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Exploiting Shared Knowledge From Non-COVID
Lesions for Annotation-Efficient COVID-19 CT

Lung Infection Segmentation
Yichi Zhang , Qingcheng Liao, Lin Yuan, He Zhu, Jiezhen Xing, and Jicong Zhang

Abstract—The novel Coronavirus disease (COVID-19) is
a highly contagious virus and has spread all over the
world, posing an extremely serious threat to all countries.
Automatic lung infection segmentation from computed
tomography (CT) plays an important role in the quantita-
tive analysis of COVID-19. However, the major challenge
lies in the inadequacy of annotated COVID-19 datasets.
Currently, there are several public non-COVID lung lesion
segmentation datasets, providing the potential for general-
izing useful information to the related COVID-19 segmenta-
tion task. In this paper, we propose a novel relation-driven
collaborative learning model to exploit shared knowledge
from non-COVID lesions for annotation-efficient COVID-19
CT lung infection segmentation. The model consists of a
general encoder to capture general lung lesion features
based on multiple non-COVID lesions, and a target encoder
to focus on task-specific features based on COVID-19 in-
fections. We develop a collaborative learning scheme to
regularize feature-level relation consistency of given in-
put and encourage the model to learn more general and
discriminative representation of COVID-19 infections. Ex-
tensive experiments demonstrate that trained with limited
COVID-19 data, exploiting shared knowledge from non-
COVID lesions can further improve state-of-the-art perfor-
mance with up to 3.0% in dice similarity coefficient and
4.2% in normalized surface dice. In addition, experimental
results on large scale 2D dataset with CT slices show that
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our method significantly outperforms cutting-edge seg-
mentation methods metrics. Our method promotes new
insights into annotation-efficient deep learning and illus-
trates strong potential for real-world applications in the
global fight against COVID-19 in the absence of sufficient
high-quality annotations.

Index Terms—COVID-19, computed tomography,
few-shot learning, knowledge transfer, lung infection
segmentation.

I. INTRODUCTION

S INCE the beginning of 2020, the novel coronavirus dis-
ease (COVID-19) has rapidly spread worldwide, posing

an extremely serious threat and challenge to all countries. This
severe disease has been declared as a public health emergency of
international concern by the World Health Organization (WHO),
which has caused more than 2,600,000 deaths until the date of
9th March 2021, according to the statistics of Johns Hopkins
Coronavirus Resource Center.1

As one of the most commonly used imaging methods, com-
puted tomography (CT) plays an important role in the fight
against COVID-19 [1]–[3]. Researchers have proved that CT
images have strong ability to capture typical features like ground
glass and bilateral patchy shadows of affected patients [4] and
are shown to be more sensitive compared with standard viral
nucleic acid detection using real-time polymerase chain reaction
(RT-PCR) for the early diagnosis of COIVD-19 infection [5].
Besides, CT images can provide visual evaluation of the extent
of lung abnormalities and assist the process of prognostic [6].

In clinical practice, the segmentation of lung infections from
CT images is an important component to assist in further assess-
ment and quantification of the diseases [7]. Since manual contour
delineation is time-consuming and laborious, and suffers from
inter and intra-observer variabilities [8], it is of great significance
to develop artificial intelligence-based approaches to assist in the
automatic segmentation of COVID-19 infections. Recently, the
unprecedented development in deep learning has showed signif-
icant improvements and achieved state-of-the-art performances
in many medical image segmentation tasks [9]–[12], and deep
neural networks have been widely applied in the global fight
against COVID-19 [13]–[16].

1[Online]. Avilable: https://coronavirus.jhu.edu/map.html
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Fig. 1. Examples of COVID-19 infections in CT volumes showing the
large variations of shape, size and position of lung infections. The upper
row shows the raw images (from axial view) and the lower row shows
corresponding annotations of infection areas.

However, the success of deep learning methods mainly re-
quires large amount of high-quality annotated datasets, while it is
impractical to collect large amount of well annotated data in real
clinical approach, especially when radiologists are busy fighting
the coronavirus disease. Additionally, as shown in Fig. 1, the
large variations in shape, size and position of lung infections
and large inter-case variations pose great challenges for the seg-
mentation tasks [17]. Therefore, exploring annotation-efficient
COVID-19 lung infection segmentation methods with limited
labeled data has become an urgent need especially in the current
situation.

Currently, there are several public non-COVID lung lesion
datasets due to other clinical practices, such as MSD Lung for
segmentation of lung tumor and NSCLC Pleural Effusion for
segmentation of pleural effusion. These non-COVID datasets
may serve as potential profit for generalizing useful information
to the related COVID-19 infection segmentation task. Wang
et al. [18] have proven that pre-training on non-COVID datasets
can improve the segmentation performance of COVID-19 in-
fection segmentation. However, the improvement of transfer
learning is not stable when encountering large domain difference
between datasets, and shared knowledge between COVID-19
and non-COVID lung lesions cannot be fully exploited.

To address these challenges, we propose a novel relation-
driven collaborative learning model for annotation-efficient
COVID-19 CT lung infection segmentation by exploiting shared
knowledge from non-COVID lesions. The network consists of
encoders with the same architecture and a shared decoder. The
general encoder is adopted to capture general lung lesion features
based on multiple non-COVID lesions, while the target encoder
is adopted to focus on task-specific features of COVID-19
infections. Features extracted from the two parallel encoders
are concatenated for the subsequent decoder part. To exploit
shared knowledge between COVID and non-COVID lesions,
we develop a collaborative learning scheme to regularize the
relation consistency between extracted features of given input.
Our method can enforce the consistency of feature relation
among extracted features and encourage the model to explore
semantic information from both COVID-19 and non-COVID
cases. Besides, the scheme can also be extended to utilize
unlabeled COVID-19 data for feature relation regularization and
achieve more consistent and robust learning. The contributions
of this work are summarized as follows:

� We propose a novel relation-driven collaborative learning
model for annotation-efficient segmentation of COVID-19
lung infections from CT images by leveraging shared
knowledge from non-COVID lesions to improve the seg-
mentation performance of COVID-19 infections with lim-
ited training data.

� We present a collaborative learning scheme to explore
general semantic information from both COVID-19 and
non-COVID cases by regularizing feature-level relation
consistency of given input, so as to encourage the model
to learn more general and discriminative representation
of COVID-19 infections for better segmentation perfor-
mance. The scheme can also be extended to utilize un-
labeled COVID-19 data for the regularization to achieve
more consistent and robust learning.

� We have conducted extensive experiments on two COVID-
19 datasets and two non-COVID lung lesion datasets for
2D and 3D segmentation tasks. The results show that
our method achieves superior segmentation performance
compared with other methods in the absence of sufficient
high-quality COVID-19 data.

II. RELATED WORK

In this section, we briefly review the research related to
our work. We first review works on annotation-efficient deep
learning for medical image segmentation. Then we review ex-
isting works on COVID-19 segmentation and transfer learning
approaches for COVID-19.

A. Annotation-Efficient Deep Learning

Compared with natural images, the annotations of medical
images are much harder and more expensive to acquire due to
following problems: 1) annotating medical images heavily relies
on professional diagnosis knowledge of radiologists; 2) most
modalities of medical images like CT are 3D volumes, which
will take much more time and labor for annotation. To alleviate
annotation scarcity, annotation-efficient methods have received
great attention in medical image analysis community [19], [20].
For example, semi-supervised learning aims at learning from a
limited amount of labeled data and a large amount of unlabeled
data, which is an effective way to explore knowledge from the
unlabeled data [21]. Weakly supervised learning explores the
use of weak annotations like noisy annotations and sparse anno-
tations [22]. Besides, some approaches also aim at integrating
multiple related datasets to learn general knowledge [23], [24].
To issue the problem of limited labeled COVID-19 data, in
this work, we aim at utilizing existing non-COVID lung lesion
datasets for generalizing useful information to related COVID-
19 task, so as to achieve better segmentation performance with
limited in-domain training data.

B. Research on COVID-19 Segmentation

Automatic segmentation of COVID-19 infections from CT
images is a crucial step to for quantification of the disease
progression. Recently, several approaches have been proposed
for COVID-19 lung infection segmentation. Shan et al. [25]
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Fig. 2. The overview of our proposed relation-driven collaborative learning model, where green and blue represent the data flow of general encoder
and target encoder for COVID-19 infection segmentation, respectively. Extracted features from these two parallel encoders are concatenated for
the input of the shared decoder. To exploit shared knowledge from non-COVID-cases, an additional data flow in orange is adopted. By regularizing
feature-level relation consistency of given input, the model is encouraged to explore semantic information from both COVID-19 and non-COVID
cases. Since the general encoder is applied to utilize non-COVID data and assist in the learning of COVID-19 segmentation as an auxiliary branch,
we only employ the skip connections between the target encoder and shared decoder for the fusion of multi-scale features as shown in the top
right corner.

propose a deep learning-based system for automatic segmenta-
tion and quantification of infection regions. Amyar et al. [26]
propose to improve the segmentation performance with a multi-
task learning approach. Xie et al. [27] propose a relational
approach to leverages structured relationships by introducing
a novel non-local neural network module to learn both visual
and geometric relationships. Zhou et al. [28] propose a U-Net
based segmentation network to incorporate spatial and channel
attention for better feature representation. Other than fully su-
pervised learning, Zheng et al. [29] develop a weakly-supervised
approach to investigate the potential for automatic detection of
COVID-19 based on patient-level label. Fan et al. [30] present a
lung infection segmentation network for 2D CT slices with semi-
supervised strategy. Wang et al. [31] propose a noise-robust
framework to learn from noisy labels for the pneumonia lesion
segmentation task. Yao et al. [32] use a set of operations to
synthesize lesion-like appearances for label-free segmentation.
Ma et al. [33] propose an active contour regularized framework
using region-scalable fitting to regularize and refine the pseudo
labels for semi-supervised infection segmentation.

C. Transfer Learning Approaches for COVID-19

Transfer learning aims to leverage knowledge and latent
features from other datasets by pre-training models on large
datasets and fine-tuning trained models on downstream tasks.
Due to the problem of limited COVID-19 data, several transfer
learning methods have been applied. For example, Chouhan
et al. [34] propose an ensemble model to combine outputs from
five pre-trained models based on ImageNet. Majeed et al. [35]
adopt transfer learning procedure and propose a simple CNN
architecture with a small number of parameters to distinguish
COVID-19 from normal X-rays. Misra et al. [36] propose a
multi-channel pre-trained ResNet architecture to facilitate the

diagnosis of COVID-19. For segmentation of COVID-19 infec-
tions, Wang et al. [18] evaluate different transfer learning meth-
ods and revealed the benefits of transferring knowledge from
non-COVID lung lesions. However, transfer learning only takes
the advantage of existing models, and non-COVID cases are
not utilized in the training procedure of downstream COVID-19
segmentation tasks. Different from these existing methods, our
method aims at learning from COVID-19 and non-COVID lung
lesions collaboratively to exploit shared semantic information.

III. METHOD

In this section, we first introduce the overview of our proposed
method. Then we provide details of our relation-driven collab-
orative learning scheme and the overall training procedure.

A. Overview

An overview of our proposed framework is shown in Fig. 2.
Following the design of standard U-Net [37], [38], our network
consists of two encoders with the same architecture and a shared
decoder. Since the encoder serves as a contraction to extract
image contextual features, the upper one named general encoder
(G) is adopted to capture general lung lesion features based on
multiple non-COVID lesions, and the lower one named target
encoder (T) is adopted to focus on task-specific features of
the target COVID-19 infection segmentation task. After that,
extracted features from these two parallel encoders are concate-
nated together for the input of the decoder. The shared decoder
(D) serves as a symmetric expanding path to recover the spatial
information of the extracted features. Since our motivation is
to use non-COVID lesions to assist in the segmentation of
COVID-19 infections, the general encoder can be seemed as
an auxiliary branch to extract shared knowledge. Therefore, we
only employ the skip connections between the target encoder and



ZHANG et al.: EXPLOITING SHARED KNOWLEDGE FROM NON-COVID LESIONS FOR ANNOTATION-EFFICIENT COVID-19 CT LIS 4155

shared decoder for the fusion of multi-scale features as shown
in the top right corner of Fig. 2.

Given a set of samples {Xc
i , Y

c
i }Nc

i=1 from COVID-19 datasets
Dc and a set of samples{Xn

i , Y
n
i }Nn

i=1 from non-COVID datasets
Dn, where X and Y denote the CT image and corresponding
annotation of lung lesions. For the segmentation workflow, the
general encoder is applied to extract general features, while the
target encoder is applied to extract the task-specific features.
These extracted features are concatenated and then fed into
the decoder part to get the final segmentation results. To issue
the problem of limited COVID-19 training data, instead of
transferring pre-trained models to the downstream learning task
of Xc, we aim to involve Xn collaboratively in the training
procedure of COVID-19 to exploit shared knowledge from
non-COVID cases, which can be used as a guidance for the
learning of target COVID-19 infection segmentation. Specifi-
cally, a relation-driven collaborative learning scheme is applied
to regularize the relation consistency between extracted features
of given input and encourage the model to explore semantic
information.

B. Relation-Driven Collaborative Learning

Inspired by recent study on data-level regularization with
sample relation [39], to exploit shared knowledge between
non-COVID and COVID-19 cases for collaborative learning, we
propose to regularize feature-level relation consistency of given
input, so as to facilitate the learning procedure of COVID-19
lung infections segmentation. Based on the assumption that
general encoder is adopted to capture general features of lung le-
sions, and the target encoder is adopted to focus on task-specific
features of COVID-19 infection, we aim to enforce the relation
of features extracted from these two encoders as guidance for
the collaborative learning approach.

To estimate the relation of extracted features, we model the
feature relation with channel-wise Gram Matrix [40]. For each
input batch with B samples, we average the features within
each batch to get the mean representation. We denote the ex-
tracted feature maps of encoder as F ∈ RC×H×W×D for 3D
segmentation networks or F ∈ RC×H×W for 2D segmentation
networks, where H , W and D represent the spatial dimension
of feature maps, and C represents the channel number. To
obtain channel-wise feature relation, we reshape the feature
maps into A ∈ RC×HWD or A ∈ RC×HW . After that, we get
the channel-wise Gram Matrix as follows:

G = A ·AT (1)

where the value of mth row and nth column Gmn is the inner
product between the vectorized activation maps A(m) and A(n),
representing the similarity between the mth and nth channel of
extracted features. Therefore, the final feature relation matrix R
is obtained by conducting the L2 normalization for each row of
G as follows

R =

[
G1

‖G1‖2
, . . .,

GC

‖GC‖ 2

]T
(2)

After the modeling of feature relation, our method encourages
the network to learn more general and discriminative representa-
tion of COVID-19 infections by regularizing the feature relation
consistency among given input, so as to explore semantic infor-
mation from both COVID-19 and non-COVID cases.

For explicit learning, the network is optimized based on the
supervised segmentation loss Lseg between output Ŷ c and cor-
responding ground truthY c. We use the combination of dice loss
Ldice and cross entropy lossLce as the supervised segmentation
loss, and deep supervision [41] is applied to obtain multi-scale
supervision at different scales. The supervised segmentation loss
can be summarized as

Lseg = Ldice(Ŷ
c, Y c) + Lce(Ŷ

c, Y c) (3)

Besides, to utilize the feature relation for collaborative learn-
ing, the non-COVID cases are additionally fed into general
encoder to explore the general feature representation and its
corresponding feature relation matrix RG(X

n). To ensure that
general encoder can capture general features of lung lesions, our
proposed scheme requires the generated feature relation matrices
of general encoder to be stable using general relation consistency
loss LG

rc defined as

LG
rc =

∑
{Xn,Xc}∈{Sn,Sc}

λG‖RG(X
n)−RG(X

c)‖2 (4)

While for target encoder, we enforce the extracted relation
matrices of task-specific features to be more discriminative
compared with general encoder using target relation consistency
loss LT

rc defined as

LT
rc =

∑
{Xn,Xc}∈{Sn,Sc}

− λT ‖RG(X
c)−RT (X

c)‖2 (5)

where RG(X
c) and RT (X

c) denote the feature relation ma-
trices of COVID-19 cases extracted from general encoder and
target encoder, respectively. λG and λT are ramp-up weighting
coefficients that control the trade-off between the segmentation
loss and consistency loss, so as to mitigate the disturbance
of consistency loss at early training stage. Since the network
is supervised by limited COVID-19 cases, the training may
become unstable and with poor generalization ability. By min-
imizing feature relation consistency losses LG

rc and LT
rc during

the training procedure, the general encoder and target encoder
can be enhanced to capture more general and discriminative
representation, thereby exploring useful shared knowledge from
adequate non-COVID data for better segmentation performance.

C. Overall Training Procedure

Algorithm1 presents the detailed training procedure of our
framework. For the optimation of the network, we update the
target encoder and decoder based on the supervised segmenta-
tion loss Lseg . Besides, relation consistency losses LG

rc and LT
rc

are used to update the general encoder and target encoder, respec-
tively. The collaborative learning scheme allow the two parallel
encoders to benefit from each other’s guidance, encouraging the
model to explore semantic information from both COVID-19
and non-COVID cases.
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Algorithm 1: Training Procedure of Our Proposed Frame-
work.
Input:A batch of (Xc, Y c) from COVID-19 dataset Dc

and (Xn, Y n) from non-COVID dataset Dn.
Output:Trained network N with parameters θG, θT , θD
1: while not converge do
2: (Xc, Y c), (Xn, Y n)← sampled from Dc and Dn

3: Generate features of general encoder FG(X
c) and

target encoder FT (X
c)

4: Generate general feature representation FG(X
n)

5: Calculate feature relation matrices RG(X
c),

RT (X
c) and RG(X

n) as Eq. (1) and (2)
6: Generate segmentation output Ŷ c

7: Calculate segmentation loss Lseg as Eq. (3)
8: Calculate consistency losses LG

rc, LT
rc as Eq. (4) and

(5)
9: Update θG

+←− −ΔθGLG
rc

10: Update θT
+←− −ΔθT (Lseg + LT

rc)

11: Update θD
+←− −ΔθDLseg

12: Ramp up the weighting coefficients λG and λT

13: end while
14: returnTrained network N

D. Feature Relation Regularization With Unlabeled Data

Since our proposed general relation consistency loss LG
rc and

target relation consistency loss LT
rc do not require segmentation

label, our proposed method can be straightforwardly extended to
utilize unlabeled COVID-19 data for feature relation regulariza-
tion. Specifically, we only activate the supervised segmentation
loss Lseg for labeled data, while computing the relation consis-
tency losses LG

rc and LT
rc for all the training data. In this way,

unlabeled data can be leveraged for the regularization to achieve
more consistent and robust learning.

IV. EXPERIMENTS

A. Dataset Introduction

1) COVID-19 Dataset: We select out two public COVID-19
lung infection segmentation datasets for our experiments. The
first dataset contains 20 CT volumes with over 1800 annotated
slices released by Coronacases Initiative and Radiopaedial,
which is publicly available at.2 The annotation of infections
is labeled by two radiologists and verified by an experienced
radiologist by Ma et al. [42]. The second dataset is COVID-19
CT Segmentation dataset3 collected by the Italian Society of
Medical and Interventional Radiology, which contains 100 2D
axial CT slices from different COVID-19 patients. A radiologist
segmented the CT images using different labels for identifying
lung infections.

2) Non-COVID Lung Lesion Datasets: In order to explore
relevant information from non-COVID lung lesions to promote
the annotation-efficient training of COVID-19 cases, we select

2[Online]. Available: https://zenodo.org/record/3757476#.X4ABeYvivid
3[Online]. Available: http://medicalsegmentation.com/covid19/

out two public non-COVID lung lesion segmentation datasets
for our following experiments. The first dataset is MSD Lung
Tumor Dataset of Medical Segmentation Decathlon (MSD)
Challenge [43] in MICCAI 2018.4 This dataset is comprised
of patients with non-small cell lung cancer from Stanford Uni-
versity (Palo Alto, CA, USA) publicly available through TCIA.
The tumor is annotated by an expert thoracic radiologist and
63 labeled CT volumes are used. The second dataset is NSCLC
Pleural Effusion Dataset.5 This dataset contains 78 CT volumes
with annotation of pleural effusion. To exploit general features
of lung lesions, we combine MSD and NSCLC datasets to form
a non-COVID multi-lesion dataset in the following experiments.

B. Experimental Settings

1) 3D Experiments on CT Volumes: For 3D experiments of
CT Volumes, to make a fair comparison, we follow the task
settings of COVID-19 benchmarks in [42]. For the COVID-19
dataset, we make the same 5-fold cross validation based on
pre-defined dataset split. Each fold contains 4 scans (20%) for
training and 16 scans (80%) for testing. For non-COVID lung
lesion datasets, we randomly select 80% of the data for training
and the rest of 20% for validation.

We use 3D U-Net [38] as the backbone network. Details of
network architecture is shown in Table I. The input patch size
is set as 56×160×192 with batch size of 2. Stochastic gradient
descent (SGD) optimizer is used for training with initial learning
rate of 0.01 and momentum of 0.99.

2) 2D Experiments on Axial CT Slices: To compare our
method with state-of-the-art methods for 2D medical image
segmentation, we make comparison experiments based on 2D
COVID-19 CT slices. Following the same task settings of [30],
we use the same 50 images for training and validation, and the
remaining 50 slices for testing. For non-COVID lung lesion
datasets, we randomly select out 100 2D slices with lung lesions
from different CT scans. Besides, unlabeled training set of
COVID-SemiSeg Dataset [30] is used to evaluate the effective-
ness of our proposed method to utilize unlabeled COVID-19
data.

We use 2D U-Net [37] as the backbone network. Details of
network architecture is shown in Table II. The input patch size is
set as 448×384 with batch size of 2. Stochastic gradient descent
(SGD) optimizer is used for training with initial learning rate of
0.01 and momentum of 0.99.

C. Implementation Details and Evaluation Metrics

All the experiments in our work are implemented in Py-
torch [44] and trained on NVIDIA Tesla V100 GPUs. Our back-
bone network is based on nnUNet [45] that achieved state-of-
the-art results in 23 segmentation challenges with automatically
designed U-Net according to the dataset properties. To unify the
setting for our collaborative learning approach, we use planned
network architectures of COVID-19 infection segmentation task

4[Online]. Available: http://medicaldecathlon.com/
5[Online]. Available: https://wiki.cancerimagingarchive.net/display/Public/

NSCLC-Radiomics

https://zenodo.org/record/3757476#.X4ABeYvivid
http://medicalsegmentation.com/covid19/
http://medicaldecathlon.com/
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
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TABLE I
DETAILS OF 3D U-NET ARCHITECTURE USED IN OUR EXPERIMENTS

Note that the general encoder and target encoder are with the same architecture as shown in the left column.

TABLE II
DETAILS OF 2D U-NET ARCHITECTURE USED IN OUR EXPERIMENTS

Note that the general encoder and target encoder are with the same architecture as shown in the left column.

for our framework. Following [46], we use a Gaussian ramp-up
function λ(t) = 0.1 ∗ e−5(1−T/Tmax) to control the balance be-
tween supervised loss and consistency loss, where T represents
the current training step and Tmax represents the maximum
training step.

Motivated by the evaluation methods of the medical image
segmentation decathlon [43], we employ two complementary
metrics to evaluate the segmentation performance. Dice Sim-
ilarity Coefficient (DSC), a region-based measure is used to
measure the region mismatch, and Normalized surface Dice
(NSD), a boundary-based measure is used to evaluate how close
the segmentation and ground truth surfaces are to each other.
Both metrics take the values in [0,1] and higher scores represent
better segmentation performance. LetG andS denote the ground
truth and the segmentation result, respectively. The two metrics
are defined as follows:

DSC(G,S) =
2|G ∩ S|
|G|+ |S| ; (6)

NSD(G,S) =
|∂G ∩B

(τ)
∂S |+ |∂S ∩B

(τ)
∂G|

|∂G|+ |∂S| . (7)

where B(τ)
∂G, B

(τ)
∂S denote the border regions of ground truth and

segmentation surface at a threshold τ to tolerate the inter-rater
variability of the annotators. We set τ = 3 mm for the eval-
uation of segmentation results in the following experiments.
Besides, we also consider three other evaluation metrics in 2D
experiments. Sensitivity (Sen) denotes the percentage of positive
instances correctly identified. Specificity (Spec) denotes the per-
centage of predicted positive instances that are correctly identi-
fied. Mean Absolute Error (MAE) measures the pixel-wise error
between segmentation output and corresponding groundtruth.

D. Ablation Analysis

To evaluate the effectiveness of the key components in our
framework, we conduct ablation studies by removing the feature
relation consistency loss. As shown in Table III, it is observed
that all our methods can achieve better performance on all
metrics compared with fully supervised methods, showing the
effectiveness of our method. Besides, the usage of LG

rc and
LT
rc can both further improve the segmentation performance

compared with baseline. When removing the target relation
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TABLE III
QUANTITATIVE RESULTS OF 5-FOLD CROSS VALIDATION OF ABLATION ANALYSIS IN OUR EXPERIMENTS

Fig. 3. Visual comparison of COVID-19 infection segmentation by different methods on 3D COVID-19 segmentation benchmark dataset from
axial view.

consistency, the average segmentation performance of five folds
is degraded by 0.4% and 0.2% on DSC and NSD, respectively.
The result proves that the usage of target relation consistency loss
LT
rc can enforce the target encoder to be more discriminative,

so as to improve the segmentation performance. However, the
improvement is susceptible to the domain difference. Besides,
we also conduct experiments of our backbone by removing the
general relation consistency lossLG

rc. In this way, the general en-
coder is frozen and are not updated during the training procedure,
which means that the knowledge transfer is not available. The
experimental results demonstrate that the average segmentation
performance is degraded by 0.6% and 0.3% on DSC and NSD,
showing the importance of knowledge transfer in our collabora-
tive learning scheme. Some segmentation results of our method
and 3D nnUNet are illustrated in Fig. 3 for visual comparison.
As shown in the figure, our method can generate segmentation
results with more accurate boundaries in Fig. 3(a)(b), and less
segmentation mistakes in small infection areas in Fig. 3(c)(d)(e).

These results demonstrate that the collaborative learning
approach can better exploit shared knowledge from non-COVID
cases, leading to better performance when generalizing on test
data.

E. 3D Comparison Experiments on COVID-19
Segmentation Benchmark Dataset

To demonstrate the effectiveness of our method, we conduct
extensive comparison experiments with other state-of-the-art
methods. To ensure a fair comparison, all methods are exper-
imented with the same network backbone and experimental
settings. Segmentation models trained from scratch with only
COVID-19 cases serve as our baseline results. Besides, as a
simple and intuitive approach, pre-training segmentation models
on non-COVID cases and fine-tuning on COVID-19 cases are
utilized as comparison results for learning from both COVID-19
and non-COVID cases. The quantitative experimental results are
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TABLE IV
QUANTITATIVE RESULTS OF 5-FOLD CROSS VALIDATION OF 3D COMPARISON EXPERIMENTS WITH STATE-OF-THE-ART METHODS

5Note: ∗ denotes the results from [18] where additional non-COVID datasets are used.
The best results are shown in red font and the second-best results in blue font.

shown in Table IV. From the results, we can observe that trans-
ferring pre-trained models to COVID-19 infection segmentation
tasks can generally improve the performance of training from
scratch with only COVID-19 cases on most experiments, and
using multi-lesion is superior to single-lesion when more general
representations can be utilized to help COVID-19 infection
tasks, with 2.3% and 1.7% improvements in DSC and NSD,
respectively. However, these transfer learning methods show
instability under different data distribution in five-fold cross
validation experiments. The rationale is that the transfer ability
largely depends on the domain difference between datasets.
When there exists a large domain distance between non-COVID
and limited COVID-19 training cases, transfer learning may
somehow mislead the learning procedure.

In [18], the authors propose a multi-encoder architecture to
freeze the non-COVID pre-trained encoder as an additional fea-
ture extractor for the training of COVID-19 cases. Features from
the frozen adapted-encoder and reinitialized self-encoder are
concatenated for the subsequent decoder. However, their work-
flow is still based on transfer learning, that training a network
first on non-COVID cases and then on COVID-19 cases with
foregoing pre-trained parameters. The main limitation is that
the learning procedures of two tasks are separate. Therefore, the
shared knowledge of non-COVID and COVID-19 cases cannot
be fully exploited. It is observed that our method takes advantage
of collaborative learning between two encoders and interactively
improves the overall learning procedure. As a consequence, our
method achieves higher segmentation performance with an av-
eraged DSC of 70.3% and averaged NSD of 74.2%. Comparing
with training from scratch, exploiting shared knowledge from
non-COVID lesions can achieve further improvements with up
to 3.0% in DSC and 4.2% in NSD. Paired T-test shows that the
improvements are statistically significant at p < 0.05, validating
the effectiveness of our proposed method.

F. 2D Comparison Experiments on
COVID-SemiSeg Dataset

In this subsection, we compare our method with state-of-the-
art methods for 2D medical image segmentation, including U-
Net [37], U-Net++ [50], Dense-UNet [49], Attention-UNet [47],
Gated-UNet [48], Inf-Net and Semi-Inf-Net [30]. Quantitative
results are shown in Table V. As can be observed, our proposed
method outperforms all comparing methods on all evaluation
metrics by a large margin, validating the effectiveness of our

TABLE V
QUANTITATIVE RESULTS OF 2D COMPARISON EXPERIMENTS WITH

STATE-OF-THE-ART METHODS FOR FULLY SUPERVISED SEGMENTATION AND
SEMI-SUPERVISED SEGMENTATION

framework. Paired T-test shows that the improvements are sta-
tistically significant atp < 0.05. Besides, we visualize some seg-
mentation results of our method in Fig. 4. These results indicate
that our segmentation results are closer to the ground truth with
less mis-segmented areas and outperform other methods signif-
icantly. For semi-supervised setting, we additionally integrate
unlabeled COVID-19 cases of COVID-SemiSeg Dataset into
the relation-driven training in our framework. These unlabeled
cases can be utilized for the regularization of feature relation to
achieve more consistent and robust learning and further improve
the segmentation performance slightly.

G. Comparison on Different Datasets for Shared
Knowledge Learning

To better demonstrate the effectiveness of our proposed fea-
ture relation-driven learning, we make extensive experiments
on several lesion segmentation datasets of medical images with
different relation to COVID-19 infections. In addition to the lung
tumor and pleural effusion datasets introduced before, we use
LiTS dataset [9] with liver tumor annotations in abdominal CT
volumes as non-COVID lesions in our method for comparison.
Besides, to make comparison between intra-disease and inter-
disease relations, we use another multi-national CT dataset with
labeled ground glass opacities [51] as an out-of-domain dataset
for the learning of general branch, which is more relevant with
similar appearance to the target dataset in our framework.
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Fig. 4. Visual comparison of COVID-19 infection segmentation by different methods on 2D COVID-SemiSeg dataset. As can be observed, our
method can generate segmentation results with more accurate boundaries and less segmentation mistakes in small infection areas, which is closer
to the ground truth.

TABLE VI
QUANTITATIVE COMPARISON USING DIFFERENT DATASETS AS NON-COVID

CASES FOR SHARED KNOWLEDGE LEARNING

All the experiments are performed with the same amount of 60 non-COVID
cases and 10 COVID-19 cases under the same settings

In our experiments, we follow the settings of our 2D exper-
iments with the same network backbone and implementation
details. To make quantitative comparisons, we select out the
same amount of 60 cases from these different datasets for the
general branch, and 10 cases from the COVID-19 segmentation
dataset for target branch. The experimental results are shown
in Table VI. It can be observed from the table that using intra-
disease dataset that are more related to the target dataset can
achieve better performance compared with other datasets under
the same condition, which proves that more similar appearance
can lead to more significant improvement by exploiting shared
knowledge. Specifically, we observe that using non-lung lesions
can also obtain comparable results compared with experiments
using non-COVID lung lesions like lung tumor and pleural
effusion.

H. Visual Analysis of Our Method

To visualize learning procedure of our method, we show
some examples of general and target feature relation matrices
at different epochs during the network training procedure in

Fig. 5. Visualization of the general feature relation matrices of non-
COVID cases (left column) and COVID-19 cases (middle column) and
their absolute difference (right column) during the training procedure.

Fig. 5 and Fig. 6. The absolute differences of these two ma-
trices are shown in the right column in red to clearly visualize
the alignment of matrices.It can be observed in Fig. 5 that as
the training goes on, the general encoder gradually produces
relation matrices with higher response at the same channel.
Meanwhile, the absolute differences of feature relation matrices
of non-COVID and COVID-19 cases extracted from general
encoder are gradually decreased, indicating that the general
encoder learns more general and robust representations of lung
lesions.Besides, as observed in Fig. 6, the absolute differences of
general and target feature relation matrices of COVID-19 cases
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Fig. 6. Visualization of the general feature relation matrix (left col-
umn) and target feature relation matrix (middle column) of COVID-19
cases and their absolute difference (right column) during the training
procedure.

are gradually increased and tend to be stable as the training goes
on, indicating that the target encoder is gradually enforced to
focus on task-specific features and learn more discriminative
representations compared with general encoder.

V. DISCUSSION

With the outbreak of COVID-19 all over the world, design-
ing effective automated tools for fighting against COVID-19
is highly demanded to improve the efficiency of clinical ap-
proaches and reduce the tedious workload of clinicians and ra-
diologists. However, accurate segmentation of COVID-19 lung
infections is a challenging task due to the large appearance
variance of COVID-19 lesions of patients in different severity
level, and existing data-driven segmentation methods mainly
rely on large amount of well annotated data. In order to mitigate
the insufficiency of labeled COVID-19 CT scans, it is essential
and meaningful to develop annotation-efficient segmentation
methods for the COVID-19 lung infection segmentation task.

Considering that there are several public non-COVID lung
lesion segmentation datasets due to other clinical practice, these
datasets may serve as potential profit for generalizing useful
information to assist in the related COVID-19 infection seg-
mentation task. Some previous studies also highlight the usage
of non-COVID lung lesions [18], [42]. However, these existing
approaches merely focus on investigating the transferability in
COVID-19 infection segmentation. Although their results reveal
benefits of pre-training on non-COVID datasets, the improve-
ment is limited when shared knowledge between COVID-19
and non-COVID lung lesions cannot be fully utilized. Our ex-
periment reveal that the proposed collaborative learning scheme
can effectively exploit shared semantic information by regular-
izing the consistency between extracted features and promote
the training procedure in the absence of sufficient high-quality
COVID-19 data. In addition, our scheme can be extended to

Fig. 7. Example of challenging cases for COVID-19 lung infection
segmentation with limited labeled data.

utilize unlabeled COVID-19 data for feature relation regulariza-
tion. Experimental results show that even without annotations,
our method can use unlabeled scans to explore feature relation
and achieve more consistent and robust learning. Fig. 7 presents
an example of challenging cases for COVID-19 lung infection
segmentation. Although our method can achieve significant im-
provement by exploiting knowledge from non-COVID lesions,
the limitation still exists. We observe that comparing with ground
truth, there are still some mis-segmented areas when encounter-
ing challenging cases with multiple irregular infections. As a
near future work, we intend to explore how to achieve more
robust and reliable knowledge transfer. In addition, we also plan
to extend our method to other medical image segmentation tasks
to explore the usage of out-of-domain datasets for annotation-
efficient deep learning, thus enhancing the applicability of these
methods in real-world applications.

VI. CONCLUSION

In this paper, we propose a novel relation-driven collaborative
learning model to exploit shared knowledge from non-COVID
lesions for annotation-efficient COVID-19 CT lung infection
segmentation. Specifically, the model consists of two encoders
with the same architecture and a shared decoder. The general en-
coder is adopted to capture general lung lesion features based on
multiple non-COVID lesions and the target encoder is adopted
to focus on task-specific feature of COVID-19 infection. To ex-
ploit shared knowledge from non-COVID lesions, we develop a
collaborative learning scheme to regularize the relation between
extracted features of given input for the training. We present a
set of experiments on 2D slices and 3D volumes based on three
COVID-19 datasets and two non-COVID datasets. Experimental
results reveal clear benefits of utilizing non-COVID lesions in
the absence of sufficient COVID-19 annotations to train a robust
segmentation model. Moreover, we provide a semi-supervised
learning solution to utilize the unlabeled COVID-19 cases for
feature relation regularization and achieved performance im-
provements. Among all comparison experiments, our proposed
method outperforms state-of-the-art methods and illustrates
strong potential for real-world applications in the global fight
against COVID-19.
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