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Abstract—The coronavirus disease 2019 (COVID-19) has
become a severe worldwide health emergency and is
spreading at a rapid rate. Segmentation of COVID lesions
from computed tomography (CT) scans is of great impor-
tance for supervising disease progression and further clin-
ical treatment. As labeling COVID-19 CT scans is labor-
intensive and time-consuming, it is essential to develop a
segmentation method based on limited labeled data to con-
duct this task. In this paper, we propose a self-ensembled
co-training framework, which is trained by limited labeled
data and large-scale unlabeled data, to automatically
extract COVID lesions from CT scans. Specifically, to en-
rich the diversity of unsupervised information, we build a
co-training framework consisting of two collaborative mod-
els, in which the two models teach each other during train-
ing by using their respective predicted pseudo-labels of
unlabeled data. Moreover, to alleviate the adverse impacts
of noisy pseudo-labels for each model, we propose a self-
ensembling strategy to perform consistency regularization
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for the up-to-date predictions of unlabeled data, in which
the predictions of unlabeled data are gradually ensembled
via moving average at the end of every training epoch. We
evaluate our framework on a COVID-19 dataset containing
103 CT scans. Experimental results show that our proposed
method achieves better performance in the case of only
4 labeled CT scans compared to the state-of-the-art semi-
supervised segmentation networks.

Index Terms—COVID-19 CT segmentation, semi-
supervised image segmentation, self-ensembling model,
co-training.

I. INTRODUCTION

THE COVID-19, caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has become an on-

going pandemic and caused a lot of deaths. Chest CT has been re-
garded as an effective tool to screen the patients with clinical and
epidemiologic features for COVID-19 infection [1], [2]. In the
course of COVID-19 treatment, segmentation is an essential step
that can provide the delineation and quantification of infection
regions which is the COVID lesions caused by SARS-CoV-2,
and the results of segmentation can be applied into disease
progression evaluation and further assessment. However, man-
ually delineating the COVID infection regions from CT scans
is very challenging. First of all, delineating a CT scan needs to
annotate the infection regions slice by slice, while a CT scan
usually contains dozens to hundreds of slices, making manual
annotation labor-intensive and time-consuming. According to
the statistics of Ma et al. [3], it takes about 400 minutes to
delineate one CT scan with 250 slices. Another issue is that
lesion can vary greatly in size and appearance. In infection areas,
the lesions may present as ground glass opacities (GGO) with
the density increases or consolidation with the accumulation
of fluid progresses on CT scans. Moreover, the boundaries of
infection areas are usually blurry and cannot be distinguished
clearly, which illustrated in Fig. 1. Considering the challenges
of delineating COVID lesions, automatic segmentation method
with limited labeled data is in urgent need for practical clinical
application.

With the application of artificial intelligence for treatment of
COVID-19 [4], deep learning-based techniques have attracted
widespread attention in imaging-based analysis of COVID-
19 [5]. Popular effective segmentation networks, such as U shape
models [6], [7] and attention-based model [8], [9], have been
evaluated for COVID-19 lesion segmentation task. Besides,
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Fig. 1. Two cases of blurry COVID-19 lesions, showing the difficulties
of labeling COVID-19 lesions from CT scans.

Zhou et al. [10] proposes a segmentation method for COVID-
19 via decomposing 3D CT scans into 2D ones along three
planes. Despite of these successful methods, training a robust
segmentation model usually relies on sufficient labeled data. To
mitigate the request of labeled data, several methods using a
few labeled images or weak supervised data are proposed for
COVID-19 lesion segmentation. For instance, Fan et al. [11]
adopt a randomly selected propagation strategy which progres-
sively generates pseudo-labels for unlabeled data to improve the
performance of network. Laradji et al. [12] proposes a consis-
tency based method by utilizing weak labeled data. However,
without accurate manual labels, weak supervised methods often
meet limitation in performance due to the variety of COVID-19
lesions. Besides, progressively generating pseudo-labels needs
high computational cost due to multiple iterative training. Dif-
ferent from the previous works, in this paper, we focus on de-
veloping an end-to-end semi-supervised method for COVID-19
lesion segmentation from CT scans.

Recently, employing multiple networks have been widely
used in semi-supervised settings, such as consistency based
methods [13]–[15] and co-training methods [16]–[19]. Specif-
ically, consistency-based methods usually follow the assump-
tion that the same unlabeled inputs perturbed by different
noises should be predicted into same outputs, thus a model can
be trained with consistency regularization by given unlabeled
data [20]. For example, TCSM proposed by Li et al. [13] per-
forms transformation consistency to constrain the predictions
of unlabeled data via mean teacher model [21]. However, the
existed consistency-based medical segmentation methods are
built with a single trainable model, which cannot provide multi
views to enrich the unsupervised knowledge for unseen data.
As for co-training methods, although it also has been widely
used in semi-supervised learning, the existing works are not
suitable for our COVID-19 lesion segmentation task. Since
the networks are usually initialized differently in co-training
framework, predictions from different networks inevitably suffer
from unreliability which has negative impact on co-training.
Thus, different strategies have been proposed to deal with this
issue in the existing co-training works. For instance, in [18],
the authors proposed a complementary correction network to
minimize the prediction divergence between the mutual learning
networks, however, the method in [18] is only designed for image
classification task. Ke et al. [19] proposed a flaw detector to
generate flaw probability map which can guide the networks to
learn from unlabeled data collaboratively, however, even though

it is designed for pixel-wise semi-supervised learning, the image
processing pipeline in [19] estimating the flaw probability map,
including dilation, blurring and normalization, is not suitable
for our task. Accordingly, due to the characteristic of COVID
lesion, the co-training framework needs to be further studied
before being applied in our task.

To address the above bottlenecks and develop an effective
semi-supervised segmentation method for COVID-19, we pro-
pose a novel framework called Self-Ensembling Co-Training to
accurately delineate COVID-19 lesions. Particularly, our frame-
work contains two peer segmentation models, which are built
with the same architecture and initialized by different parame-
ters. With different initialization, the two models can generate
different decision boundaries, so that they have abilities to learn
different knowledge from same unlabeled data. Next, with a
certain unlabeled data as input, we use the two models to infer
the predictions and take the two predictions as pseudo-labels
to supervise each other mutually. In this way, the two mod-
els can be trained in a collaborative way by the combination
of labeled data and pseudo-labeled data. Moreover, since the
pseudo-labels from the peer model may not be accurate enough,
in order to avoid the negative impacts of imperfect pseudo-
labels, we propose a self-ensembled mechanism for the two
collaborative models to constrain the learning progress of unla-
beled data. Inspired by the temporal ensembling proposed by
Laine et al. [22], for a certain training epoch, we gradually
ensemble the predictions of unlabeled data from the first epoch
to the last epoch by moving average, the ensembled predictions
are then regarded as the consistency targets to be used to perform
consistency regularization for the up-to-date predictions. To our
best knowledge, this is the first time to build consistency regular-
ization in co-training framework via self-ensembling strategy for
semi-supervised COVID-19 CT segmentation. We summarize
the contributions of this paper as follows:

1) We present a co-training framework for semi-supervised
COVID-19 CT segmentation, in which two models teach
each other during training by their respective predicted
pseudo-labels of unlabeled data.

2) We propose a self-ensembling consistency regularization
to reduce the negative impacts of pseudo-labeled data dur-
ing co-training progress. The consistency regularization
can be directly integrated into our co-training framework
and significantly improves the efficiency of utilizing un-
labeled data.

3) We evaluate our proposed framework on a COVID-19
dataset which contains 103 CT scans. Experimental re-
sults demonstrate the considerable effectiveness of our
method to reduce the requirement of pixel-wise labeled
COVID-19 data.

II. RELATED WORKS

In this section, we only introduce the areas highly relevant to
our work. We first present an brief overview for applications of
deep learning approaches for COVID-19 lesion segmentation,
and then review the development of semi-supervised medical
image segmentation methods.
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A. Deep Learning for COVID-19 CT Segmentation

Since delineating a CT scan is a labor-intensive and time-
consuming job, deep learning methods have attracted people’s
attention for fast and automatic inferring segmentation results.
Popular segmentation networks such as U-Net [23]–[25], U-
Net++ [26], [27] and VB-Net [28] are first applied to analyze
COVID-19 at the early stage of COVID-19 outbreak. With the
release of several small scale labeled CT scans [3], [29], sev-
eral segmentation methods are proposed to segment COVID-19
lesions. Fan et al. [11] propose a model called Inf-Net which
uses aggregated high-level features and attention mechanism to
extract COVID-19 infection areas, they also adopt a randomly
selected propagation strategy to perform SSL to alleviate the
shortage of labeled data. Because it is hard to obtain large scale
well labeled dataset and noisy labeled dataset is easier to obtain,
Wang et al. [30] propose a robust framework to against label
noise for COVID-19 lesion segmentation. Since the difficulties
of labeling CT scans, segmenting COVID-19 lesions from weak
labeled data has drawn a lot of attentions [12], [31], [32], besides,
active learning combined with weakly supervised learning is
proposed to conduct COVID-19 segmentation in [31]. How-
ever, the performance of current data-efficient methods toward
COVID-19 lesion segmentation still exists big gap compared
with fully supervised methods.

B. Semi-Supervised Segmentation for Medical Images

Semi-supervised segmentation methods for medical im-
age can be roughly divided into four categories: self-
training [33], GAN based methods [34], [35], consistency based
methods [13]–[15], [22], [36], [37], co-training methods [16],
[17], [19]. In self-training such as [33], model first predicts
the pseudo-labels for unlabeled data to extend training dataset,
then the model is trained by the extended training dataset,
this process will be iterated many times until the performance
improvement becomes negligible. GAN based methods usually
build a framework which contains a segmentation network and
a discrimination network, among which the discrimination net-
work is used to distinguish the quality of predictions and the
segmentation network tries to predict accurate results to fool
discrimination network. Consistency based strategy is widely
used in medical image segmentation. The common practice fol-
lows the assumption that the inputs under different perturbations
would be predicted the same result. For instance, in [13], based
on mean teacher model [21], the authors apply perturbations like
Gaussian noise, randomly rotation and scaling to the inputs and
the outputs, then encourage the network to be transformation
consistent for unlabeled data. Besides, Yu et al. [14] propose
an uncertainty estimation strategy to improve performance of
consistency based model by learning meaningful and reliable
targets during training. Co-training methods also draw a lot
of attention and show promising results for semi-supervised
medical image segmentation. In [17], Xia et al. introduce a
co-training method which adopt uncertainty estimation strategy
to improve the performance of network. In this paper, we will
investigate the performance gap of the different categories of

semi-supervised methods for COVID-19 and further propose a
more effective method to utilize unlabeled data.

III. METHODS

An overview of our proposed framework is shown in Fig. 2.
Our self-ensembling co-training framework contains two mutual
learning models. Three training objectives including supervised
loss, pseudo-supervised loss and self-ensembling consistency
regularization are deployed for each model. In this section, we
first introduce the co-training architecture that the two models
mutually teach each other. Then we describe the details of con-
sistency regularization for co-training framework and the way
to construct the consistency targets by self-ensembling which is
used to constrain the co-training process during training. Finally,
we define the overall training objective of our framework.

We formulate the problem of our task as follows. Given a
dataset D contains a labeled dataset with N CT scans denoted as
DL = {(xl

i, yi)}Ni=1 and a unlabeled dataset with M CT scans
denoted asDU = {xu

i }Mi=1, where M�N, xl
i and xu

i denote CT
scans and yi is the corresponding ground truth of labeled data,
we aim at building a data-efficient deep learning model which is
trained over the combination ofDL andDU in a semi-supervised
manner and aim to make the performance to be comparable to an
optimal model trained over fully labeled D as much as possible.

A. Co-Training for Semi-Supervised Segmentation

Due to the unique feature of COVID-19 lesions, even ex-
perienced clinical experts may have different understandings
towards a same CT scan [32], thus there must be two or more
experts to participate in manually labeling the lesions for training
an accurate data-driven model. Views from different experts
can be regarded as the complementary knowledge for each
other to rectify the labeling errors. Inspired by this mutual label
process, we intend to solve the semi-supervised problem with a
co-training framework, in which two independent segmentation
models are trained by labeled data and mutually teach each other
the knowledge which is learned from unlabeled data.

Specifically, in our co-training framework, the two indepen-
dent models are denoted as S1 and S2, as is shown in Fig. 2. We
denote the outputs of models as fk(xi; θ

k), where k ∈ {1, 2}
indicates the index of models and xi which including xl

i and
xu
i denotes the input data. At the beginning of training, the

model weights θk are initialized randomly and independently
to guarantee the diversity of two models. Since the two models
have different initialization, the representation for a same input
should be different so that we can regard the two models as
different views. In our work, the different views are utilized
as complementary knowledge to enrich the representation of
the whole framework towards the same inputs. In practice, we
utilize the labeled data to perform supervised learning to make
sure the two models can be trained normally. Meanwhile, given a
certain unlabeled input, we utilize the predictions of two models
to supervise each other, so that the two models can learn the
complementary knowledge from each other. Consequently, the
training objective of each model contains two parts: supervised
loss and pseudo-supervised loss.
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Fig. 2. Illustration of our proposed framework for semi-supervised COVID-19 CT segmentation. The framework contains two collaborative training
models S1 and S2 which take the CT slices as inputs. Each model is trained by three loss functions, including supervised loss Lk

s , pseudo-supervised
loss Lk

u and consistency regularization Lk
con. In our implements, Lk

s and Lk
u share the same equation, the difference between them is that Lk

u takes
pseudo-labels predicted by the peer model in the framework as inputs. The regularization item Lk

con is used to alleviate the adverse impacts of
noisy pseudo-labels generated from the peer model. To construct consistency targets z̃ki of each model, we gradually ensemble the predictions of
unlabeled data from the first epoch to the last epoch through moving average, which is called self-ensembling. The total loss for each model is the
weighted sum of the three loss functions.

During training, each model takes a batch of labeled data
{(xl

i, yi)}Bi=1 ∈ DL and a batch of unlabeled data {(xu
i )}Bi=1 ∈

DU as inputs, where B indicates the training batch size. We
denote the two losses asLk

s andLk
u for each model, respectively.

Dice coefficient is employed to measure the loss between model
outputs and the ground truths, which is proposed in [38]. The
supervised loss function Lk

s is formulated as follows,

Lk
s(f

k(xl
i; θ

k), yi) = 1− 2 ∗∑ fk(xl
i; θ

k) ∗ yi∑
fk(xl

i; θ
k) +

∑
yi
. (1)

In our COVID-19 lesion segmentation task, since the foreground
regions usually occupy a small part of the whole image, there
exists inevitable imbalance between the foreground and back-
ground regions. This often leads to the learning process trapped
in local minima of the loss function, thus the predictions of a
network are strongly biased towards the background, making the
foreground region missing or partially detected [38]. In this case,
balancing the foreground and background regions during train-
ing is of great importance for our task. Since the Dice coefficient
can be regarded as the ratio of intersection and union between
two sets, the balance between foreground and background can
be achieved [38]. Therefore, to mitigate the negative impact of
imbalance between COVID-19 lesions and the background, we
also adopt Dice loss as the pseudo-supervised loss. Accordingly,
the form ofLk

u is the same asLk
s except the input data is changed

into xu
i . Consequently, the optimization objective of one model

in our co-training framework is summarized as follows,

Lk =

N∑

i=1

Lk
s(f

k(xl
i; θ

k), yi)

+ λ

M∑

i=1

Lk
u(f

k(xu
i ; θ

k), ỹki ), (2)

where k is the index of two models, ỹki denotes the pseudo-labels
of unlabeled data. Considering that the predictions of unlabeled
data may be unreliable, we weight the supervised loss and the
pseudo-supervised loss to avoid the training process dominated
by pseudo-supervised learning, which is indicated by the trade-
off coefficient λ. Note that the loss function Lk

s(·) and Lk
u(·)

share the same equation except the different input data.

B. Consistency Regularization for Co-Training

In SSL, the performance improvement benefits from learning
unsupervised knowledge from unlabeled data, thus the quality
and reliability of knowledge learned from unlabeled data play
an important role in semi-supervised framework. However, in
co-training framework, the pseudo-labels of each model for
unlabeled data directly come from the up-to-date peer model
without extra guidance, these pseudo-labels are expected to be
noisy, leading to limitations of performance. To alleviate the
adverse impacts of noisy pseudo-labels, we intend to utilize
consistency regularization to constrain the learning progress of
each model in co-training. Specifically, for each model, we con-
struct consistency targets for the unlabeled data and encourage
the model to generate consistent predictions between the raw
unlabeled data and the corresponding consistency targets, as is
illustrated in Fig. 2.

Formally, given an unlabeled data xu
i ∈ DU , the inferred

prediction of xu
i can be denoted as fk(xi; θ

k). We denote the
consistency targets as z̃ki , following the rule of consistency
regularization, the distance between fk(xu

i ; θ
k) and z̃ki should

be as small as possible, thus the training objective of consistency
regularization can be described as follows,

Lk
con(f

k(xu
i ; θ

k), z̃ki ) =
∥∥fk(xu

i ; θ
k)− z̃ki

∥∥2. (3)
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In consistency regularization, a key issue is to create a proper
consistency targets. Current works [13], [14] realize it via ap-
plying different perturbations on the inputs such as Gaussian
noise, rotation and scaling. However, as the appearance and
size of COVID-19 vary greatly, inappropriate perturbations may
degrade the model performance, which will be demonstrated by
our experiments in Section IV. In this paper, we propose to
construct the consistency targets by ensembling the predictions
from previous training epochs, which called self-ensembling.

C. Self-Ensembling for Consistency Targets

The self-ensembling strategy to build consistency target in our
framework is computed via exponential moving average (EMA),
which is an extension of temporal ensembling model developed
for image classification [22]. To compute the consistency target,
we first define three variables: accumulated targetZk

i , up-to-date
prediction zki and bias corrected target z̃ki . The Zk

i is initialized
as zero matrix. After each training epoch, we update Zk

i via
EMA which is the weighted sum of the up-to-date prediction
of unlabeled data zki and the Zk

i from the previous epoch. To
reflect the relationship between the update process and training
epoch, we reformulate the Eq. (4) as follows,

Zk
i [e] = αZk

i [e− 1] + (1− α)zki [e], (4)

where e denotes the training epoch and α is a momentum term
that controls how far the ensemble reaches into accumulated
target.

Considering the accumulated target Zk
i is initialized as zero

matrix, we can observe from Eq. (4) that the value of Zk
i is

smaller than true value at early training stages, which is not
suitable to be used to perform consistency regularization. There-
fore, similar with the bias correction introduced in [22], the Zk

i

is magnified to approximate the true value via multiplying a
factor 1/(1− αe) after performing Eq. (4), the magnified Zk

i

is denoted as the bias corrected target z̃ki which is the final
consistency target to be used in Eq. (3) for each epoch e. The
formulation is presented as follows,

z̃ki [e] = Zk
i [e]/(1− αe), (5)

According to Eq. (5), the value of the factor decreases dynam-
ically as the epoch e increases until it approaches the constant
1. Thus, the impact of bias correction dynamically decreases as
training process continues so that the consistency regularization
is performed correctly.

D. Overall Training Objective and Implementation Details

The overall training objective of our framework is the
weighted sum of supervised loss, pseudo-supervised loss and
consistency regularization item, it can be summarized as follows,

Lk
total =

N∑

i=1

Lk
s(f

k(xl
i; θ

k), yi)

+ λ

M∑

i=1

Lk
u(f

k(xu
i ; θ

k), ỹki )+μ

M∑

i=1

Lk
con(f

k(xu
i ; θ

k), z̃ki )

(6)

where μ is a trade-off coefficient like λ. Since no predictions at
epoch 1, the consistency regularization will join in training from
the second epoch. To reduce the negative impact of unreliable
predictions of unlabeled data at early training stage, we gradually
increase the values of λ and μ from 0 to their maximum values
λmax andμmax within emax epochs by multiply their maximum
values by a ramp-up weight

w(e) = e(−5.0∗(1−e/emax)
2). (7)

We employ 2D U-Net [6] which is commonly used in medical
image segmentation as our backbone with CT slices as its inputs.
Kaiming Initialization [42] is adopted to initialize models in our
framework. The kernel size is set to 3 for all convolution layers
except the last one. The number of feature maps in convolution
layers starts from 32 and is doubled after each maxpooling, a
total of four maxpooling are employed in the backbone. Each
convolution layer is followed by an Instance Normalization
layer [40] and a LeakyReLU function [41]. Sigmoid function
is employed as activation layer for the last convolution layer.
We implement our framework with PyTorch library [39] using
an NVIDIA RTX 2080Ti. Two models of our framework are
trained from scratch with Adam optimizer and share the same
hyper-parameters. The learning rate and batch size are set to
1e-4 and 12 during training, we totally train 40 epochs with
250 iterations per epoch. The maximum value of trade-off
coefficients λmax, μmax and maximum ramp-up value emax in
training objective are set to 0.1, 0.1 and 20. The momentum term
α for self-ensembling is fixed as 0.6. Random data augmentation
such as scaling with a factor of (0.85, 1.25), rotation, flipping
are adopted during training.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

The dataset we adopt in this paper is an integration of
three different COVID-19 datasets: self-collected dataset and
another two online datasets (UESTC-COVID-19 Dataset [30],
COVID-19 CT Lung and Infection Segmentation Dataset [43]).
Our self-collected dataset contains 33 CT scans collected from
three different hospitals: Shenzhen 2nd People’s Hospital(10 CT
scans), Peking University Shenzhen Hospital (6 CT scans) and
Zhijiang People’s Hospital (17 CT scans). In our self-collected
dataset, each CT scan is collected from a different patient
infected by SARS-CoV-2, and is annotated and confirmed by
two experts under fixed window level -450HU and window
width 1000HU. Another two datasets contain 50 and 20 CT
scans, respectively. CT scans in [30] have been cropped based
on the bounding box of the lung region and the intensity has been
normalized into [0,1] using window width/level of 1500/-650.
In [43], 10 of the CT scans have been already normalized into
[0255]. Consequently, there are in total of 103 CT scans used
for our semi-supervised segmentation task.

Because these CT scans come from different hospitals, there
inevitably exist data discrepancy between different data sources.
Considering we are not targeting data discrepancy problem,
clipping and normalization for HU values of CT are adopted to
mitigate the adverse impacts of data discrepancy. Specifically,
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Fig. 3. The results before (left column) and after (right column) pre-
processing of two cases from self-collected dataset (first row) and [43]
(second row) are presented.

the HU values of all CT scans in self-collected dataset and 10
CT scans from [43] which have not been normalized are clipped
into range (-950, 50) according to the window level and window
width (-450HU, 1000HU), then normalized into [0., 1.] by the
formulation of (x− xmin) (xmax − xmin), wherex denotes HU
value of CT, xmax and xmin represent the upper and low bound
which are -950 and 50 respectively. HU values of normalized
CT scans in [43] are scaled into [0., 1.] through dividing by 255.
As CT scans in [30] has already been normalized into [0., 1.],
we just use it without any further normalization. We present
two examples belong to different data sources before and after
data preprocessing in Fig. 3, showing that the data discrepancy
has been mitigated as much as possible. During training, we
randomly select and crop a batch patches of size (256256) out
from CT scans as the inputs of models.

Similar with [30], we also randomly split the whole dataset
into three independent parts: training set, validation set and
testing set, which contains 75 CT scans, 8 CT scans and 20 CT
scans, respectively. We use five evaluation metrics to measure
the segmentation performance for all experiments of our work,
including Dice coefficient (DI), Jaccard index (JA), Sensitivity
(SEN), Specificity (SP), AUC and the 95-th percentile of Hausd-
off Distance (HD95). All results reported in tables are calculated
based on the testing set. The means and variances are computed
by averaging the metrics over the samples of testing set on
volume level. Note that all experiments are based on patient
level so that there is no samples from same patients for training
and testing simultaneously.

B. Comparison With Other Semi-Supervised Methods

We implement the current state-of-the-art semi-supervised
medical image segmentation methods, including GAN based
methods DAN [35] and ASDNet [34], consistency based meth-
ods (MT) [21] and TCSM [13], self-training method [33] and
uncertainty aware method (UA-MT) [14], to compared with our
method. For GAN based methods, the trade-off coefficients

for adversarial loss in DAN and ASDNet are set to 1e− 3.
In particular, we start SSL in ASDNet from 15th epoch for
reliable training and the threshold of confidence is set to 0.3.
For consistency based methods, we set the decay of exponential
moving average as 0.99, the metric of consistency between
student and teacher model is set to Mean Square Error (MSE),
the weight of consistency regularization is ramped up from 0
to 0.1 in 20 epochs following sigmoid function. Transforma-
tions such as Gaussian noise, randomly rotation and scaling are
adopted in the implementation of TCSM. In self-training, we
train 40 and 20 epochs for the initialization and SSL and perform
alternate optimization for 3 iterations. The implementation of
UA-MT follows the settings of the authors. Note that since
the Noise-Robust [30] is developed for noisy labeled data, we
replace the noisy labeled data with unlabeled data to perform
semi-supervised learning. In addition, since the semi-supervised
learning in Self-correcting [48] is based on weak-labeled dataset
which the bounding box of foreground has been provided, we
discard this strong prior in our implementation for fair compari-
son. The backbones and the training protocols of all implemen-
tations including our method are same with each other to ensure
the fair comparison. Performance of different approaches are
listed in Table I.

We train U-Net with 100% and 5% of training data which
contain 75 and 4 CT scans respectively as upper bound and the
baseline. We can observed from Table. I that the upper bound
of performance can only exceed the baseline by Dice score of
8%. We argue that the reason can be summarized as follows.
First, due to the blurry boundaries of COVID-19 lesions, it is
challenging to distinguish the target accurately, therefore, the
upper bound of performance is limited. In addition, albeit the CT
scans are collected from different data source, in the process of
data preprocessing described in the second paragraph of Section
IV.A, we clip and normalize all raw CT scans with uniform
window level and window width which are suggested by clinical
experts to mitigate the data discrepancy. In this case, we can train
a fairly satisfactory baseline model with only 5% labeled data.

The GAN based methods all perform better compared to
the baseline, showing effectiveness of GAN based methods for
semi-supervised segmentation. However, we can notice that the
performance of ASDNet is lower than DAN, indicating that
the application of confidence map is still challenging for our
task. The consistency based methods TCSM and MT achieve
comparable performance compared to GAN based methods,
demonstrating the effectiveness of consistency regularization for
effectively utilizing unlabeled data. Meanwhile, we can observe
that TCSM which incorporates transformation consistency into
MT does not show advantages over MT, revealing that the
transformation consistency does not have a positive effect on
our task. In addition, similar with ASDNet, uncertainty strategy
implemented by Monte Carlo sampling in UA-MT does not
achieve higher performance compared with MT, showing that
the application of uncertainty strategy on our task remains chal-
lenging. Self-training obtains 74.27% of Dice score, which is
higher than the baseline and the above semi-supervised methods,
highlighting the superiority of self-training for semi-supervised
segmentation task. It is worth noting that the performance of
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TABLE I
COMPARISON WITH OTHER SEMI-SUPERVISED METHODS

1 ‘-h’ means the number of convolution layers is doubled.
2 ‘L/U’ means the number of Labeled/Unlabeled CT scans.

Fig. 4. Visualization of results predicted by different semi-supervised methods. The case of every row comes from different raw CT scans.
It can be observed that our method can predict better than the other methods for the blurry lesions.

Noise-Robust, CCT, Self-Correcting and GCT is worse than
the Baseline. For Noise-Robust, it can be demonstrated that the
proposed noise-robust Dice loss is not suitable for our semi-
supervised task. In CCT, the authors proposed to use several
decoders to perform consistency regularization via taking the
perturbed data as inputs. Considering that it is designed for
natural images, the multiple decoders in CCT is inappropriate
for our task, leading to poor performance of CCT. For Self-
Correcting, due to without strong prior provided by the weak
labels, the self-correcting network may have negative impact
on our task. In GCT, the performance of framework degrades
sharply, demonstrating that the proposed flaw detector cannot
provide a satisfactory guidance with an unsuitable image pro-
cessing pipeline for our task. As for [46], the authors proposed
a self-paced strategy with an uncertainty regularizer to force
the networks focus on the targets from easy to hard, similar

with UA-MT, the uncertainty strategy remains unsatisfactory
for our task. While the performance of SemiInfNet is improved
compared with the baseline, demonstrating the effectiveness of
iterative training, which is similar with Self-training. Different
from other methods, our framework achieves the state-of-the-art
performance, showing the effectiveness of our semi-supervised
method.

To analyze the significance of the improvements between
our method and the other semi-supervised methods, we take
Dice scores of testing samples as input to perform statistical test
via paired t-test. From the results, we can observe that all the
p-values are smaller than 0.05, indicating the statistically signifi-
cant improvements of our framework over other semi-supervised
methods. Visualization of results predicted by different methods
are shown in Fig. 4. We can see that methods often perform
well for the lesions which are easy to distinguish from the
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Fig. 5. Comparison of ensembled target between MT and our method.

background. However, for the blurry lesions, our method can
predict better than the other methods. In addition, to show the
advantage of our self-ensembled target, we take the predictions
of the teacher model in MT framework as the comparative
item. The visualization of predictions in different epochs is
presented in Fig. 5 for the ensembled targets of MT and our
method. It can be observed from the predictions of different
epochs that the quality of our ensembled target is better than the
ensembled target of MT especially in the mid to late training
stages, demonstrating the superiority of our self-ensembling
strategy.

C. Performance Using Different Percentages of
Labeled Data

We study the impact of different percentages of labeled
data on performance for four methods including our method,
MT(the representative exponential moving average model),
Self-training(the iterative-training method) and the Baseline.
Except for the setting of 4 labeled CT scans in the previous
section, we add another five settings of 8, 15, 23, 30 and 38
CT scans which are 10%, 20%, 30%, 40% and 50% of labeled
training data. The results are presented in Fig. 6.

From the figure, it can be observed that our method out-
performs other methods consistently with different percentages
of labeled data, demonstrating the superiority of our method.
Compared with the baseline, our method obtains a large im-
provement of for 3.88% of Dice score by using only 5% labeled
CT scans, furthermore, our method can achieve comparable
performance with only a small gap of 0.43% with 5% labeled CT
scans compared with the baseline with 20% labeled CT scans,
demonstrating the significant advantage of our method under
small-scale labeled dataset. Compared with the baseline trained
with 100% labeled CT scans reported in Table. I, our method
achieves comparable performance with 0.14% gap by using only
30% labeled data, indicating that our method can significantly
reduce the need of labeled data. It also can be noticed that the
performance of all method increases slowly with the increase of
labeled data, which illustrates that the performance of models
tend to converge with labeled data increases.

D. Ablation Study

Our framework contains two main components: co-training
and self-ensembling consistency regularization. To investigate
the effectiveness of each component, we perform an ablation
study by adding the two components on the baseline one by
one. The experiments are conducted on the setting of 4 labeled
CT scans. Results of different settings are presented in Table II.
Without consistency regularization, the performance of the plain
co-training can achieve 74.50% of Dice score, surpassing the
baseline for 2.46%, the other measurements except sensitivity
are all better than the baseline, showing the effectiveness of
co-training framework. Without co-training strategy, the frame-
work degenerates into a single view model. From the results,
we can observe that the self-ensembling strategy can also pro-
mote the performance of our baseline by 1.48%. However, only
training with a single view limits the effectiveness of utilizing
unlabeled data. Finally, with the joint learning of co-training and
self-ensembling consistency regularization, the performance of
our framework is further promoted to the state-of-the-art. We
also conduct paired t-test to verify the significance of the im-
provements between our method and the ablation studies under
different settings. Results show that the p-values are all smaller
than 0.05, demonstrating the significant improvements of our
method.

E. Analysis of Loss Functions

1) Comparison Between Cross-Entropy and Dice Loss: In
order to investigate the effect of Dice loss for our task, we
conduct experiments to compare the performance between the
well-known Cross-Entropy (CE) loss and Dice loss. The re-
sults are listed in Table III. Baseline(Dice) and Ours(Dice)
represent the Baseline and the proposed method, respectively.
Baseline(CE) and Ours(CE) are the comparison items whose
supervised loss and pseudo-supervised loss are replaced with
Cross-Entropy loss. It can be observed that both Baseline and
our method suffer from performance degradation by replacing
the Dice loss with CE loss. For CE loss, the foreground and
background are treated equally during training, leading to the
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Fig. 6. Comparison between multiple methods using different percentages of labeled CT scans.

TABLE II
DIFFERENT ABLATION SETTINGS OF OUR METHOD TRAINED WITH 4 CT SCANS

TABLE III
COMPARISON BETWEEN CROSS-ENTROPY LOSS AND DICE LOSS

strong bias towards the background. On the contrary, the Dice
loss can encourage the model to focus more on the foreground
so that the performance can be promoted in our task.

2) Comparison Between Different Consistency Losses: We
have conducted the experiments for different consistency loss,
and the results are presented in Table IV. It can be noticed that
the performance of framework with CE loss is significantly
lower than other losses, demonstrating that the CE loss is not
applicable to perform consistency regularization in our task.
Compared with MSE, even though the performance of L1 norm
and Dice loss is close to MSE, the HD95 is much lower than L1
norm and Dice loss with MSE as consistency loss, demonstrat-
ing the superiority of MSE loss on the boundary delineation.

TABLE IV
COMPARISON BETWEEN DIFFERENT CONSISTENCY LOSSES

Consequently, MSE is adopted as the loss function to perform
consistency regularization.

F. Analysis of Complexity

We summarize the FLOPs, params and runtime memory of
methods including the ablation studies in Table V. It can be
observed from Table V that the values of FLOPs are similar to
the frameworks containing same number of models (e.g. MT
and Ours). Since there are two trainable models, the needs
of params and runtime memory of our framework are more
than other frameworks with two models. To further investigate
the efficiency of our framework, we provide the baseline with
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TABLE V
COMPLEXITY ANALYSIS

the version (baseline-h) of doubled number of convolutional
layers. Combining Table V and Table I, it can be observed that
our framework outperforms the baseline-h with much fewer
params, revealing that it is more significant for our task to
adopt effective learning strategy rather than simply increasing
the complexity of network. Furthermore, compared with those
methods with similar parameters (Self-paced, Self-Correcting,
GCT), our method achieves the state-of-the-art performance
which also demonstrates the effectiveness of our framework.

The complexity indices of ablation studies are also presented
in Table V. Intuitively, compared with the Baseline model, more
parameters lead to the performance improvement of co-training
framework. However, it can be observed that the co-training
framework outperforms the Baseline-h model with a large im-
provement even if the amount of parameters is only half of
the Baseline-h, indicating that the contribution for performance
improvement heavily depends on the co-training rather than
the increase of parameters. In addition, the performance of
model only with consistency regularization can outperform the
Baseline and Baseline-h, demonstrating the effectiveness of
consistency regularization. Consequently, our proposed method
can achieve the state-of-the-art performance only with limited
complexity.

V. DISCUSSIONS

Accurately quantifying the COVID-19 lesions is important for
severity evaluation of COVID-19. Several methods have been
proposed to segment COVID-19 lesions from CT scans [10],
[11]. However, a CT scan usually contains a lot of slices, in
addition, the appearances of COVID-19 lesions in CT scans
vary greatly, thus labeling CT scans is labor-intensive and time-
consuming. With another outbreak of COVID-19 in this summer,
few experts will have enough time to do labeling job, which is
another difficulty for labeling COVID-19 lesions. Under such

Fig. 7. Visualization of failure case of our method.

circumstances, developing data-efficient methods for COVID-
19 lesion segmentation is in urgent need. In this paper, we aim to
build a semi-supervised segmentation method to deal with this
problem.

We evaluate the state-of-the-art semi-supervised methods for
medical image segmentation, the results are reported in Table I.
We observe that methods including GAN based methods and
consistency based methods only obtain limited improvements
compared to the baseline. To filter the unreliable knowledge dur-
ing training, [14], [34] incorporate confidence map into training
progress. However, the two methods do not achieve expectant
results, which remind us that the complexity and variability of
COVID-19 lesions may have negative impacts for uncertainty
estimation. Self-training [33] obtains significant improvement
compared to the baseline, which inspires us that models taught
by itself can learn useful knowledge from unlabeled data. The de-
fect of self-training is the requirement of several iterations, lead-
ing to high computational cost. Different from these methods, we
proposed a co-training framework for COVID-19 segmentation
which encourages two models to mutually learn unsupervised
knowledge. In this framework, we initialize the two models by
different parameters so that they can generate different views
towards same unlabeled data. During training, the two views
complement each other to improve each other’s performance.

Without any extra guidance, the predictions of unlabeled
data may be unreliable, so that two models suffer from noisy
supervision from each other during training. Intuitive idea is to
filter these noisy predictions. However, according to the results
of [14], [34], estimating the uncertainty map for complicated
COVID-19 lesions only guided by limited labeled data may not
be a reasonable solution. Based on this observation, to alleviate
the adverse impact of noisy pseudo-labels, we propose a self-
ensembling consistency regularization to constrain the training
progress, in which we encourage the current prediction and the
ensembled predictions from previous epochs to be consistent.
Our experimental results demonstrate the effectiveness of self-
ensembling consistency targets in improving the performance
of co-training framework.

Despite the performance improvement of our method, the area
between COVID-19 lesions and normal issue may exists slight
transition or have similarities. In this case, the prediction for
this kind of area could be wrong, as is illustrated in Fig. 7. We
argue that this is due to lack of prior knowledge to constrain
models. Under the setting of semi-supervised learning, induced
by the scarcity of labeled data, models cannot obtain enough
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reliable guidance to distinguish the ambiguity area, which is an
inevitable defect for predicting unseen data.

The incorporation of prior knowledge in deep learning meth-
ods is attracting more and more attention for improving perfor-
mance of deep learning models. Some prior knowledge which
act as constrained item have been proposed to integrate into loss
functions [44], [45]. The participation of proper prior knowl-
edge often bring performance improvement for models. For our
semi-supervised method, the predictions of unlabeled data may
be wrong due to the lack of prior knowledge, whereas the wrong
predictions still join in training. In the future work, we will focus
on developing an prior knowledge constraint to optimize the
predictions of unlabeled data, especially patient-specific prior
knowledge for better utilizing unlabeled data.

VI. CONCLUSION

In this paper, we present a novel semi-supervised segmen-
tation method trained by limited labeled data for segmenting
COVID-19 lesions. Specifically, we build a co-training frame-
work in which there are two models mutually teaching each
other with their own predicted results on unlabeled data, in ad-
dition, we propose a self-ensembling consistency regularization
for co-training framework to alleviate the negative impacts of
unreliable exchanged knowledge between the two collaborative
models. We evaluate our framework on a dataset contains 103
CT scans, experimental results show the significant performance
of our method over the state-of-the-art semi-supervised methods
for reducing the requirement of labeled CT scans. In the future
work, we focus on distinguishing the unreliable pseudo-labels
in co-training framework for further improving the performance
of SSL.
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