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Abstract—Under the present circumstances, when we
are still under the threat of different strains of coronavirus,
and since the most widely used method for COVID-19 de-
tection, RT-PCR is a tedious and time-consuming manual
procedure with poor precision, the application of Artificial
Intelligence (AI) and Computer-Aided Diagnosis (CAD) is
inevitable. Though, some vaccines have now been autho-
rized worldwide, it will take huge time to reach everyone,
especially in developing countries. In this work, we have
analyzed Chest X-ray (CXR) images for the detection of the
coronavirus. The primary agenda of this proposed research
study is to leverage the classification performance of the
deep learning models using ensemble learning. Many pa-
pers have proposed different ensemble learning techniques
in this field, some methods using aggregation functions
like Weighted Arithmetic Mean (WAM) among others. How-
ever, none of these methods take into consideration the
decisions that subsets of the classifiers take. In this pa-
per, we have applied Choquet integral for ensemble and
propose a novel method for the evaluation of fuzzy mea-
sures using coalition game theory, information theory, and
Lambda fuzzy approximation. Three different sets of fuzzy
measures are calculated using three different weighting
schemes along with information theory and coalition game
theory. Using these three sets of fuzzy measures, three
Choquet integrals are calculated and their decisions are
finally combined. Besides, we have created a database by
combining several image repositories developed recently.
Impressive results on the newly developed dataset and the
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challenging COVIDx dataset support the efficacy and ro-
bustness of the proposed method. Our experimental results
outperform many recently proposed methods.

Index Terms—COVID-19, Chest X-Ray Images, Choquet
Integral, Coalition Game, Deep Learning, Information
Theory, Lambda Fuzzy.

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) is a contagious
viral disease caused by the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), which was declared a
worldwide pandemic by the World Health Organization (WHO)
on 11 March 2020, following its accelerated worldwide dis-
semination and an unprecedented rise in the number of patients
affected. The global initiative to produce an efficient and reliable
COVID-19 vaccine is paying dividends. Nonetheless, a handful
of vaccines have now been authorized worldwide while many
more remain in production and it will take time to reach every-
one, especially in under-developed countries. At present, reverse
transcriptase-polymerase chain reaction (RT-PCR), a procedure
carried out on swab samples taken from the respiratory tract,
is the primary method used to diagnose COVID-19 disease.
The RT-PCR assessments, however, are time-consuming and a
repetitive manual procedure that has often contributed to a great
deal of subjectivity.

Computer-Aided Diagnosis (CAD) technologies, combined
with deep learning models are used to enhance the efficiency
of the diagnosis and identification of COVID-19 infections
from radiological images such as chest X-ray (CXR), computed
tomography (CT), or lung ultrasound (LUS), and to minimize
the manual intervention and error [48]–[53]. Deep learning
approaches using Convolutional Neural Network (CNN) are
regarded as one of the most robust and effective frameworks
in diagnostic imaging assessments, particularly in image classi-
fication and segmentation problems.

Ensemble learning, which aggregates the decisions of multi-
ple learning algorithms, further helps in increasing the accuracy
of machine learning or deep learning models. Aggregation func-
tions or operators like Arithmetic Mean, Weighted Arithmetic
Mean (WAM), Geometric Mean, Median, etc. are some widely
used approaches in ensemble learning. However, there are many
problems with such aggregation functions. Some of them are - 1)
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Aggregation functions like WAM do not consider the correlation
among the inputs (in our case classifiers). 2) Outliers have a huge
influence on the average/mean values used here. This results in a
considerable decrease in the accuracy of the model even if only
one classifier is weak.

To deal with these problems, more complex aggregation
functions can be found in the literature, one of them being
fuzzy integrals. Fuzzy integrals like Choquet and Sugeno, unlike
other ensemble methods take into consideration the importance
of the subsets of classifiers. Therefore, Fuzzy integrals are
considered as a more generalized aggregation function as they
assign weights to not only the individual classifiers but even the
subset of classifiers.

To understand why considering subsets of classifiers is impor-
tant, we apply the following idea. A classifier may not perform
well individually, however it can do well when combined with
other classifiers. The vice versa is also true, i.e. a classifier may
perform well individually, but when its decision is combined
with the decision of other classifiers, performance of the overall
framework may degrade. Another possibility is that two classi-
fiers have no influence on each other when their decisions are
taken together. The effect of classifiers deciding on a group is
not captured by the conventionally used aggregation methods
like majority voting and weighted averaging. To deal with this
problem, the concept of Fuzzy integrals has been introduced in
the literature.

The calculation of fuzzy measures is an NP-hard prob-
lem [25]. Additive fuzzy measures have been proposed to deal
with this problem. However, additive fuzzy measures are too
simplified to emulate practical situations. The alternative which
has been proposed is neither oversimplified nor too complex to
calculate and it is lambda fuzzy approximation. In this paper,
we use this method which is supported by the coalition game
theory to calculate the fuzzy measures. Further, we use Choquet
integral for the aggregation of the three CNN models.

A. Motivation and Contributions

Many breakthroughs and promising outcomes in the area of
medical image processing and healthcare have been accom-
plished with the use of transfer learning, and ensemble tech-
niques [1]–[5]. Due to their compact genomic organization, high
mutation rate, and poor evolutionary conservation [6], the mod-
ern SARS-CoV2 has created new challenges to the scientists,
and radiologists and medical professionals are not completely
familiar with all the complexities of COVID-19 lung infection.
To this end, the primary motivation of our research study is to
develop an automated system for efficient computerized detec-
tion of COVID-19 from the CXR image with the aid of deep
learning models and fuzzy ensemble learning.

The main contributions of our paper are enlisted below:
1) We apply deep feature extraction techniques on the input

CXR images using fine-tuned deep convolutional neural
network (DCNN) architectures, pre-trained on the Ima-
geNet dataset for obtaining salient image descriptors.

2) We propose a novel method of calculating the fuzzy
measures of individual classifiers using coalition game

theory and Information Theory before using the lambda
fuzzy approximation for calculating the fuzzy measures of
the set of classifiers. We also use three different weighting
schemes for calculating the Shapley values.

3) We make results intuitive and interpretable with the aid
of Explainable AI to enhance the transparency of the
black-boxed AI systems. This includes heat map-based
visualization of the network activation maps by employ-
ing the RISE algorithm [7] to provide explainability about
the class prediction. This will enable radiologists to lo-
calize the region(s) in the CXR for examining pulmonary
damage severity.

4) We have created a new CXR image dataset known as
Novel COVID-19 Chestxray Repository by combining
three publicly available CXR image repositories for future
use and reference by researchers in the field of COVID-19
identification and diagnosis.

The remaining paper is organized as follows. Section II of-
fers a summary of the literature relating to the diagnosis of
pulmonary disease relevant to COVID-19 disease. A detailed
overview of our proposed solution is given in Section III. Sec-
tion IV provides the dataset description, experimental results ob-
tained by employing the proposed model, and further discussions
including error analysis and comparison with state-of-the-art.
Finally, the paper is concluded in Section V by outlining some
future research directions.

II. LITERATURE SURVEY

1) Recent Deep Learning Approaches: In the recent past,
machine learning and deep learning-based approaches have been
employed for COVID-19 identification and diagnosis from CXR
images, CT scans, and LUS images. In this section, we have
discussed the automated CAD systems used for COVID-19
detection and diagnosis.

Islam et al. [8] used CNN followed by long short-term mem-
ory(LSTM) network for automated detection of COVID-19 from
CXR images using deep learning. In this proposed model, CNN
was used as a feature extractor, and the LSTM network was
used to classify COVID-19 based on the CNN-derived deep
image descriptors. The framework proposed, however, had some
drawbacks. The developed system could not distinguish other
views of CXRs such as anterior-posterior (AP), lateral, etc., as it
only focused on the posterior-anterior (PA) view of CXR images.
Besides, COVID-19 images contained various symptoms of the
disease that they had failed to efficiently classify.

A COVID-19 diagnostic method called COVIDetectioNet
was proposed by Turkoglu et al. [9]. Deep features were ex-
tracted from the CXR images in this method using the pre-
trained AlexNet architecture, preceded by the selection of the
most salient features from the image descriptors obtained using
a feature selection technique known as Relief algorithm fol-
lowed by generation of decision scores using Support Vector
Machine(SVM). However, estimating the optimal parameters
for the Relief algorithm and the SVM classifier was seen as a
limitation of the proposed workflow. A deep learning approach
for COVID-19 detection was developed by Sahlol et al. [10] in
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which Inception was employed for deep feature extraction from
CXR images accompanied by filtering the resulting features
using a swarm-based feature selection algorithm, known as the
Marine Predators Algorithm, and fractional-order calculus for
selection of the most relevant features.

In [13], Ucar et al. implemented a deep Bayesian
optimization-based SqueezeNet model called COVIDiagnosis-
Net. By fine-tuning the pre-trained SqueezeNet model, and
performing hyperparameter optimization the robustness and
efficiency of the proposed method were leveraged substantially.
The SqueezeNet is preferred in embedded applications due
to its functional layout and generalization efficiency, thereby
opening the door for robust product deployment that can run
mobile and attract the end-user. In [14], a deep neural network
architecture was used by Roy et al. for decision scores prediction
associated with a single image of LUS and recognizes the regions
comprising pathological significant objects in a weakly super-
vised manner. A lightweight methodology based on uni-norms
for the aggregation of frame-level prediction scores was also
adopted and the score associated with the LUS video series was
computed.

In [15], the hyper learning binary dragonfly algorithm
(HLBDA) was introduced by Too et al. as a feature selection
technique to hand-pick the vital features from the images. For
the COVID-19 classification, the proposed model was used and
the results showed the supremacy of HLBDA in leveraging
the precision of the classification and reducing the number of
features selected. A machine learning approach was used by
Elaziz et al. [16] for a 2-class classification problem(COVID-19
and non-COVID) using CXR images. The features were ex-
tracted from the CXRs using Fractional Multichannel Expo-
nent Moments (FrMEMs), followed by a modified Manta-Ray
Foraging Optimization based on differential evolution used for
selecting salient features. The feature selection technique en-
abled leveraging the classification efficiency and minimizing
the resource consumption and computation complexity. How-
ever, the authors could not obtain optimal hyperparameters
for training the KNN classifier and was hence a drawback of
this study. Babukarthik et al. [18] propounded a deep learning
approach namely Genetic Deep Learning CNN (GDCNN). The
GDCNN method involved population initialization where the
population was arbitrarily initialized and the population was
continually progressed on a generation-by-generation basis to
create improved architectures by utilizing redefined genetic
operations.

Abbas et al. [45] proposed a deep CNN architecture based
on class decomposition, coined as Decompose, Transfer, and
Compose (DeTraC) model for enhancing the adaptation of pre-
trained transfer learning models for detection of COVID-19
cases. The proposed class decomposition technique improved
the low variance classifiers which facilitated investigating the
decision boundaries. As a result, DeTraC addressed the issue of
irregularities in the image dataset. Wang et al. [38] revamped
the original COVID-Net by improving network architecture for
COVID-19 detection from CT scan images. The authors also
introduced contrastive cross-site learning and a learning rate
scheduling strategy based on cosine annealing which enhanced

the joint training protocol and facilitated domain invariance
enhancement, remarkably reducing the inter-site data hetero-
geneity. Panetta et al. [44] presented a shape-dependent Fi-
bonacci -p patterns-based feature extractor for distilling out the
intricate textural features from CXR images.

1) Fuzzy Ensemble Techniques: The authors of [23] pre-
sented a Mobius-like transformation of discrete fuzzy mea-
sures and proposed an evaluation formula for the corresponding
Choquet-like integral, including the Sugeno integral. Murillo
et al. [42] proposed a revamped Heuristic Least Mean Squares
(HLMS) implementation, a gradient-based algorithm for iden-
tification of fuzzy measures, that enhanced the convergence by
improving the formula for iterative estimation of fuzzy mea-
sure coefficients and the monotonicity check. [39] devised a
mathematical programming approach for the derivation of fuzzy
measures based on the correlation coefficient. Kundu et al.. [47]
proposed an ensemble strategy that generates fuzzy ranks of
classifiers using Gompretz function. They adaptively fused the
decision scores of the classifiers to make the final predictions of
the test cases.

Beliakov et al. [40] introduced k-interactivity which reduced
the number of variables and constraints which further facilitated
the reduction of the complexity of learning fuzzy measures.
The fuzzy measures were learned using a linear programming
problem. In [41], Grabisch et al. introduced a gradient algorithm
for identifying fuzzy measures from empirical data. The paper
presented the use of a mix of standard optimization algorithms,
such as Lemke’s method, and utility theory for identifying the 2n

coefficients based on semantical considerations. Choquet inte-
gral of fuzzy number-valued functions based on σ − λ rules was
formulated by the authors of [26]. The paper further proposed
genetic algorithm (GA) based optimization for computing fuzzy
measures on fuzzy number-valued data. For learning monotone
models, Tehrani et al. [27] demonstrated the use of Choquet
integral as an aggregator operator in machine learning problems.

III. PROPOSED WORK

A. Method Overview

For the COVID-19 detection from CXR images, in the present
work, we have proposed a lambda fuzzy-based ensemble model
of DCNN architectures. At first, the CXR images have been
preprocessed. Then fine-tuned, well-established DCNN archi-
tectures, pre-trained over the ImageNet dataset [36] namely
VGG16, Xception, and InceptionV3 are for feature extraction.
The image descriptors obtained are then fed as input into a
Multi-layer Perceptron (MLP) classifier with softmax output for
a 3-class classification problem (COVID-19, Pneumonia, and
Normal). The confidence scores obtained per image, across the
three DCNN models used, are then combined using Choquet
integral into a confidence matrix. For the evaluation of the Cho-
quet integral and the Choquet integral itself, the fuzzy measures
required are calculated as follows. We calculate the Shapley
values, using coalition game theory and information theory,
which become the fuzzy measures of the single classifier set.
We introduce three different weighting schemes to calculate the
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Fig. 1. Overall block diagram of the proposed ensemble model used
for screening COVID-19 from CXR images.

Shapley values better. We then use lambda fuzzy to calculate
the fuzzy measures of the other subsets of classifiers whose
cardinality is greater than 1 and then use Choquet integral for
aggregation. Three aggregations done with respect to the three
weighting schemes are combined at the end. Fig. 1 demonstrates
the flowchart of our proposed methodology. In Fig. 1 it can
be observed that first the training images are augmented and
features are extracted from both training and the test images.
The images are then classified using the MLP classifier. As
mentioned above, we use three different sets of fuzzy measures
for the calculation of three different Choquet integrals. First,
the weights are calculated for each set. In the next step, the
Shapley values are calculated. Lambda fuzzy approximation is
then applied to calculate the fuzzy measures for subsets with
cardinality greater than one. In the next step, the three different
Choquet integrals are calculated for each of the sets of fuzzy
measures. Finally, as shown in Fig. 1, the results of the three
Choquet integrals are aggregated using majority voting and
the accuracies are calculated using different evaluation metrics.
In addition to visualize the results, we yield saliency maps
for our model’s predictions using the RISE algorithm [7], an
approach used to explain black-box models by visualizing the

semantically significant regions of the input images based on the
generated class prediction.

B. Data Preprocessing and Augmentation

The CXR images of varying resolutions are resized before
feeding as input into the DCNN models. The images are down-
scaled to 512x512 pixels using bicubic interpolation, color space
translation was done from RGB to grayscale. All input images
are normalized using proprocess_input function of the Keras Ap-
plications module [37], which subtracts the mean RGB channels
of the ImageNet dataset from each input CXR image.

Further, image augmentation techniques are applied to the
preprocessed images. Various image augmentation techniques
such as image rotation by 5◦, 10◦, 15◦, and 20◦, vertical flip,
horizontal flip, shearing, horizontal and vertical image transla-
tion are performed.

C. Deep Feature Extraction and Model Training

The primary agenda of deep feature extraction is to distill
out salient, discriminating information from the original raw
images and represent that information in a lower dimensionality
space. In this proposed work, we have employed the approach
of deep feature extraction from CXR images using fine-tuned
DCNN models. Using the GlobalAveragePooling operation, we
then extract deep salient features from the convolutional layers
directly before or after the max-pooling layer, from unique
blocks of the pre-trained DCNN models. By employing the
Keract library [17], the visualization of activation maps gen-
erated corresponding to layers in the DCNN architectures are
studied, and consequently the suitable convolutional layers for
deep visual feature extraction is determined. This method makes
deep black-box neural networks highly interpretative and easy
to debug. The features extracted from these specific layers of the
pre-trained DCNN models, as represented in Table I, are then
concatenated into a single feature vector known as a deep image
descriptor.

For feature extraction, we have used three standard DCNN
models, pre-trained on the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [19], namely VGG16 [20], Xcep-
tion [21] and InceptionV3 [22]. In Fig 2, VGG16 has been
shown as an example for the extraction of discriminating fea-
tures from the input CXR images. The global average pooling
operation is applied to 5th(block2_conv2), 9th(block3_conv3),
13th(block4_conv3) and 17th(block5_conv3) convolutional lay-
ers comprising 128, 256, 512, and 512 channels respectively.
These features are fused to form a single deep feature vector
having a length of 1408. The other two deep CNN models,
namely Xception and InceptionV3, are used in a similar manner
for the extraction of rich image descriptors from CXR images.
The modified DCNN models, with fully-connected layers added
after the feature vector, are then fine-tuned and trained for 100
epochs for optimizing the weights of the model which thereby
outputs a refined deep feature embedding The obtained feature
vector after model training is finally fed into an MLP classifier,
consisting of a Fully Connected (FC) layer of 512 neurons (with
activation of Rectified Linear Unit or ReLU) followed by a
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TABLE I
DETAILS OF REGIONS OF FEATURE EXTRACTION FROM THE GIVEN DCNN MODELS ALONG WITH FEATURE MAP DIMENSIONS OF THE CONVOLUTIONAL

LAYER. THE THIRD COLUMN DEPICTS THE DIMENSION OF THE FEATURE VECTOR EXTRACTED FROM THE CXR IMAGES

Fig. 2. Schematic diagram of VGG16 network architecture for deep
feature extraction from the CXR images.

dropout rate of 0.5. Finally, there is the output layer of three
neurons (with softmax activation) for the 3-class classification
of the CXR images.

1) Loss Function: Inspired by the approach given by the
authors of [38], we have used a combination of categorical
cross-entropy loss and contrastive loss as our training objective
Loverall. The cross-entropy loss function LCE is given by (1).

LCE = −
∑
i=1

yi · log ŷi (1)

where ŷi is the i-th predicted value in the network output, yi is the
corresponding target value. Categorical cross-entropy is used for
measuring the classification performance of the DCNN models.
Contrastive loss Lcon [11] is a hardness-aware loss function
that is used to map vectors that model the cosine similarities of a
network output with an example of a positive class and a negative
class. Contrastive learning also facilitates in regularizing the
latent space and helps in addressing the issue of domain gap
while dealing with heterogeneous CXR data sources, which
resulted in robust joint training. A pair (zi, zj) is denoted as
positive pair if they belong to the same class, otherwise they are
denoted as negative. For a mini-batch consisting of K samples,
the contrastive loss l(zi, zj) over each positive pair (zi, zj) is
given by

l(zi, zj) = −log
exp (sim(zi, zj)/τ)∑K

k=1 f(zi, zk) · exp (sim(zi, zk)/τ)
(2)

where f(zi, zk) outputs 0 for positive pair and 1 for negative pair.
τ denotes the temperature parameter. The overall contrastive loss
Lcon is computed as the summation of l(zi, zj), as given in 2,
for all positive pairs in a given mini-batch for both (zi, zj) and

(zj , zi). The overall training objective is given as:

Loverall = LCE + αLcon (3)

where α is a hyper-parameter.
2) Learning Rate Schedule: Cosine annealing [12] is used

for the model training as a learning rate scheduler. The learning
rate decay strategy, as given in 4), enhances the robustness of the
model training and also facilitates in addressing the large vari-
ance present in the input space when dealing with heterogeneous
CXR images.

ηt = ηmin +
1

2

(
1 + cos

(
t

T
π

))
(η0 − ηmin) (4)

where ηt is the updated learning rate after executing the sched-
uler module, ηmin denotes the threshold of minimum learning
rate, η0 is the base learning rate (1e-3), t is the current epoch
and T is the total number of training epochs.

D. Proposed Ensemble Method

As mentioned earlier, in the proposed method, we have used
Choquet integral for aggregating the decision of the three deep
learning models.

1) Summary of the Proposed Ensemble Method: As already
mentioned, we have used Choquet integral to combine the deci-
sions of the classifiers. However, for that, we need to calculate
the fuzzy measures for all the subsets of classifiers. To calculate
the fuzzy measures, we have used the Shapley value of the
Coalition Game theory and Lambda fuzzy approximation. To
calculate the Shapley value, marginal contribution has to be
calculated. We have used mutual information and conditional
mutual information to calculate the marginal contribution. It
is to note that the direct calculation of mutual information is
highly difficult, and so we have used heuristics. Finally, three
different weighting schemes have been used, and a different set
of fuzzy measures is obtained for each of them. These three sets
of measures have been used to evaluate three different Choquet
integrals, each of which used a different set of fuzzy measures.
In the end, a majority voting scheme is used to combine the
decisions of these three Choquet integrals.

2) Introducing Lambda Fuzzy Measures: However, for this,
we need to calculate the fuzzy measures which is a very challeng-
ing task due to the monotonic conditions of the fuzzy measures
and also the super-additivity and the sub-additivity schemes.
Let X be a universe of discourse, then μ : 2X → [0, 1] is a
fuzzy measure if it satisfies (i) (Boundary Condition) μ(∅) = 0
and μ(X) = 1. (ii) (Monotonicity) For every A,B ∈ 2X , if
A ⊆ B, then μ(A) ≤ μ(B). (iii) (Continuity) For every se-
quence of X , if either A1 ⊆ A2 ⊆ . . . or A1 ⊇ A2 ⊇ . . ., then
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limi→∞ μ(Ai) = μ(limi→∞ Ai). One easy way to approximate
the fuzzy measures is to use the lambda fuzzy approximation.
In this case, we just need to calculate the fuzzy measures of the
individual classifiers, and the fuzzy measures for the subsets of
classifiers would be calculated automatically using (5). In this
equation λ is a parameter and in our case Ai and Aj represent
classifiers.

μ(Ai ∩Aj) = μ(Ai) + μ(Aj) + λμ(Ai)μ(Aj)

given μ(Ai ∪Aj) such that λ > −1
(5)

λ is calculated using (6). In this equation, N is the number of
classifiers and An represents the classifiers (in our case).

λ + 1 =
N∏

n=1

(λμ(An) + 1) (6)

3) Use of Coalition Game Theory for the Calculation of
Fuzzy Measures of Individual Classifiers: For calculating the
fuzzy measures of the individual elements or in this case classi-
fiers, we take the help of coalition game theory and information
theory. Shapley value, a concept used in the coalition game
theory, is applied to calculate the payoff for each element (in
this case classifier) when the grand coalition is formed. The
formula for calculating the Shapley value is shown in (7). In (7),
n is the total number of players and the summation is done over
all the subsets S of the grand coalition N such that they do not
contain the element i. In this context n is the total number of
classifiers, S is all the possible subsets of classifiers of the grand
coalition of classifiers N , which do not contain the classifier i.
The function v is known as the Characteristic function and v(S)
indicates the worth of the subset or in other words, it indicates
the total payoff that is available for division among the members
(in this case classifiers) of S. The payoff, ϕ that is paid to i in
the coalition is calculated using Shapley Value.

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (7)

The expression (v(S ∪ {i})− v(S)) is known as the marginal
contribution. Shapey value can also be interpreted as an expected
marginal contribution. It is the difference between the value of
the characteristic function of a subset containing the element
i and the value of the characteristic function of the subset not
containing i but containing all other elements present in the last
subset. This difference indicates the contribution that i has on
the subset. A higher value of marginal contribution indicates
that adding i to the subset increases the value of v a lot, thereby
increasing the profit of that subset.

4) Calculating Marginal Contribution Using Information The-
ory: We take the help of information theory to calculate the
marginal contribution. Classifiers whose decisions are highly
correlated with each other and the correlation of whose decision
to the true label decreases when they are considered together are
known as redundant classifiers. If two classifiers are completely
unrelated and if their relevance to the true label does not increase
when they are considered together they are known as indepen-
dent classifiers. Two classifiers are said to be interdependent
if their relevance to the true label increases when they are

considered together instead of being considered individually.
We use mutual information and conditional mutual information
to understand how interdependent, redundant, or independent
a classifier is with the set of classifiers already selected. Let L
be the subset that has already been selected and let fk be the
classifier that we consider to be added to this subset. Further,
I(L; class) is the mutual information between the decisions
made by the classifiers in the set L and the true labels, while
I(fk; class|L) is the conditional mutual information between
the predictions of the classifier fk and the true labels given the
decisions made by the classifiers in the set L. The following
formulas hold.

I(fk; class|L) < I(L; class) for redundancy (8)

I(fk; class|L) > I(L; class) for interdependency (9)

I(fk; class|L) = I(L; class) for independence (10)

We define the difference between mutual information and
conditional mutual information as the marginal contribution.
We choose this difference as it gives us some idea about the
contribution of fk in the subsetL. In other words, we capture the
information about the true label that we gain after the inclusion
of fk to the already selected subset of classifiers L. Therefore,
the equation becomes,

marginal contribution = I(fk; class|L)− I(L; class)
(11)

5) Heuristics to Calculate Mutual Information: However, it is
highly impractical and in some cases impossible to calculate
marginal contribution using (11), because of the difficulties
in calculating the formulas regarding mutual information and
conditional mutual information. Hence, we choose to use a
heuristic method for calculating the marginal contribution. The
marginal contribution of fk would be high when the mutual
information between fk and the true label is high, while the
mutual information between fk and L is low. Also, the mutual
information between the elements of the set L must be low.
When these conditions are met, the marginal contribution of
fk becomes larger. Let l be the cardinality of set L. We frame
the equation as shown in 12, where I(fk, fi) is the mutual
information between the classifiers fk and fi, where, fk is the
classifier under consideration as mentioned above, while, fi is
a classifier of the set L.

marginal contribution = I(fk; class)− 1

l

∑
fi∈L

I(fk, fi)

(12)
6) The Three Weighting Schemes: The assumption on

which the (12) is based, however, is not entirely correct. The
assumption is that we assign maximum values to classifiers, fk,
which convey maximum information about the true label (class)
and provide minimum redundant information when compared
to other classifiers already present in the subset L. This is not
entirely correct as when classifiers already have high accuracy,
they convey more information about the true label (class), but
at the same time they become more and more repetitive. Thus,
a classifier which has higher accuracy and is repetitive should
be penalized more as compared to a classifier which has lower
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accuracy and is repetitive. We incorporate this logic using (13)

marginal contribution = I(fk; class)

− 1

l

∑
fi∈L

weights ∗ I(fj , fi) (13)

We can either assign them a set of weights logically based
on the validation accuracy they obtained or assign them a few
different sets of weights and take the average result. We use
the second technique as this is a heuristic method and choosing
one set of correct weights may not be possible. Rather a range
of weights may be considered suitable, and we need to use as
many of them as possible. In our case, we aim to figure out three
such sets of weights and averaged out their results.

The three sets of weights are based logically as follows.
Since we want to assign higher mutual information values to the
classifiers which have higher accuracy, we assign them lower
weights. In the first logic, we subtract the validation accuracy
of each of the pair of classifiers fk and fi from 1 and take
the average. To normalize, we then divide using the maximum
weight. In the second set of weights, we take the reciprocal of the
validation accuracies of both the classifiers, average them and
then divide by the maximum to normalize. The third weighting
scheme is of taking the negative of the logarithm of the validation
accuracies of the two classifiers and then taking the average. We
then normalize the weight by dividing it by the maximum weight.
Let Vk and Vi be the validation accuracies of the two classifiers
fk and fi respectively. For weighting scheme 1, we have,

weight1 =
(1− Vi) + (1− Vk)

2
(14)

Normalized Weight1 =
weight1

Max(weight1)
(15)

For weighting scheme 2, we have,

weight2 =
(1/Vi) + (1/Vk)

2
(16)

Normalized Weight2 =
weight2

Max(weight2)
(17)

For weighting scheme 3, we have,

weight3 =
(−log(Vi)) + (−log(Vk))

2
(18)

Normalized Weight3 =
weight3

Max(weight3)
(19)

Thus we get three sets of fuzzy measures.
7) The Choquet Integral: For each set of fuzzy measures,

we evaluate a different Discrete Choquet integral. The form
of the Discrete Choquet integral in (20) was introduced
in the paper [28]. The discrete Choquet integral with re-
spect to fuzzy measure μ is given by (20), where x =
(x(1), x(2), x(3). . .x(n)) is a non-decreasing permutation of the
inputx, which in our case are the confidence scores,A(i+1) = φ,
Ai = {(1), (2), (3), . . ..(n)}, which in our case is the subset of
classifiers and μ(Ai) are the fuzzy measures for the subsets of
classifiers which we have calculated using Shapley value and

TABLE II
STATISTICS OF THE NUMBER OF CXR IMAGES USED FROM DIFFERENT
PUBLICLY AVAILABLE REPOSITORIES TO FORM THE NOVEL COVID-19

CHESTXRAY REPOSITORY

information theory.

Cµ(x) =
n∑

i=1

x(i)(μ(Ai)− μ(Ai+1)) (20)

After rearranging the terms and assuming that x0 = 0, the Dis-
crete Choquet integral [24] can be represented by (21), which
we have used in our calculations.

Cµ(x) =

n∑
i=1

(x(i) − x(i−1))μ(Ai) (21)

The Choquet integral creates a confidence score for the three
classes after combining the confidence scores of the three classi-
fiers for each of the classes. The image is classified into the class
with the maximum confidence score for each of the Choquet
integral with respect to the three sets of fuzzy measures.

The majority voting is used on the result obtained from the
evaluation of the three Choquet integrals with respect to the three
sets of fuzzy measures for making the final decision.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset Description

In this paper, by combining publicly available CXR image
repositories, we have created a CXR image archive known as
the Novel COVID-19 Chestxray Repository. The dataset can
be publicly accessed on Kaggle [30]. Three different datasets
derived from Github and Kaggle databases are used to do this.
In our research, CXR frontal and lateral images are used because
this view of radiography is widely used by radiologists for
performing clinical diagnostic assessments. II offers a detailed
description of the Novel COVID-19 Chestxray Repository and
its parent image datasets. We have outlined how this dataset is
generated in the following section.

� COVID-19 Radiography Database: There are 219
COVID-19, 1345 viral pneumonia and 1341 normal CXR
radiographic images in the COVID-19 [29] Radiography
Database. This dataset was developed, in collaboration
with medical professionals from Pakistan and Malaysia,
by a group of researchers from the University of Qatar in
Doha, Qatar, and the University of Dhaka in Bangladesh.
With the advent of new cases of COVID-19 patients
internationally, this database is constantly updated. This
database can be found publicly at [33].

� COVID-Chestxray set: A public image archive on
Github [34] consisting of both CT scans and digital CXR
files has been created by Joseph Paul Cohen, Paul Mor-
rison, and Lan Dao. These were mainly collected from
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Fig. 3. (a) COVID-19 positive CXR, (b) Pneumonia infected CXR, and
(c) Normal CXR.

retrospective cohorts of pediatric patients from the Women
and Children of Guangzhou Medical Center. The dataset
consists of 521 COVID-19 positive, 239 viral and bacterial
pneumonia, and 218 normal radiographic CXR images of
varying image resolutions. We have excluded the CT scan
images while combining this dataset with the rest of the
parent CXR image repositories.

� Actualmed COVID chestxray dataset: The Actualmed
COVID chestxray dataset comprises 12 positive COVID-
19 and 80 normal CXR images. The database is available
at the Github link to the database at [35].

CXR images of COVID-19, Pneumonia, and Normal
(healthy) classes are included in this newly created dataset, with
a total of 752, 1584, and 1639 images respectively. Illustrations
of CXR radiographic images of each class are given in Fig. 3.

B. Division of the Dataset

About 10% of the CXR images in the dataset have been
used for testing. The rest of the samples are divided into a
4:1 ratio to form the training and validation sets. Thus, the
number of test images is equal to 399, while the numbers of
training and validation images are 2861 and 715 respectively.
The test images have been randomly selected. After performing
image augmentation protocols, the sizes of the training and
validation sets are increased fourfold. Table III summarizes the
dataset distribution which we have employed for performing the
experiments presented in this paper.

C. Experimental Setup

To implement the proposed method, we have used Python
programming language with the aid of Keras package with
Tensorflow as the deep learning framework. We have run the
codes on Google Colaboratory having the following system

TABLE III
CLASS DISTRIBUTION OF THE PROPOSED NOVEL COVID-19 CHEST XRAY

REPOSITORY USED TO EVALUATE THE PROPOSED METHOD

specifications: Nvidia Tesla T4 with 13 GB GPU memory,
1.59 GHz GPU Memory Clock, and 12.72 GB RAM.

D. Results

1) Visualization: In this section, we enhance the inter-
pretability of the COVID-19 analysis with the aid of Explainable
AI, with an attempt in overcoming the black-box dilemma, and
making deep learning model predictions intuitive and under-
standable in the field of CAD-based diagnosis of COVID-19.

Using RISE [7], an approach to describe black-box models by
estimating the significance/saliency of the input image regions
for the model’s prediction, we generate saliency maps for our
model’s predictions to illustrate the proposed study’s results
qualitatively. In this method, 500 randomly masked represen-
tations of a given CXR image are queried and a weighted
mask corresponding to each output class is produced using
their generated classification scores. Therefore, the mask regions
that retain semantically important characteristics will result in
a higher confidence score and thus a higher weight for the
respective class in the final image mask. This heatmap produced
is then superimposed over the CXR image of the input, making
it intuitive for radiologists to examine the lung regions affected
by the disease. The saliency maps can also be useful to the
radiologist in localizing the X-ray areas for performing severity
assessments. Fig. 4 shows the saliency maps generated using
RISE [7] approach corresponding to COVID-19 positive, Pneu-
monia, and Normal CXR images respectively. The regions where
colors tend towards infrared (red regions) depict the pulmonary
areas which are severely affected. As we gradually tend towards
the end of the blue color spectrum, the severity of lung infection
decreases.

2) Classification Performance: We have performed a 3-class
classification of the CXR images which are COVID-19 affected,
Pneumonia affected, and Normal lungs. We have used three pre-
trained models, namely, VGG16, Xception, and InceptionV3,
and then ensembled the decision of these models using Choquet
integral. The fuzzy measures are calculated using Coalition
game theory and Lambda fuzzy approximation.

The parameters used for optimizing the DCNN model training
procedure are given as follows. For training the MLP classifier
using the extracted image descriptors, the Adam optimizer, with
0.001 as its base learning rate and hyperparameters β1 and β2

equal to 0.6 and 0.8 respectively, are employed. The learning rate
and hyperparameter values are experimentally inferred to be the
most optimal values obtained using the Grid search technique for
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Fig. 4. Saliency maps of (a) COVID-19, (b) Pneumonia, (c) Normal
CXR image samples. The first, second, and third columns of the figure
illustrate the original CXR image of each class, heatmap, and saliency
map generated using RISE approach respectively.

TABLE IV
VALIDATION AND TEST ACCURACIES (%), PRECISION, RECALL, AND AUC
FOR THE 3-CLASS CLASSIFICATION OF CXR IMAGES FOR EACH OF THE 3

CLASSIFIERS AND THE ACCURACY OF THE PROPOSED ENSEMBLE METHOD

where Cl stands for Classifier, En stands for Ensemble, VA stands for Validation Accuracy,
TA stands for Test Accuracy, P stands for Precision, R stands for Recall, Avg stands for
Average, WS-1 is Weighting Scheme-1, WS-2 is Weighting Scheme-2, WS-3 Weighting
Scheme-3 and AUC is Area under the Curve.

model tuning and optimization. The batch size is set at 32, and
model training is halted at 1000. Subsequently, the best model
weights are saved.

In Table IV, we have recorded the validation accuracy, test
accuracy, precision, recall, and AUC of each of the three mod-
els, and the final results obtained after applying the ensemble
methods (both tiers). In Table V it can be seen that the precision
of our model is high for COVID-19 lung X-Ray images and so
it is clear that our model works properly for the minority class
and hence takes care of the unbalanced dataset. In Table VI,
we have shown the Shapley value that we have obtained for the
three classifiers, namely VGG-16, Xception, and InceptionV3
for the three weighting schemes. It is clear that for all the
weighting schemes Inception V3 is assigned a higher value.

TABLE V
PERFORMANCE OF OUR PROPOSED METHOD ON THE NOVEL COVID-19

CHESTXRAY REPOSITORY [30]

TABLE VI
SHAPLEY VALUES CALCULATED OF THE THREE CLASSIFIERS VGG16,

XCEPTION AND INCEPTION V3 FOR EACH OF THE WEIGHTING SCHEMES

where SV stands for Shapley Value, WS-1 stands for Weighting Scheme-1, WS-2 stands
for Weighting Scheme-2 and WS-3 stands for Weighting Scheme-3

TABLE VII
CALCULATED FUZZY MEASURE VALUES FOR EACH OF THE 2n − 1 (IN OUR
CASE 7) SUBSETS OF THE N (IN OUR CASE 3) CLASSIFIERS FOR EACH OF

THE 3 WEIGHTING SCHEMES

where FM stands for Fuzzy measure, WS-1 stands for Weighting Scheme-1, WS-2 stands
for Weighting Scheme-2 and WS-3 stands for Weighting Scheme-3

This is intuitive as the accuracy of Inception V3 is higher as
compared to those of Xception and VGG16. Values assigned by
different weighting schemes can be found to be different. This is
because, as stated above, since these weighting schemes focus
differently on different intervals of accuracies, they differ in the
assignment of the Shapley values and the relative importance of
the classifiers. However, this difference is the main reason for
the further increase of the accuracy when the results calculated
from the three weighting schemes are combined. In Table VII we
have shown the fuzzy measures obtained using the three different
sets of weights. In this table, we refer to VGG-16 as 1, Xception
as 2, and Inception-V3 as 3. Sets like (1, 2) are essentially sets
of classifiers like {V GG− 16, Xception}. The values satisfy
the monotonic behavior of the fuzzy measures. Besides, more
compatible classifiers or sets of classifiers are assigned higher
values as is expected by our idea. We give more importance to
sets that have more compatible classifiers while calculating the
final decision. Moreover, it can be seen that different weighting
schemes give a varied relative importance to different subsets of
classifiers. This again justifies our reason for a second ensemble
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Fig. 5. Training and validation accuracy curves of each DCNN model
employed before proposed ensemble method.

Fig. 6. Training and validation loss curves of each DCNN model em-
ployed before proposed ensemble method.

Fig. 7. ROC of the 3 DCNN models and proposed ensemble method.

and selecting three different weights which have different views
of the classifiers and hence produces a more generalized result.

We have plotted the accuracy and loss curves of the three
DCNN models used, before performing the proposed ensemble
method, for both training and validation sets, shown by Fig. 5
and Fig. 6 respectively. In Fig. 7, we have plotted the Receiver
operating characteristic (ROC) graph for the 3 classifiers and

Fig. 8. Multi-labelled ROC of the proposed ensemble method.

Fig. 9. Confusion matrix of the proposed ensemble method.

the ensemble method. In Fig. 8 we plot the multi-labeled ROC
curve for the 3 classifiers and the proposed ensemble method.
In Fig. 9 we have plotted the Confusion Matrix for the proposed
ensemble method.

From Table IV, Fig. 7 and Fig. 8 it is clear that the Test
Accuracy, Precision and Recall all three improve a lot after
Fuzzy ensemble. The accuracy increases around 2% from the
accuracy of the best performing deep learning model, while
it increases by almost 4.5% from the accuracy of the worst
performing model.

Again, from Fig. 9 it is clear that our model classifies all
Normal CXRs correctly, while it misclassifies only 2 COVID-19
infected cases as Normal Pneumonia and misclassifies only
2 Normal Pneumonia CXRs as Normal. The reason for the
first error is that COVID X-Ray images often look similar to
that of Normal Pneumonia X-Ray images. The reason for the
other set of mistakes is that the patients were having very mild
symptoms of Pneumonia and hence the X-Ray looked almost
like the X-Ray of a Normal person.
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TABLE VIII
COMPARISON OF OUR PROPOSED METHOD WITH THE METHODS

REPORTED IN [32] AND [31] ON THE COVIDX DATASET

E. Comparison With Other Methods

Since in this classification problem there is no standard dataset
that has been used by most of the past researchers, we cannot
compare with other methods directly as they each evaluate their
method on a different dataset. Thus each method has used its
dataset and to compare with each of the methods, we need
to use the respective datasets, each of which is different in
composition and have different sets of images. We choose one
such dataset which has been used by two methods for evaluation
or comparison. For the comparison, with the papers [31] and [32]
(COVIDNet), we evaluate using the COVIDx dataset. In Ta-
ble VIII we have depicted the comparison with the said methods.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed an ensemble of deep learning
models for the screening of COVID-19 from CXR images. In
doing so, we have used Choquet integral for aggregation, which
takes into consideration the decisions made by the subset of
classifiers along with individual classifiers unlike in other aggre-
gation functions. We have also proposed a novel method for the
calculation of the Fuzzy measures using Coalition Game theory
(Shapley value), Information Theory, and Lambda fuzzy approx-
imation. As feature extraction, we have used three pre-trained
DCNN models namely, VGG-16, Xception, and Inception V3
while for the classification task we have used MLP.

In this paper, we have considered that all the classification
models are important for classification to some extent. We may
consider a number of different classifiers all of which may not
be important, but only a subset of them may provide valuable
information. However, the basic consideration of Shapley value
is that the players (here classifiers) form a Grand Coalition
even if some of the classifiers do not convey useful information.
Thus the selection of useful classifiers from a set of different
classifiers which may or may not convey useful information
must be done based on experimentation. This can be considered
as a shortcoming of the proposed method and we intend to take
care of this problem in our future work.

VI. CODE AVAILABILITY

The python code implementation is publicly available at https:
//github.com/subhankar01/Covid-Chestxray-lambda-fuzzy.

VII. DATA AVAILABILITY

The proposed Novel COVID-19 Chestxray Repository can
be accessed at https://www.kaggle.com/subhankarsen/novel-
covid19-chestxray-repository.
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