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End-to-End Automatic Morphological
Classification of Intracranial Pressure Pulse

Waveforms Using Deep Learning
Cyprian Mataczyński , Agnieszka Kazimierska , Agnieszka Uryga , Małgorzata Burzyńska ,

Andrzej Rusiecki , and Magdalena Kasprowicz

Abstract—Objective. Mean intracranial pressure (ICP) is
commonly used in the management of patients with in-
tracranial pathologies. However, the shape of the ICP signal
over a single cardiac cycle, called ICP pulse waveform, also
contains information on the state of the craniospinal space.
In this study we aimed to propose an end-to-end approach
to classification of ICP waveforms and assess its potential
clinical applicability. Methods. ICP pulse waveforms ob-
tained from long-term ICP recordings of 50 neurointensive
care unit (NICU) patients were manually classified into four
classes ranging from normal to pathological. An additional
class was introduced to simultaneously identify artifacts.
Several deep learning models and data representations
were evaluated. An independent testing dataset was used
to assess the performance of final models. Occurrence of
different waveform types was compared with the patients’
clinical outcome. Results. Residual Neural Network using
1-D ICP signal as input was identified as the best perform-
ing model with accuracy of 93% in the validation and 82% in
the testing dataset. Patients with unfavorable outcome ex-
hibited significantly lower incidence of normal waveforms
compared to the favorable outcome group even at ICP lev-
els below 20 mm Hg (median [first-third quartile]: 9 [1–36]%
vs. 63 [52–88] %, p = 0.002). Conclusions. Results of this
study confirm the possibility of analyzing ICP pulse wave-
form morphology in long-term recordings of NICU patients.
Proposed approach could potentially be used to provide ad-
ditional information on the state of patients with intracranial
pathologies beyond mean ICP.
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I. INTRODUCTION

INTRACRANIAL pressure (ICP) is frequently monitored
in patients with brain pathologies as elevated ICP puts the

patient at risk of cerebral ischemia or herniation of structures
within the cranial vault. However, the clinical state of the patient
cannot be fully characterized by mean ICP alone as the changes
in intracranial volume which influence ICP can be buffered
to a certain degree [1]. The ability of the craniospinal system
to tolerate or compensate for volume increases is quantified
by a parameter called ‘brain compliance’ [2]. As long as the
compensatory mechanisms for adapting to increased volume
are intact and the compliance of the system is normal, small
increases in intracranial volume result in small increases in
ICP. When brain compliance is decreased and the compensatory
mechanisms are exhausted, small increases in volume lead to
disproportionately large increases in ICP. The pressure–volume
curve, i.e., the exponential relationship between pressure and
volume in the intracranial space, has long been regarded as
a potential source of useful information on the state of the
craniospinal system [3]. Despite promising results published on
that subject, direct measurement of compliance has, however,
proven difficult to implement in clinical practice on a larger
scale [2].

On the other hand, it has long been known that the ICP signal
contains much more information than can be captured by simple
mean value [1]. ICP pulse morphology, which refers to the shape
of the pressure signal over a single cardiac cycle, is believed to
contain indirect information about brain compliance [4]. Under
normal conditions, the ICP pulse is characterized by three dis-
tinct subpeaks, denoted P1, P2, and P3, arranged in a saw-tooth
pattern. As brain compliance decreases and ICP increases, the
subpeaks gradually become less pronounced, eventually result-
ing in a ‘rounded’ or sinusoidal wave [5]. Rounding of the pulse
wave is often observed at elevated ICP levels; however, the rate
of changes in pulse morphology varies both across patients and
over time [6]. As the patients exhibit decreased compliance at
different pressure levels, the analysis of the shape of ICP pulse
waveform is key to characterizing the state of the intracranial
space.
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Due to high variability of the ICP pulse waveform, identifi-
cation of characteristic peaks is a highly complex task, which
in turn requires highly complex algorithms. Several attempts
have been made to automatically analyze the changes in ICP
pulse waveform based on detection of peaks and notches [7]–
[11]. However, in addition to high complexity, limiting their
understanding and acceptance in the medical community, those
methods often rely on averaged pulses or fail in case of patho-
logically rounded signals. In recent years, deep learning rose to
prominence in the field of biomedical signal processing, includ-
ing pattern recognition tasks. Deep learning models have been
successfully applied to remove artifacts from the ICP signal [12]
and to detect ICP elevation [13] but as far as we know, a deep
learning approach has never been used for the task of ICP pulse
morphology classification not only in terms of valid vs. invalid
pulses, but also with separate categories reflecting the changes
in the configuration and visibility of characteristic peaks, i.e.,
the progression from normal, triphasic waveform to a rounded,
sinusoidal shape.

Therefore, in this work we aimed to develop an automated
method for morphological classification of different shapes of
ICP pulse waveforms using deep neural networks. An end-to-end
approach was proposed for the purpose of analyzing long-term
recordings collected from neurointensive care unit (NICU) pa-
tients with intracranial pathologies, comprising stages responsi-
ble for single pulse detection, artifact detection, and classifica-
tion of non-artifactual waveforms. Deep learning models were
developed, evaluated, and compared in terms of their accuracy
in identifying four types of ICP pulses as well as artifacts in
the ICP signal. Additionally, we investigated the link between
the occurrence of different morphological types of ICP pulse
waveform and treatment outcomes of the patients to assess the
potential clinical usefulness of the proposed approach.

II. RELATED WORK

Nucci et al. [14] introduced the classification criteria for ICP
pulse waveform analysis based on overall shape of the signal,
reflecting the changes in the configuration of characteristic peaks
of the ICP pulse. The authors used a small neural network with
coefficients of radial basis function (RBF) kernel approximation
of the ICP signal serving as network input, and reported accuracy
of 88.3% in data collected in normal pressure hydrocephalus
patients during infusion studies. We attempted to replicate this
method but were unable to choose universal RBF midpoints
for our dataset that would allow for representation of artifacts as
well as valid ICP pulses. We hypothesize that differences in data
acquisition and general aim of the system make it unsuitable for
our study.

A similar approach to analysis of infusion study recordings
was also previously proposed by Elixmann et al. [9] who identi-
fied five distinct waveform patterns. However, the study used a
decision algorithm based on results of peak and notch detection,
namely the number, relative height, and distance between sub-
peaks, to distinguish between waveform types. Various methods
have also been presented for the task of binary classification of
ICP waveforms into valid pulses versus artifacts, and multi-class

classification as investigated in this study could theoretically
be considered an extension of the previously proposed binary
classification approaches. However, previous studies either also
rely on peak identification [8], [10], [15], potentially producing
higher number of false positives and false negatives related to
difficulty in peak annotation in irregular but otherwise valid
waveforms, are not a deep approach [16], or include a number
of preprocessing steps that may significantly extend the compu-
tation time [12]. Consequently, in this study we propose a new
approach taking into account recent developments in the field
of deep learning. As we are not aware of any other studies that
aimed to classify various pulse waveform patterns (i.e., beyond
valid versus artifactual pulses) in long-term recordings obtained
from NICU patients using deep neural networks, we compare
our proposed model with the approach shown in [12], which was
selected as the work with the most similar aim and methodology.
However, it should be noted that [12] introduced a procedure
for identification of artifacts in physiological signals, and for
the purpose of comparison we used a modified version of that
model allowing for multi-class instead of binary classification.
Furthermore, we extended our analysis by investigating the
possible relationship between the occurrence of different shapes
of pulse ICP waves and clinical outcome in NICU patients.

III. METHODOLOGY

A. Problem Formulation

The aim of this study was to produce an end-to-end approach
for detecting and annotating ICP pulse waveforms in long
(i.e., lasting upwards of several hours) signals. Specifically, this
means an algorithm capable of taking as input a raw, unpro-
cessed recording and producing final results without manual
preprocessing or human intervention during computations. The
algorithm is therefore comprised of two steps: division of full
signals into short pulse waveforms followed by classification of
said pulse waveforms into one of five morphological classes:
T1 – normal, T2 – potentially pathological, T3 – likely patho-
logical, T4 – pathological, or A+E – artifacts and measurement
errors (Figure 1). The classification expands upon criteria pro-
posed previously by Nucci et al. [14] for analysis of infusion
studies. First four classes reflect the changing relative height
and visibility of characteristic subpeaks P1, P2, and P3 of the
ICP pulse waveform, with class T1 (normal) representing the
saw-tooth shape associated with normal compliance and class T4
(pathological) representing pathologically rounded pulse with
unrecognizable peaks. The fifth class (A+E) was introduced to
separate artifactual pulses related to loss of signal quality or
failure to accurately identify pulse onset points without the need
for introducing an additional step of artifact detection.

The problem can be formulated as obtaining a mapping m
from full-length ICP signal to a set of tuples containing location
and detected class of each of the pulses:

m : RL → (Position, Class)N

where L ∈ N is the number of data points in full-length ICP
signal, Position ∈ {1, ..L} is the number of data point in the
full signal that marks the beginning of the pulse waveform, and
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Fig. 1. (a) Overview of proposed approach to pulse waveform classification. (b) Illustrative examples of pulse waveform shapes in each of the five
morphological classes.

TABLE I
PATIENT CHARACTERISTICS IN TOTAL GROUP OF 50 PATIENTS. DATA ARE

PRESENTED AS N (% OF TOTAL GROUP) OR AS MEDIAN [FIRST-THIRD
QUARTILE] UNLESS OTHERWISE INDICATED

Class ∈ {T1, T2, T3, T4, A+ E} is the morphological class
to which that pulse waveform belongs. The end of each pulse is
also the beginning of a subsequent pulse, thus only one positional
argument is required to unambiguously mark the whole pulse
waveform location.

B. Data Collection

Data from 50 patients admitted to the Neurointensive Care
Unit (NICU) of University Hospital in Wroclaw, Poland between
2014 and 2019 were chosen for retrospective analysis in this
study. The patients were selected out of all patients admitted
to the NICU during this period on the basis of availability and
acceptable quality of ICP recordings. The study was conducted
with approval from the Bioethics committee at the Wroclaw
Medical University, Poland (approvals no KB–624/2014 and
KB–134/2014). All patients were adults over 18 years of age.

Out of the entire group of 50 patients (see Table I), 39 patients
suffered from traumatic brain injury (TBI) and 11 had confirmed
aneurysmal subarachnoid haemorrhage (aSAH). TBI and aSAH
are two distinct clinical entities with different pathophysiology.
However, both conditions are associated with changes in mean
ICP and the shape of ICP pulse waveform due to disturbances in
the intracranial volume equilibrium, and are subject to the same
method of assessing the patient’s outcome. As a result, previous

TABLE II
DETAILED PATIENT CHARACTERISTICS OF TBI PATIENTS (N=39).

DATA ARE PRESENTED AS N (% OF TOTAL GROUP) OR AS MEDIAN
[FIRST–THIRD QUARTILE]

studies on ICP pulse morphology combined various groups to
increase the number of available recordings [7], [8]. In this study,
the aSAH patients were selected in order to introduce a second,
independent set of data that would allow for evaluation of final
model performance.

TBI patients were treated according to the American Brain
Trauma Foundation guidelines applicable at the time of ad-
mission [17], [18]. Patients with aSAH were treated according
to guidelines from the American Heart Association/American
Stroke Association [19]. The patients were classified in the
NICU using the Glasgow Coma Scale (GCS). Outcome was
assessed at discharge from the hospital and after three months
using the Glascow Outcome Scale (GOS), with scores IV-V
representing favourable outcome and scores I-III unfavourable
outcome. The patient cohort was homogenous with regard to
severity of the injury and treatment protocol. Table II presents
detailed characteristics of the TBI group used in the assessment
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Fig. 2. Measurement setup. Intracranial pressure (ICP) was measured
invasively using intraparenchymal probes. Arterial blood pressure (ABP)
was measured invasively in the radial or femoral artery using standard
monitoring kits. The blood pressure transducer was calibrated at the
phlebostatic axis. Signals were monitored using standard bedside vital
signs monitors and recorded on a portable computer using ICM+ soft-
ware with custom-written measurement profile.

of the relationship between classification results and clinical
outcome.

ICP was measured invasively using intraparenchymal probes
(Codman MicroSensor ICP Transducer, Codman & Shurtleff,
Randolph, MA, USA) inserted into the frontal cortex. Although
the parenchymal ICP sensor is considered more invasive than the
ventricular sensor due to implantation into the brain tissue, it was
found to be more accurate, as the calibration and zeroing process
only needs to be done once before insertion and the readings
are not dependent on the patient’s position in relation to the
transducer. Arterial blood pressure (ABP) was measured in the
radial or femoral artery using standard monitoring kits (Baxter
Healthcare, CardioVascular Group, Irvine, CA, USA). The sig-
nals were recorded continuously and synchronously (Figure 2)
using ICM+ software (Cambridge Enterprise Ltd, Cambridge,
U.K.) with sampling frequency ranging from 50 Hz to 300 Hz.
The signals were resampled to 50 Hz prior to further analyses
in order to reduce computation time, but taking into account the
minimum sampling frequency requirements reported in previous
experimental studies [20].

The signals were monitored and recorded continuously start-
ing on day 1 or day 2 after admission to the hospital, depending
on the date of surgery, and in most cases the day of admission
was the same date the injury occurred. Patients were monitored
throughout their ICU stay with average recording length of 5
± 3 days. In each case the decision to remove the sensor was
made by the neurosurgeon and/or intensivist based on medical
indications, particularly low mean value and stability of the ICP
signal and progressive improvement of the patient’s conditions.

C. Single Pulse Detection

A modified Scholkmann algorithm proposed by Bishop and
Ercole [21] for analysis of neuroscience data was used for the
purpose of single pulse detection. Pulse detection was performed
in full long-term signals low-pass filtered with a cutoff frequency
of 10 Hz. Individual ICP pulse onset points were defined as local
minima preceding the first peak of the waveform occurring at

intervals corresponding to the length of the cardiac cycle (i.e.,
around 1 s).

D. Classification Datasets

The full group of 50 patients was divided between the train-
ing/validation and test datasets, with 39 TBI patients assigned
to the training and validation datasets and 11 aSAH patients
assigned to the test dataset.

In the training and validation datasets, full long-term ICP
signals from TBI patients were divided into pulse waveforms
(see III-C), and a total of 21 390 pulses were randomly selected
from all recordings. In addition to ICP, corresponding ABP pulse
waves were selected to aid in manual classification as it has been
previously shown that the systolic part of an ABP pulse corre-
lates with the position of peak P1 in ICP pulse waveform and
the slopes of ABP and ICP become increasingly divergent with
higher waveform type [22]. Each example was then annotated
by an expert researcher.

As pulses from the same patient within one waveform class are
largely similar and could therefore influence generalization, in
order to mitigate the correlation between examples the patients
in the training set were selected in such a way that the group did
not intersect with the validation dataset. A simple binary genetic
algorithm was set up to divide the patients into two sets where
one includes 2/3 of the total number of examples in each class
and the other includes the remaining pulses. This created a split
of the data into the training set consisting of 14 578 pulses and
the validation set consisting of 6812 pulses.

The testing dataset was in turn extracted from 11 aSAH pa-
tients. Full ICP signals were again divided into pulse waveforms,
and 650 pulses were randomly selected from all recordings. The
examples were annotated by a panel of three expert researchers
using ICP and corresponding ABP pulses. In cases of ambiguous
waveform type (particularly signals exhibiting features of two
adjacent classes) or disagreement between the experts’ assess-
ment, an additional label, the ‘possible type’, was added. This
label was later used in an alternative scoring method (see III-F)
and to test multi-label classification described in Appendix II.
Inter-rater agreement between the three experts’ primary type
annotations was tested using Fleiss’ kappa test [23] with sig-
nificance level of 0.05. The reference classification provided by
the experts showed statistically significant substantial agreement
κ=0.700 (95% CI, 0.672 to 0.728), p < 0.001.

As shown in the class distribution in Figure 3, the result-
ing datasets were not balanced, making the classification task
more challenging for smaller models. This issue is discussed in
Appendix II.

E. Data Representations

Cubic resampling was used to unify the length of pulses to 180
samples. The pulses were then scaled to an interval between 0
and 1. This step was introduced to test classification based purely
on the shape of the waveform and to remove the influence of ICP
pulse amplitude which is strongly correlated with mean ICP level
and may therefore vary across patients despite comparable pulse
morphology. Other types of data representations, such as Fourier
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Fig. 3. Number of examples in each dataset.

transform coefficients or time-frequency representations, were
investigated but did not result in improved classification accu-
racy (see Appendix II); therefore, only 1-D vectors of normalized
signal samples were used as input. We did, however, investigate
the generalization of the models using univariate ICP time series
versus multivariate input including both ICP and ABP, as ABP
was used in the process of manual annotation.

F. Classification Models and Evaluation

A number of different models were investigated in this study;
however, this paper focuses on models identified as best per-
forming: 1-D Residual Neural Network (ResNet) [24], its two
variants: dual channel network with joint ICP and ABP sig-
nal input or Siamese feature extractors, and Long-Short Term
Memory Fully Convolutional Network (LSTM-FCN) [25]. The
fully connected neural network was selected as the baseline
for our results. Additionally, the approach introduced in [12]
was adapted for multi-class classification for the purpose of
comparison with proposed models and trained in the same way
as the other models.

Convolutional neural networks (CNN) extract information
based not only on a single sample but also on the sample’s
neighborhood, which allows them to easily extract morpholog-
ical features and therefore makes them a perfect fit for the task
of morphological classification. Additionally, in this case, due
to the relatively short duration of processed signals (mostly less
than 1 s in length), the networks are not required to overcome
the challenge of modelling the long term dependencies. ResNets
are deep convolutional models that use residual connections
between layers for more stable error propagation. The hyper-
parameters were chosen through the empirical choice method
across many conducted experiments with each of the proposed
models. The architecture of residual models used in this study
is presented in Figure 4, and the hyperparameters of the models
are shown in Appendix I.

In addition to changing the number of channels in the first
layer of the network, a Siamese architecture with residual feature
extractors was tested (however, the latter was not trained on
contrastive loss function as in the original paper [26], but through
standard procedures). This approach was used to emulate the
behaviour of manual annotators who used features of both ICP
and ABP signals in the decision making process.

The LSTM-FCN models were employed to test the possibility
that long-term dependencies are more relevant to the classifi-
cation problem. The networks are composed of two different
feature extractors, one with a CNN-based architecture, and the
second consisting of LSTM cells. Based on the concatenated
output of the two arms, an embedding is created and used by
the fully connected network to make the final prediction. The
main difference from the residual network lies in the LSTM
layer which allows the embedding to consider the whole signal,
as the memory cell of the LSTM is affected by all previous
observations. The structure and hyperparameters of LSTM-FCN
models used in this study are presented in Appendix I.

The model proposed in [12] is a combination of a stacked
convolutional autoencoder (SCAE) and a CNN that takes 2-
D images generated from 1-D signals as input. The first part
converts segmented pulse waveforms into representative images.
In the original paper, the second part classifies the input as either
artifactual or valid. In our reproduction, the SCAE part was
preserved while the last layer of the CNN classifier was modified
to produce multinomial instead of binary classification.

An universal training loop using Python’s PyTorch [27] pack-
age was created for all the models to ensure fair comparison
of their scoring (see Appendix I). Additionally, taking into
account that discrete classification employed in this study does
not fully capture the gradual changes in the shape of the ICP
pulse waveform cause by physiological and pathophysiological
processes, two approaches to evaluation of the models’ perfor-
mance were investigated. First, the standard single-label accu-
racy score, denoted ‘strict accuracy’, and the second, denoted
‘best accuracy’, where the prediction is considered correct in
the same cases as strict accuracy but also if it matches the class
marked as ‘possible’ in manual annotations. The second scoring
was proposed to test the models’ performance in cases where it
is acceptable to classify a waveform as belonging to more than
one type.

G. Analysis of the Relationship Between Waveform Type
and Outcome

Classification results were obtained from long-term record-
ings of 35 TBI patients. 4 patients from the original TBI group
were excluded due to gaps in their recordings that did not have
any impact on single ICP pulse classification but could influence
the results of the analysis of the relationship between occurrence
of ICP waveform types in long-term recordings and the patients’
outcome. Each ICP pulse was assigned a waveform type based
on classification results and mean ICP calculated as the average
over the whole pulse. Classification results were compared with
outcome assessed by GOS score after three months. GOS at
discharge from the hospital was not used due to significant in-
equality of favourable versus unfavourable outcome groups that
would have prevented reliable statistical analysis. Occurrence
of different waveform types was calculated as the percentage
of pulses classified as types T1-T4 in the recording. Pulses
classified as artifacts (class A+E) were treated as noise and
excluded from analysis.
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Fig. 4. Model of used Residual Network. The hyperparameters of the model are presented in Appendix I. The convolution nodes are one-
dimensional convolution. The initial downsampling residual blocks are used to reduce the size of the processed tensors.

TABLE III
TRAINING RESULTS OF SELECTED MODELS IN DIFFERENT DATASETS. ALL OF THE MODELS SHOWN HERE USED SINGLE LABEL CLASSIFICATION

(SEE APPENDIX II)

In order to separately analyze areas of the recordings where
ICP falls within normal or increased range, the range of ICP
values was subsequently divided into areas with ICP<= 20 mm
Hg and ICP > 20 mm Hg based on moving average (window
length: 5 minutes, window shift: 30 s) of single pulse mean ICP
values.

Normality of all parameters used in the analyses was tested
using the Shapiro-Wilk test. Upon rejection of the normality
hypothesis for most of analyzed variables, non-parametric sta-
tistical tests were used to assess the difference between groups
where applicable. Significance level of 0.05 was used in all
analyses. All group-averaged results are presented as median
[first-third quartile].

H. Analysis of the Potential for Real-Time Processing

Finally, in order to assess if proposed end-to-end approach
could be realistically used to process ICP signals in real-time, an
additional experiment was performed using a single illustrative
ICP recording and the best performing 1-D ResNet model. In or-
der to simulate real-life continuous measurement, but taking into
account that the classification stage requires individual pulses to
be detected first, the recording was divided into 10-seconds-long
chunks. Each chunk was then processed with the hardware
specification described in Appendix I. and the computation

times for both single pulse detection and classification step were
recorded.

IV. RESULTS

A. Classification Results

Table III shows classification accuracy of selected best per-
forming models compared to baseline accuracy of the fully con-
nected network. The results shown are the best results obtained
for each model after empirically choosing hyperparameters
through a series of experiments. All three variants of the ResNet
model as well as the LSTM-FCN model outperformed the fully
connected network, with the highest accuracy registered for the
single channel ResNet using only the ICP signal as input. The
addition of the ABP signal in the dual channel and Siamese
ResNet did not improve classification accuracy in the validation
and test datasets, although dual channel ResNet achieved the
highest accuracy in the training dataset. As discussed in Ap-
pendix II, the single channel ResNet model also retained the
highest accuracy in experiments including addition of artificially
created A+E examples, weighing of the gradients, or unsuper-
vised pretraining. The modified version of the model proposed
in [12] achieved comparable accuracy in the training dataset,
but performed considerably worse than the ResNet models in
the other two datasets.
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Fig. 5. Confusion matrices for the best performing ResNet model. The number in each tile shows how many examples with given true label were
classified as given predicted label.

TABLE IV
DETAILED CLASSIFICATION SCORES FOR THE BEST-PERFORMING

RESNET MODEL

The use of best accuracy scoring instead of standard strict
accuracy showed improved classification accuracy of all mod-
els (e.g., from 82% to 86% in the test dataset in case of the
best performing single channel ResNet). However, attempts at
multi-label classification did not boost the models’ performance
(see Appendix II). The confusion matrices for the single channel
ResNet model (Figure 5) show that while in the validation
dataset the main problem was presented by the artifact class
characterized by the lowest number of examples, in the test
dataset the errors primarily concern likely pathological and
pathological pulses (types T3 and T4), and detailed classification
scores (Table IV) in the latter dataset show that type T4, although
characterized by high precision, showed markedly lower recall
compared to other types.

B. Relationship Between Waveform Type and Outcome

Mean ICP and ICP waveform type. Figure 6 shows aver-
age ICP in each waveform class based on data from patients
separated into favourable and unfavourable outcome groups. In
both cases, mean ICP increased with progressively more patho-
logical waveform type. There were no statistically significant
differences in mean ICP between patients with favourable and
unfavourable outcome. However, while mean ICP was slightly
lower in the favourable outcome group in waveform type T1, it

Fig. 6. Mean ICP in each ICP waveform type for unfavourable (red,
left-hand side boxes) vs. favourable (green, right-hand side boxes) out-
come groups. Central box line: median, box edges: first-third quartile,
whiskers: most extreme data points not including outliers (circle signs).

TABLE V
GROUP-AVERAGED OCCURRENCE OF ICP WAVEFORM TYPES FOR

UNFAVOURABLE VS. FAVOURABLE OUTCOME GROUPS. RESULTS ARE
PRESENTED AS MEDIAN [FIRST-THIRD QUARTILE] WITH P-VALUE OF

MANN-WHITNEY U TEST. NS - RESULTS NOT STATISTICALLY SIGNIFICANT

grew to higher values than in the unfavourable outcome group
in more pathological types T3 and T4.

Occurrence of different ICP waveform types. Occurrence of
different waveform types in the favourable and unfavourable
outcome groups is presented in Table V. Significantly higher
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incidence of normal waveforms (type T1) as well as lower
incidence of pathological waveforms (type T4) was observed
in patients with favourable outcome for ICP <= 20 mm Hg.
An inverse relationship was found for ICP > 20 mm Hg, with
markedly increased occurrence of pathological waveforms in the
unfavourable outcome group.

C. Potential for Real-Time Processing

In a subset of 1000 chunks of length equal 10 seconds ex-
tracted from an illustrative ICP recording the average processing
time was 0.027 [0.026-0.029] seconds per pulse for full analysis,
with 0.020 [0.019-0.021] seconds per pulse for single pulse
detection and 0.0075 [0.0070-0.0080] seconds per pulse for
waveform shape classification.

V. DISCUSSION

In this work we investigated the feasibility of using deep
neural networks for identification of different shapes of ICP
pulse waveform as well as artifacts in recordings obtained from
patients with intracranial pathologies. Given the small number
of previous studies on the subject of morphological classification
of ICP pulse waveforms, none of which–to the best of our
knowledge–used deep learning methods, we tested different
approaches to solving this task, including different models, data
representations, and training and evaluation methods. The single
channel ResNet model using 1-D vector of ICP signal samples
as input was identified as the best performing model, achieving
best classification accuracy of 86% (82% strict accuracy) in
an independent test dataset which suggests good generaliza-
tion ability. This shows the potential of classifying ICP pulse
waveform with relatively high accuracy. Additionally, proposed
approach is robust to recordings of different length than the ones
used in this study as ICP waveform classification is performed
on a single-pulse level and does not require information about
the position of each pulse in the full recording. Assessment of
changes in pulse morphology over time (i.e., changes in the
occurrence of different waveform classes) is secondary to clas-
sification of individual pulses and could therefore be performed
on both short and long-term measurements.

The fact that neither different models nor alternative data
representations resulted in further improvement in accuracy
could be to a certain degree explained by the complexity of
the task. Despite the use of four distinct non-artifactual classes
of ICP pulse waveforms in this study, it should be noted that
the changes in brain compliance represented by changes in
the shape of the waveform are continuous rather than discrete.
As a result, some of the pulses may exhibit the features of
more than one class or fall into the ‘gray area’ between two
classes. This phenomenon is visible in the test dataset confusion
matrix of the single channel ResNet model where the majority
of classification errors occurred between two adjacent classes,
and very few were observed between types that are far apart.
While this reduces the accuracy score of the models, from the
viewpoint of clinical utility this type of mistake is less severe than
erroneous classification of normal pulses as pathological or vice
versa. Additionally, the increase in best accuracy score compared

to strict accuracy shows that a number or errors stems from
ambiguity of the waveform shape that has also been noted by
the experts performing manual annotations. Taking into account
the accuracy recorded in the validation set (best accuracy of over
95% for the single channel ResNet model), we hypothesize that
classification accuracy of the model could be further improved
by providing a bigger and more balanced training dataset. It
should be noted that the test dataset was not only independent
from the training and validation datasets, but included data from
a different distribution. Whereas all datasets were selected to
provide examples of different shapes of ICP pulse waveforms,
the test dataset was collected in a separate group of patients
for the purpose of assessing the models’ real-life applicabil-
ity. Therefore, despite the decrease in accuracy between the
validation and test datasets, the models’ performance can still
be considered acceptable as the model correctly classifies a
large percentage of pulses from a completely different data
distribution.

Interestingly, while manual classification of ICP pulses by
expert researchers was based on the ICP signal as well as
corresponding ABP signal, taking into account previous studies
which showed the correlation between the systolic part of ABP
and the P1 portion of ICP pulse waveform [22], inclusion of the
ABP signal did not improve the performance of deep learning
models, and single channel ResNet outperformed both its dual
channel and Siamese counterpart. As indicated by comparison
of results achieved in the training and test datasets, the use of
an additional signal only made the models prone to overfitting.
This, however, is an advantage, as a simpler model means
that the computation time is lower, and the classification could
theoretically be performed in a continuous and real-time manner.

The potential for real-time processing is further supported
by the use of an end-to-end pipeline including single pulse
detection and artifact exclusion steps in addition to pulse wave-
form classification. ICP recordings are subject to a variety of
disturbances that manifest, for instance, as very short spikes in
mean value or waveform deformations. Those disturbances do
not carry clinically useful information but instead are related to
the purely technical aspect of collecting the signal. It has been
shown that artifacts are the cause of a significant number of
false positive alarms in the intensive care units [28] and that
artifact removal improves the performance of other measures
used in TBI management [12]. Various methods of reducing the
impact of artifacts on ICP signal analysis have been proposed
so far [29], [30], also using deep learning models [12]. Our
approach, instead of introducing further algorithms for artifact
detection, treats it as part of the classification stage, with artifacts
such as noise, sensor calibration signal, or distorted waveforms
regarded as an additional class. This also allows for mitigation
of false positives resulting from errors in the single pulse de-
tection step. Furthermore, within the proposed pipeline average
processing time of a single 10-seconds-long fragment of the
ICP signal is over 10 times shorter than the collection time. This
shows that the algorithm is capable of effectively working in
real-time if adapted to process the full signal in smaller chunks
as soon as they are recorded. Given the large difference between
computation and collection time, the windows could also be
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overlapping, removing the potential problem of losing data from
pulses located at the edges of the window that would be discarded
by the single pulse detection step.

To investigate the potential clinical applicability of proposed
approach we obtained classification results in a group of patients
with intracranial pathologies using the best performing single
channel ResNet model. In accordance with the relationship
described by the pressure–volume curve, higher waveform types
were associated with progressively higher mean ICP. While
within each waveform class we did not register statistically
significant differences in mean ICP between the favourable and
unfavourable outcome groups, in the favourable outcome group
mean ICP rose more steeply. Given the assumption that higher
waveform types are associated with decreasing compliance, this
suggests that reduction of the compensatory reserve occurs more
slowly in patients with favourable outcome. On the other hand,
in patients with unfavourable outcome larger variance of results
in each waveform type suggests weaker dependence on mean
ICP.

The latter is supported by further analysis of results divided
between two ICP levels. The threshold used in this study to
separate low and high ICP ranges, 20 mm Hg, reflects the
value adopted in the clinical setting as the level above which
therapeutic interventions should be introduced [31]. In our study
the difference between outcome groups was already pronounced
at ICP levels below the threshold for clinical intervention, where
the unfavourable outcome group exhibited significantly lower
incidence of type 1 waveforms in favour of higher waveform
types suggesting diminished compensatory reserve. Over the
threshold both groups moved towards higher waveform types,
although in terms of average number of pulses of given type
the change was more pronounced in patients with unfavourable
outcome, with markedly increased incidence of pathological
waveforms.

The occurrence of pathologically changed waveforms at lower
ICP should be treated as a warning sign, indicating that despite
normal levels of pressure the compensatory reserve is already
reduced and the system may not be able to tolerate further in-
creases in volume. Evaluation of intracranial compliance based
on analysis and interpretation of ICP pulse morphology would
also represent a method free of any additional risks to the patient
as it is not additionally invasive. In most clinical settings, ICP
is monitored continuously (as recommended by The American
Brain Trauma Foundation guidelines [18]) and at sufficiently
high sampling frequency to analyze the pulse shape in detail.
Furthermore, in contrast to imaging techniques, monitoring of
cerebral compliance by means of ICP pulse morphology analysis
can be performed in a continuous manner during the entire time
of ICP monitoring. Consequently, this approach would avoid the
frequently cited constraints of the standard method of assessing
the full pressure–volume curve by injection or withdrawal of
fluid from the cerebrospinal fluid space, namely the intermittent
nature of the procedure and the risk of causing potentially
dangerous increases in ICP through changes in intracranial
volume [32].

It has to be noted, however, that this work was conducted as
a retrospective study in a relatively small group of patients and

TABLE VI
HYPERPARAMETERS OF USED RESNET ARCHITECTURE. BOTH RESIDUAL

AND DOWNSAMPLING RESIDUAL BLOCKS ARE STANDARD RESIDUAL BLOCKS
WITH CONVOLUTIONS OF SIZE 3 AND GROUP NORMALIZATION WITH 32

GROUPS. THE DOWNSAMPLING BLOCK IS ALSO SCALING THE OUTPUT BY
ADDING STRIDE 2 TO THE FIRST CONVOLUTION IN THE MAIN BRANCH

WHILE ADDING SIZE 1 CONVOLUTION WITH THE SAME NUMBER OF FILTERS
AS MAIN BRANCH AND STRIDE 2 TO TO THE SKIP CONNECTION BRANCH

with certain limitations. During identification of ICP ranges in
full recordings we did not differentiate patients with continuous
hypertensive episodes from patients with high instability of the
signal, and information about medical interventions affecting
mean ICP was not included. The length of analyzed recordings
was not standardized and although patients who did not exhibit
values in both ICP ranges were excluded from further analysis,
no lower length limit for low/high ICP portion of the recording
was used. Furthermore, the parameter used to assess the oc-
currence of different waveform types, i.e., the percentage of all
pulses, was global in nature, derived from all data points in given
ICP range, not taking into consideration whether they occurred
prior to or following ICP increases or at which stage of moni-
toring. Finally, outcome as assessed by the Glasgow Outcome
Scale provides information on the patient’s general condition
following injury and is a commonly accepted metric [33], but it
does not take into account the diverse character of brain injury in
terms of type, severity, and comorbidities. Specifically, it may be
influenced by extracranial injury, such as damage to the spinal
cord or limb amputations [34] which will not result in changes
in ICP pulse morphology, and it assigns a disproportionate
weight to physical disability over cognitive impairment [35].
The GOS scores were chosen in this study taking into account
its pilot nature in order to assess the potential utility of proposed
method of ICP pulse analysis and with full awareness that a
more exhaustive description of the patient cohort, with regard to
both clinical assessment and other physiological factors, would
be required to definitively show the benefits of this approach in
the clinical setting.

APPENDIX I

The hyperparameters of used networks are shown in Tables VI
(ResNet) and VII (LSTM-FCN). The fully connected baseline
network consisted of 3 Layers with 64, 32 and 5 neurons with
dropout between layers with small probability of 0.3 and ReLU
activation functions between hidden layers. The models were
trained on a machine with AMD’s Ryzen 9 3900XT (3.8 -
4.7 GHz) 12 core CPU and Nvidia’s GeForce RTX 3090 GPU
with 24 GB of VRAM. The training was performed for 100
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TABLE VII
HYPERPARAMETERS OF USED LSTM-FCN ARCHITECTURE.

ARCHITECTURE PRESENTED IN THE TABLE PRODUCES THE EMBEDDING
WHICH IS LATER CLASSIFIED BY A FULLY CONNECTED LAYER OF 128

INPUTS AND 5 NEURONS

epochs optimized by Stochastic Gradiant Descent with Nesterov
momentum of 0.95 and starting learning rate of 0.01. Learning
rate was lowered to 0.001 on epoch 33 and to 0.0001 in epoch
66. Training times were relatively short - around 4 minutes for
ResNet, 2 minutes for LSTM-FCN and less than 1 minute for
fully connected baseline. Single label classfication and multi-
label classification experiments used Cross Entropy Loss and
Binary Cross Entropy, respectively. Model performance in the
validation dataset was logged at the end of every epoch and
running averages of the training dataset every 10 steps. Batch
training with batch size of 256 was used. The source code used
for analysis is available https://github.com/MaczekO/ICP_NN
in this GitHub repository.

APPENDIX II

This section describes alternative approaches to the classifi-
cation task that did result in improved accuracy.

Models. In an attempt to simplify the model without a reduc-
tion in accuracy, networks based on Long-Short Term Memory
cell (LSTMs) [36], Gated Recurrent Unit cell (GRUs) [37],
and Shallow Convolutional Neural Networks (CNNs) [38] with
different configurations were tested. However, the results were
not satisfactory, showing at least 5% drop in accuracy scores.

Data representations. In an attempt to boost the performance
of the models, different representations of ICP pulse wave-
forms were tested: Fourier transform coefficients, spectrograms,
approximation by orthogonal Chebyshev polynomials, empiri-
cal mode decomposition, and RBF approximation coefficients.
However, none of the methods resulted in an improvement over
the 1-D vector of signal samples, and some of them resulted
in loss of information during the approximation step, posing an
additional challenge for the model.

Secondly, the effect of using the ABP signal as a second input
was tested by attaching the signal as a second channel for input to
convolutional layers and by training a shared weights model of
two univariate feature extractors, then concatenating the results

and performing classification through a fully connected network.
Neither method, however, improved the classification accuracy.

Addressing class imbalance. To reduce the great imbalance
between the A+E class and non-artifactual classes, artificial
examples were created by choosing a number of examples from
other classes and heavily obscuring them with a composition of
multiple sine waves with different parameters, as it is similar to
the experimental data. This did not improve the results, possibly
due to the fact that the method of creating artificial examples
introduced new distribution of data into the class that did not
match the distribution of existing examples.

Pretraining. The possibility of pretraining on a large, unanno-
tated dataset was investigated in place of starting the classifica-
tion from a random distribution of weights. A dataset consisting
of all pulses from all patients in the training dataset was created
and used in pretraining based on an autoencoder structure with
a ResNet model without the classfication layer as encoder and
a simple fully connected network as decoder. The pretraining
lasted 15 epochs with Adam as optimizer, reducing the MSE
of signal reconstruction. Unfreezing of only the classification
layer during supervised training resulted in a large reduction in
accuracy (66% in the validation dataset), probably due to high
correlation between pulses from the same patient. Unfreezing
of all layers with trained weights used as a starting point for
the network resulted in slightly lower (90.24% in the validation
dataset) accuracy than starting from random weights.

Multi-label classification. The multi-label approach was
based on the same types of networks but with separate sigmoids
instead of softmax as output. The classification threshold was
unified to 0.5 for all classes. Binary cross entropy for minimiza-
tion with SGD optimizer was used. Achieved results were similar
to single label classification, e.g., ResNet with multi-label output
achieved Jaccard score of 82.44% and best accuracy of 95.59%
in the validation dataset.

ResNet depth ablation. In a second attempt to reduce the
complexity of the network, additional experiments with ResNet
architecture were performed. The change in the number of
residual blocks lowered the number of parameters as well the
complexity of the network. While this procedure did not affect
the results in the validation dataset, it significantly affected
the generalization to the test dataset, with removal of blocks
resulting in a decrease of 4 to 6% in best accuracy and 3 to
6% in strict accuracy. This indicates that all of the layers are
important for the generalization ability of used ResNet.

REFERENCES

[1] K. Germon, “Interpretation of ICP pulse waves to determine intracerebral
compliance,” J. Neurosci. Nurs., vol. 20, no. 6, pp. 344–351, 1988.

[2] M. Czosnyka and G. Citerio, “Brain compliance: The old story with a new
‘et cetera’,” Intensive Care Med., vol. 38, no. 6, pp. 925–927, 2012.

[3] A. Marmarou, K. Shulman, and J. Lamorgese, “Compartmental analysis
of compliance and outflow resistance of the cerebrospinal fluid system,”
J. Neurosurg., vol. 43, no. 5, pp. 523–534, 1975.

[4] E. R. Cardoso, J. O. Rowan, and S. Galbraith, “Analysis of the cere-
brospinal fluid pulse wave in intracranial pressure,” J. Neurosurg., vol. 59,
no. 5, pp. 817–821, 1983.

[5] J.-Y. Fan, C. Kirkness, P. Vicini, R. Burr, and P. Mitchell, “Intracranial
pressure waveform morphology and intracranial adaptive capacity,” Amer.
J. Crit. Care, vol. 17, no. 6, pp. 545–554, 2008.

https://github.com/MaczekO/ICP_NN


504 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 2, FEBRUARY 2022

[6] T. Ellis, J. McNames, and B. Goldstein, “Residual pulse morphology
visualization and analysis in pressure signals,” in Proc. IEEE 27th Annu.
Conf. Eng. Med. Biol., 2006, pp. 3966–3969.

[7] F. Scalzo, P. Xu, M. Bergsneider, and X. Hu, “Nonlinear regression for
sub-peak detection of intracranial pressure signals,” in Proc. 30th Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc., 2008, pp. 5411–5414.

[8] X. Hu, P. Xu, F. Scalzo, P. Vespa, and M. Bergsneider, “Morphological
clustering and analysis of continuous intracranial pressure,” IEEE Trans.
Biomed. Eng., vol. 56, no. 3, pp. 696–705, Mar. 2009.

[9] I. M. Elixmann, J. Hansinger, C. Goffin, S. Antes, K. Radermacher,
and S. Leonhardt, “Single pulse analysis of intracranial pressure for a
hydrocephalus implant,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc., 2012, pp. 3939–3942.

[10] A. Calisto, M. Galeano, S. Serrano, A. Calisto, and B. Azzerboni, “A new
approach for investigating intracranial pressure signal: Filtering and mor-
phological features extraction from continuous recording,” IEEE Trans.
Biomed. Eng., vol. 60, no. 3, pp. 830–837, Mar. 2013.

[11] H.-J. Lee, E.-J. Jeong, H. Kim, M. Czosnyka, and D.-J. Kim, “Morpho-
logical feature extraction from a continuous intracranial pressure pulse via
a peak clustering algorithm,” IEEE Trans. Biomed. Eng., vol. 63, no. 10,
pp. 2169–2176, Oct. 2016.

[12] S.-B. Lee et al., “Artifact removal from neurophysiological signals: Impact
on intracranial and arterial pressure monitoring in traumatic brain injury,”
J. Neurosurgery, vol. 132, no. 6, pp. 1952–1960, 2019.

[13] B. Quachtran, R. Hamilton, and F. Scalzo, “Detection of intracranial hy-
pertension using deep learning,” in Proc. 23 rd Int. Conf. Pattern Recognit.,
2016, pp. 2491–2496.

[14] C. G. Nucci et al., “Intracranial pressure wave morphological classifica-
tion: Automated analysis and clinical validation,” Acta Neurochirurgica,
vol. 158, no. 3, pp. 581–588, 2016.

[15] P. K. Eide, “A new method for processing of continuous intracranial
pressure signals,” Med. Eng. Phys., vol. 28, no. 6, pp. 579–587, 2006.

[16] M. Megjhani et al., “An active learning framework for enhancing identifi-
cation of non-artifactual intracranial pressure waveforms,” Physiol. Meas.,
vol. 40, no. 1, 2019, Art. no. 0 15002.

[17] T. F. Brain et al., “Guidelines for the management of severe trau-
matic brain injury. introduction,” J. Neurotrauma, vol. 24, p. S 1, 2007,
doi: 10.1089/neu.2007.9999.

[18] N. Carney et al., “Guidelines for the management of severe traumatic brain
injury,” Neurosurgery, vol. 80, no. 1, pp. 6–15, 2017.

[19] E. S. Connolly Jr. et al., “Guidelines for the management of aneurysmal
subarachnoid hemorrhage: A guideline for healthcare professionals from
the American Heart Association/American Stroke Association,” Stroke,
vol. 43, no. 6, pp. 1711–1737, 2012.

[20] S. Holm and P. K. Eide, “Impact of sampling rate for time domain analysis
of continuous intracranial pressure (ICP) signals,” Med. Eng. Phys., vol. 31,
no. 5, pp. 601–606, 2009.

[21] S. M. Bishop and A. Ercole, “Multi-scale peak and trough detection
optimised for periodic and quasi-periodic neuroscience data,” in Proc.
Intracranial Press. Neuromonitoring XVI, 2018, pp. 189–195.

[22] E. Carrera et al., “What shapes pulse amplitude of intracranial pressure?,”
J. Neurotrauma, vol. 27, no. 2, pp. 317–324, 2010.

[23] R. Artstein and M. Poesio, “Inter-coder agreement for computa-
tional linguistics,” Comput. Linguistics, vol. 34, no. 4, pp. 555–596,
2008.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[25] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM fully convo-
lutional networks for time series classification,” IEEE Access, vol. 6,
pp. 1662–1669, 2017.

[26] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learn-
ing an invariant mapping,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., vol. 2, 2006, pp. 1735–1742.

[27] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
vol. 32 (H. H. Wallach, A. Larochelle Beygelzimer, F. d Alché-Buc,
E. Fox, and R. Garnett, Eds.), pp. 8024–8035, Curran Associates, Inc.,
2019.

[28] M. Imhoff and S. Kuhls, “Alarm algorithms in critical care monitoring,”
Anesth. Analg., vol. 102, no. 5, pp. 1525–1537, 2006.

[29] M. Feng, L. Y. Loy, F. Zhang, and C. Guan, “Artifact removal for
intracranial pressure monitoring signals: A robust solution with signal
decomposition,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
2011, pp. 797–801.

[30] F. Scalzo, D. Liebeskind, and X. Hu, “Reducing false intracranial pressure
alarms using morphological waveform features,” IEEE Trans. Biomed.
Eng., vol. 60, no. 1, pp. 235–239, Jan. 2012.

[31] C. Hawthorne and I. Piper, “Monitoring of intracranial pressure in patients
with traumatic brain injury,” Front. Neurol., vol. 5, pp. 121–137, 2014.

[32] C. S. Robertson et al., “Clinical experience with a continuous monitor of
intracranial compliance,” J. Neurosurg., vol. 71, no. 5, pp. 673–680, 1989.

[33] T. McMillan, L. Wilson, J. Ponsford, H. Levin, G. Teasdale, and M. Bond,
“The glasgow outcome scale-40 years of application and refinement,”
Nature Rev. Neurol., vol. 12, no. 8, pp. 477–485, 2016.

[34] N. Stocchetti and E. R. Zanier, “Chronic impact of traumatic brain injury
on outcome and quality of life: A narrative review,” Critical Care, vol. 20,
no. 1, pp. 1–10, 2016.

[35] S. I. Anderson, A. M. Housley, P. A. Jones, J. Slattery, and J. D. Miller,
“Glasgow outcome scale: An inter-rater reliability study,” Brain Inj., vol. 7,
no. 4, pp. 309–317, 1993.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[37] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” NIPS 2014
Workshop Deep Learning, Dec. 2014, arXiv:1412.3555.

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

https://dx.doi.org/10.1089/neu.2007.9999


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


