
case study or the entire dataset studied. Their validation method
relies on the comparison of the thresholding values with the
clinical outcome of the patient; however, this is not perfect as
the patient might have received treatment or the symptoms might
have changed. Nevertheless, the delineation of the core should
not be smaller due to treatment if the model delineates the core
region correctly.

Table VIII shows the inter-observer variability in thirty pa-
tients divided by stroke severity into LVO and the Non-LVO
subsets. There is a discrepancy between the results for the
LVO and the Non-LVO subsets. Results for the LVO group
have some similarities between the manual annotations and the
Mdl-5.2. Nevertheless, manual annotations present better results
in all the statistic measurements in comparison with the Mdl-5.2
method in the Non-LVO subset. However, results in Table VIII
illustrate the difficulties of achieving a consensus even among
neuroradiologists.

VIII. CONCLUSION

We proposed an automatic multi-classification approach for
segmenting both ischemic core and penumbra based on random
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forest using the parametric maps as input features, Mdl-5.2.
We implemented other approaches based on thresholding, pro-
posed in the literature, and compared them with our proposed
method considering manual annotations as the ground truth
generated from parametric maps. The method was trained with
patients, both with AIS and WIS, grouped by different stroke
severities. It shows good results for patients with large vessel
occlusions, but not very good for patients with non-large vessel
occlusions. Our method generates more precise results than the
thresholding approaches for the two regions, but there is still
room for improvement. We achieve an average Dice coefficient
of 0.68 and 0.26, respectively for penumbra and core, for the
three groups analyzed. We also achieve an average in volume
difference of 25.1 ml for penumbra and 7.8 ml for core. Detecting
ischemic core and penumbra regions in patients with non-large
vessel occlusion can be very complicated, as shown in Fig. 8.
Therefore, in the future, we plan to use approaches based on
deep neural networks with 4D Computed Tomography Perfusion
(CTP) volume as input instead of the parametric maps to work
with the original acquired data.
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