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Abstract—The diagnosis of obstructive sleep apnea is
based on daytime symptoms and the frequency of res-
piratory events during the night. The respiratory events
are scored manually from polysomnographic recordings,
which is time-consuming and expensive. Therefore, au-
tomatic scoring methods could considerably improve the
efficiency of sleep apnea diagnostics and release the re-
sources currently needed for manual scoring to other ar-
eas of sleep medicine. In this study, we trained a long
short-term memory neural network for automatic scoring
of respiratory events using input signals from peripheral
blood oxygen saturation, thermistor-airflow, nasal pressure
-airflow, and thorax respiratory effort. The signals were ex-
tracted from 887 in-lab polysomnography recordings. 787
patients with suspected sleep apnea were used to train the
neural network and 100 patients were used as an indepen-
dent test set. The epoch-wise agreement between manual
and automatic neural network scoring was high (88.9%,
κ = 0.728). In addition, the apnea-hypopnea index (AHI)
calculated from the automated scoring was close to the
manually determined AHI with a mean absolute error of
3.0 events/hour and an intraclass correlation coefficient of
0.985. The neural network approach for automatic scoring
of respiratory events achieved high accuracy and good
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agreement with manual scoring. The presented neural net-
work could be used for analysis of large research datasets
that are unfeasible to score manually, and has potential
for clinical use in the future In addition, since the neural
network scores individual respiratory events, the automatic
scoring can be easily reviewed manually if desired.

Index Terms—Machine learning, Artificial neural
networks, Obstructive sleep apnea, Respiratory event
scoring.

I. INTRODUCTION

OBSTRUCTIVE sleep apnea (OSA) is a common breathing
disorder where the upper airways collapse intermittently

during sleep causing cessations in breathing [1]. These breath-
ing cessations cause repeated hypoxia and sleep fragmentation
which can lead to daytime sleepiness and depression [2], [3].
OSA is also associated with stroke and heart failure and increases
the risk of traffic and workplace accidents [1], [4]–[6]. OSA
has been estimated to affect nearly half of the adult population
making it a major global health problem [7], [8].

OSA diagnosis is based on daytime symptoms and on the
apnea-hypopnea index (AHI) i.e., the number of apnea and
hypopnea events per hour of sleep [9]. The gold standard to
determine the AHI is to perform an in-lab polysomnography
(PSG). In current clinical practice, respiratory events are scored
by reviewing the recorded PSG signals and manually annotating
the detected events. According to the American Academy of
Sleep Medicine (AASM) scoring rules, an apnea is scored when
the airflow signal drops ≥ 90 % from the reference level for at
least 10 s and a hypopnea is scored, when the airflow signal drops
≥ 30 % from reference level for at least 10 s causing an arousal or
at least a 3 % drop in blood oxygen saturation [10]. Since a single
patient can have hundreds of respiratory events, manual scoring
of PSG recordings is very time-consuming and expensive. Some
devices and analysis software offer the possibility of automatic
scoring of respiratory events, but the accuracy of these auto-
matic scoring algorithms has been shown to be relatively poor
compared to manual scoring with underestimation of the AHI
by the automatic methods [11]–[15]. Therefore, there is a clear
need to develop more advanced automated scoring methods.

Artificial neural network (ANN) methods have been shown
to be powerful tools in medical signal analysis and have also
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been used in sleep science for highly accurate automated sleep
staging [16]–[18]. In addition, there is a large number of studies
that use ANN-based methods to estimate sleep apnea severity
using various input signals [19], [20]. However, these previous
studies have only estimated the AHI or oxygen desaturation
index (ODI), performed simple binary classification to OSA
and non-OSA groups, or detected whether some signal segment
includes respiratory events, but not their exact start time or
duration [19], [20]. Therefore, these automatic methods cannot
be directly compared to standard manual respiratory event scor-
ing. Additionally, since these automatic methods do not provide
any information on the individual respiratory events, they are
effectively just “black boxes” that output an estimate of the OSA
severity. Therefore, it is difficult to review the automatic analysis
or confirm the severity estimate without completely re-scoring
the signals manually.

For these reasons, the aim of this study was to develop an auto-
matic respiratory event scoring method that allows the detection
of individual respiratory event start times and durations. With
this approach, the automatic scoring can be directly compared to
standard manual scoring. In addition, the automatic scoring can
be easily reviewed visually if desired. To achieve this, we used
an ANN with a long short-term memory (LSTM) architecture
that uses peripheral blood oxygen saturation (SpO2), thermistor-
airflow, nasal pressure –airflow, and thorax respiratory effort
signals as inputs.

II. METHODS

A. Subjects and Signals

The patient population consisted of 887 patients with sus-
pected OSA who had undergone an in-lab PSG. The PSGs were
conducted using the Compumedics Grael acquisition system
(Compumedics, Abbotsford, Australia) during 2015-2017 in
Princess Alexandra Hospital, Brisbane, Australia. The PSGs
were analyzed by a group of ten expert scorers, with only a
single person analyzing each recording, using the prevailing
AASM guidelines (AASM 2012) [10], [21]. Ethical permis-
sions for the data collection and processing were obtained
from The Institutional Human Research Ethics Committee of
the Princess Alexandra Hospital (HREC/16/QPAH/021 and
LNR/2019/QMS/54313). The characteristics of the patient pop-
ulation are presented in Tables I and II.

All 887 recordings were included for further analyses. To
keep the preprocessing steps simple and easily reproducible,
we did not exclude any recordings for sleep duration or signal
quality reasons and no artifact removal was performed. By
including also the recording segments with poor signal quality
to the current analyzed dataset, it is more representative of
other clinical datasets which also generally lack preprocessing.
Peripheral blood oxygen saturation, thermistor-airflow, nasal
pressure –airflow, and respiratory effort signals were used as an
input to the network. These signals were selected because they
are the main signals utilized in manual respiratory event scoring
[10]. Thermistor-airflow is included for accurate apnea detection
and nasal pressure -airflow for accurate hypopnea detection
[10]. In addition, these signals are recorded with most type II

TABLE I
PATIENT CHARACTERISTICS FOR THE WHOLE DATASET, TRAINING SET AND

TEST SET

AHI = apnea-hypopnea index, ODI = oxygen desaturation index, BMI = body mass
index, ESS = Epworth sleepiness scale

TABLE II
THE NUMBER AND PERCENTAGE OF PATIENTS AND RESPIRATORY EVENTS IN

THE WHOLE DATASET, TRAINING SET AND TEST SET

and type III portable monitors in addition to the type I in-lab
PSGs [22], [23]. Therefore, a network trained with these four
signals is applicable to almost any dataset. For this same reason,
electroencephalography (EEG) recordings were not included as
this would have limited the use in datasets recorded with type
III monitors where EEG is not recorded [22].
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The raw signals were imported to MATLAB 2019b (Math-
Works Inc., Natick, Massachusetts, United States), for prepro-
cessing. The thermistor, nasal pressure and thorax respiratory
belt signals were originally recorded with 128 Hz sampling
frequency and the oxygen saturation signal was recorded with
64 Hz sampling frequency. All four signals were lowpass filtered
with a 2 Hz cutoff frequency and downsampled to 4 Hz. The
downsampling was conducted to limit the computational load
and the 4 Hz frequency was selected since nearly all of the power
in the input signals is in the 0-2 Hz frequency range. Therefore,
by selecting 4 Hz as the sampling frequency, no relevant signal
information is lost and minimum computational load is achieved.
In addition, the signals were truncated so that only the time
between the lights off and lights on marks was included.

A scoring vector that contains the information of the manually
scored apneas and hypopneas was formed for each patient. Each
element in this scoring vector represents one data point in the
input signals. The values of the scoring vector elements were
set to one of three classes according to which respiratory event
was annotated for that data point (0 = no-event, 1 = apnea, 2 =
hypopnea). The apneas and hypopneas were not differentiated by
event type (central, mixed or obstructive) and all types of events
were included. These scoring vectors were used as the target
outputs of the neural network. Therefore, the neural network
effectively classifies each data point to no-event, apnea, or
hypopnea. The input signals and the target vectors were split
into 30 s epochs with 28 s overlap between consecutive epochs
and each of these epochs was passed to the network as a single
sample.

B. Neural network

Recurrent neural network architecture was chosen since it
allows sequence labeling, i.e., classification of each sampling
point. LSTM structure was selected since this type of network
is well suited to process both long and short sequences while
preserving relevant information throughout the sequence [24].
The network was trained in Python 3.7.3 with Tensorflow 1.14.0
using Keras 2.2.4. The training was conducted on a server with
AMD Ryzen 2990WX, NVIDIA GeForce RTX 2080, and 128
GB RAM.

The neural network consisted of three LSTM layers, with
a layer size of 20. The LSTM layers used tanh activation and
sigmoid recurrent activation. The LSTM layers were followed by
a fully connected layer with a size of 3 and a softmax activation.
The network was trained with a learning rate of 0.0001 using
the Adam optimizer [25]. An illustration of the neural network
architecture is presented in Fig. 1.

The test set was formed by randomly selecting 100 patients
from the full patient population. The rest of the patients (n =
787) were used to train the network. The patient characteristics
of the training and test sets are also presented in Tables I and
II. During training, 10% of the training set was further used
as the validation set to assess the performance during training
and to avoid overfitting. The training accuracy was monitored
using sparse categorical cross-entropy as the loss function. The
training was terminated after the validation set loss did not

Fig. 1. Architecture of the neural network used in the study. LSTM =
long short term memory layer, RNN = recurrent neural network, fs =
sampling frequency.

decrease for 200 consecutive epochs after which the model with
the lowest validation loss was selected.

The neural network hyperparameters were selected based on
educated guesses and preliminary testing. Networks with two
and four LSTM layers were also tested but these networks
resulted in lower validation accuracy. LSTM layer sizes of 10,
30, and 40 were also tested but the validation accuracy suffered
slightly. The available training time and computational resources
also limited the testing of larger networks and larger layer sizes.
According to the preliminary testing, higher overlap in the input
epochs improved accuracy slightly. However, 28 s of overlap on
the epochs was the maximum allowed by memory constraints.
Epoch lengths of 10 s, 20 s, 60 s, 120 s, and 300 s were also tested.
On the epoch lengths of 60 s, 120 s, and 300 s, the percentage
of overlap needed to be limited due to memory limitations,
which likely led to the lower accuracy on the longer epoch
lengths. On the shorter epoch lengths, the validation accuracy
also suffered slightly compared to the 30 s epoch length likely
due to the fact that the epoch length (10 s or 20s) was shorter than
many of the respiratory events. Therefore, these hyperparame-
ters were selected as according to the preliminary testing, they
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enabled highest performance with the available training time and
computational resources.

C. Data analyses

After training, the network performance was tested using
the independent test set consisting of 100 patients. The neural
network outputs from the patients in the test set also consisted of
30 s epochs with 28 s overlap. These outputs were separated by
the event type into three scoring signals (no-event, apnea, and
hypopnea). Each of the three signals was combined into a contin-
uous signal by averaging the output values from the overlapping
epochs. No other averaging or smoothing was performed on the
outputs. These scoring signals therefore contained the predicted
event probabilities for each data point. Since softmax activation
was used on the output layer, the different event probabilities
add up to one. The neural network scoring was formed by simply
taking the maximum value from these output signals for each
data point, e.g., if apnea had a probability of 0.4 and hypopnea
a probability of 0.5 and no event a probability of 0.1, that data
point was scored as a hypopnea. Therefore, we obtained the
neural network scoring vector with elements corresponding to
the predicted event type (0=no-event, 1= apnea, 2=hypopnea)
for each data point without a need for any threshold values to
qualify the events. The final neural network scoring was formed
by combining consecutive data points with the same value to
a single event. We considered that the event had ended at the
first data point with a different output value. For example, apnea
event started when the scoring vector value changed from 0 or
2 to 1 and ended when the value changed from 1 to 0 or 2. In
accordance with the AASM rules, events with a duration of less
than 10 s were discarded.

The agreement between the manual scoring and automated
neural network-based scoring was evaluated epoch-wise. Each
epoch was marked to have either an apnea, a hypopnea or
no respiratory events. Partial events were also counted. Single
epoch marked as containing an event could thus contain a part of
an event, a single event, or multiple events. Epoch-wise accuracy
and Cohen’s kappa (κ) [26] were calculated for all respiratory
events and separately for apnea and hypopnea scoring.

Additionally, the neural network scoring was compared to
manual scoring in an event-by-event manner and the percentage
of correctly detected events was calculated. The event was
considered to be correctly detected if the neural network and
manually scored events overlapped. Additionally, the errors in
the event start and end times were calculated.

The AHI, apnea index (AI) and hypopnea index (HI) based on
the neural network scoring were also calculated for each patient
in the test set and compared to manual scoring. In addition,
we calculated an intraclass correlation coefficient (ICC) [27]
between the manually determined AHI, AI and HI and the AHI,
AI and HI based on the neural network scoring.

III. RESULTS

The neural network scoring had high agreement with manual
scoring. The epoch-wise agreement for all respiratory events in
the test set was 88.9 % (κ= 0.728). The epoch-wise agreement

TABLE III
THE EPOCH-WISE SCORING RESULTS BASED ON MANUAL AND NEURAL

NETWORK APPROACHES

The total number of epochs in all recordings (n = 100) in the test set was 87 076. The
same epoch can be scored both as an apnea and also as a hypopnea if it includes both
events.

for apneas was 96.2 % (κ = 0.791) and the epoch-wise agree-
ment for hypopneas was 88.2 % (κ = 0.627). The epoch-wise
scoring for apnea, hypopnea and no-event epochs are presented
in Table III. In addition, the sensitivity and specificity of the
neural network scoring for apnea, hypopnea and no-event epochs
are presented in Table III.

The AHI, AI, and HI calculated from the neural-network
scoring were close to the manually determined AHI, AI, and
HI. Mean absolute AI error was 2.0 events/hour, mean absolute
HI error was 2.9 events/hour and mean absolute AHI error
was 3.0 events/hour. Histograms showing the AHI, AI, and HI
error distributions are presented in Fig. 2. The neural network
estimated AHI, AI, and HI were highly correlated to manually
determined AHI, AI, and HI and their scatter plots are also
shown in Fig. 2. The intraclass correlation coefficient (ICC)
between the neural network AHI and manual AHI was 0.985
with a 95 % confidence interval (CI) of 0.978 to 0.990. The ICC
between neural network AI and manual AI was 0.971 (95 %
CI: 0.955-0.981) and the ICC between neural network HI and
manual HI was 0.966 (95 % CI: 0.943-0.979). Bland-Altman
plots of the differences between the AHI, HI and AI obtained
based on manual and neural network scoring are presented in
Fig 3.

When the AHI based on neural network scoring was used to
classify the test patients into the standard OSA severity groups,
an overall accuracy of 87 % was achieved. Confusion matrix
showing the OSA severity classifications based on manual and
neural network scoring is presented in Fig 4. The errors in AHI,
AI, and HI and classification accuracies were also calculated
separately for each OSA class. These results are presented
in Table IV. The neural network learning curves showing the
training set and validation set performance are presented in
Fig. 5.

In the event-by-event analysis, the neural network correctly
detected majority of the respiratory events. Out of all manually
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Fig. 2. Histograms of the differences between the neural network determined (estimated) and manually scored (true) apnea-hypopnea index (AHI)
(a), apnea index (AI) (b) and hypopnea index (HI) (c) for all 100 patients in the test set. Scatter plots with intraclass correlation coefficients (ICC)
between the estimated AHI and manually scored (true) AHI (d), between the estimated AI and true AI (e), and between the estimated HI and true
HI (f) for all 100 patients in the test set.

Fig. 3. Bland-Altman plots of the differences between the neural network determined (estimated) and manually scored (true) apnea-hypopnea
index (AHI) (a), apnea index (AI) (b), and hypopnea index (HI) (c) for all 100 patients in the test set.

scored apnea events in the test set, 80.0 % were correctly
detected by the neural network. For hypopneas, the percentage of
correctly detected events was 60.1 %. The neural network also
incorrectly identified some parts of the signals as respiratory
events even though there was no manually scored event, i.e., the
events did not overlap with a manually scored event. Out of all

apnea events scored by the neural network, 27.1 % were these
misidentified events. For hypopneas, the misidentified event
proportion was 34.2 %.

When the respiratory event was correctly detected by the
neural network, there were still some differences in the event
start and end points between the neural network scoring and
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Fig. 4. Confusion matrix showing the obstructive sleep apnea (OSA)
severity classifications based on manual scoring (true class) and neural
network scoring (estimated class).

TABLE IV
THE AHI, AI AND HI ERRORS AND CLASSIFICATION ACCURACY FOR EACH

OSA SEVERITY CLASS

OSA = obstructive sleep apnea, AHI = apnea-hypopnea index, AI = apnea index, HI
= hypopnea index

manual scoring. The mean absolute error in the apnea start times
across all correctly detected apneas in the test set was 6.6 s and
the mean absolute error in end times was 1.9 s. Respectively, the
mean absolute errors in hypopnea start and end times were 7.7 s
and 4.4 s. The mean absolute errors in event durations were 7.2
s for apneas and 8.7 s for hypopneas. Histograms showing the
distribution of the event start and end time errors and the event
duration errors for apneas and hypopneas across all correctly
detected events in the test set are presented in Fig. 6.

TABLE V
THE MEAN AND STANDARD DEVIATION OF THE ERROR PARAMETERS

CALCULATED INDIVIDUALLY FOR EACH PATIENT IN THE TEST SET (N = 100)

The event detection percentages, the proportion of misidenti-
fied events, start time errors, end time errors, and duration errors
were also calculated individually for each patient in the test set.
These results are presented in Table V.

IV. DISCUSSION

In this study, we developed an artificial neural network that
automatically scores respiratory events from sleep recordings.
The epoch-wise agreement between manual and neural network
scoring was high (88.9 %, κ = 0.728). The AASM inter-scorer
reliability program reports a slightly better epoch-wise agree-
ment for respiratory events (93.9 %, κ = 0.92) [28]. However,
unlike in the present study, obstructive, central, and mixed ap-
neas were scored separately in the AASM inter-scorer reliability
program and the program investigated the agreement between
more than 3000 scorers [28]. Furthermore, the records chosen
to the AASM inter-scorer reliability program were specifically
selected to only include robust signals with minimal artefacts
[28]. For these reasons, the agreement values to the present study
are not directly comparable. However, another study by Pittman
et al. reports similar inter-scorer agreement (94.9 %, κ = 0.82)
[29] as the AASM inter-scorer reliability program. This report
also provides a more suitable comparison to the present study
as it only included two manual scorers and did not differentiate
between central and obstructive apnea types [29].

The presented neural network did not quite reach the scoring
agreement reported by AASM and Pittman et al. [29]. However,
as the neural network is trained using scoring data from multiple
scorers, the maximum agreement that the network can achieve,
is the agreement between the scorers of the training data. The
neural network achieved respiratory event scoring agreement of
κ= 0.728 with manual scoring which is close to the inter-scorer
agreement of Princess Alexandra Hospital (κ = 0.81) [30].

The neural network estimated AHI, AI, and HI had high
agreement with manual scoring (Fig 1). The mean absolute
AHI error was 3.0 events/hour and the neural network achieved
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Fig. 5. The neural network learning curves showing the training set and validation set performance during training for each epoch.

Fig. 6. Histograms of the apnea event start time errors (a), the apnea event end time errors (b), the apnea event duration errors (c), the hypopnea
event start time errors (d), the hypopnea event end time errors (e), and the hypopnea event duration errors (f). All apneas and hypopneas in the
test set are included. Start and end time errors are presented as manually scored event time - neural network scored event time, i.e., negative error
means that the neural network scored event starts/ends later than the manually scored event and positive error means that the neural network
scored event starts/ends before the manually scored event. Differences in event durations are presented as manually scored event duration - neural
network scored event duration.

an AHI ICC of 0.985 with manual scoring. This is similar to
reported inter-scorer agreement (AHI ICC of 0.95) among nine
Sleep Apnea Genetics International Consortium (SAGIC) sleep
centers [31].

The absolute AHI errors were higher in patients with more
severe OSA (Table III). This was expected since the higher
number of events also increases the probability of some events to
be missed or misidentified. Classification accuracy was highest
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Fig. 7. Example of a respiratory event manually scored from breath peak to peak. In comparison, the neural network has only scored the event
duration between the breaths. The neural network scoring is shown directly as the neural network outputs it, i.e., as a probability between 0 and 1.
The closer the value is to 1, the higher the probability for an event there is according to the neural network estimation.

with non-OSA and severe patients (Table III). This was also
expected since overestimating the AHI of a severe patient or
underestimating the AHI of a non-OSA patient does not change
the OSA class making these patients easier to classify. It is note-
worthy that random chance has larger effect on these subclass
errors and classification accuracies due to the relatively low
number of patients in each class.

The validation set and training set losses during the training of
the neural network decreased over time as expected although the
validation loss was considerably more volatile than the training
loss with relatively high peaks (Fig 5). This was also expected
however, as the optimizer only works on the training set and
therefore some adjustments to the weights of the network may
increase the validation loss even though the training set loss
decreases. The general trend of the validation set loss also
decreased similarly to the training set trend.

The neural network correctly detected the majority of the
respiratory events although the detection accuracy was consid-
erably higher for apneas (80.0 %) than for hypopneas (60.1 %).
Hypopneas were also misidentified more often (34.2 %) than
apneas (27.1 %). Similar results were seen in the average ab-
solute start and end time errors, which were lower for apneas
(6.6 s and 1.9 s) than for hypopneas (7.7 s and 4.4 s). The

higher accuracy for apneas was expected since apnea events
are also easier to detect manually and hypopnea agreement
between scorers has been reported to be much lower than apnea
agreement [28]. In addition, since the neural network does not
analyze EEG, it is possible that some hypopnea events that
are only associated with an arousal, are missed. The lack of
EEG could also cause misidentified events since it could be
difficult to differentiate between spontaneous airflow amplitude
drops and arousal associated hypopneas. Thus, it is possible that
spontaneous amplitude drops in airflow signal are sometimes
incorrectly identified as hypopneas by the neural network. These
factors could limit the accuracy of hypopnea scoring and explain
the lower accuracy for hypopneas.

The events scored by the neural network were generally
shorter than the manually scored events as seen in Fig. 2. The
neural network scored most apneas and hypopneas to start later
and to end slightly earlier compared to manual scoring. This
could be in part explained by the manual scoring habit of scoring
from breath peak to peak while the neural network seems to only
score the actual event duration. An example of this is presented
in Fig. 7. Since the events scored by neural network were shorter,
it could also at least partly explain the relatively high proportion
of missed events. Many manually scored events with a duration
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Fig. 8. Example of a respiratory event which starts as a hypopnea and turns into an apnea. The neural network has scored the event as separate
hypopnea and apnea events while the whole event is scored as an apnea by manual scoring. The neural network scoring is shown directly as the
neural network outputs it, i.e., as a probability between 0 and 1. The closer the value is to 1, the higher the probability for an event there is according
to the neural network estimation.

close to 10 s were likely even shorter in the neural network
scoring and may have thus been discarded since they did not
fulfill the minimum duration criterion of 10 s.

While the neural network correctly detected majority of the
events, it scored many of them differently than the manual
scorers. In many cases, the neural network scores the beginning
of the event as a hypopnea, when the thermistor still detected
some airflow and then switched the event scoring to apnea after
the thermistor signal was also flat. In contrast, the manual scorers
typically scored the whole event as an apnea as instructed by
the AASM apnea scoring rules [21]. An example of this is
presented in Fig. 8. Some of the error in event start and end times
could also be explained by this functional difference in human
and neural network scoring. Therefore, the nuances within the
scoring habits can have a significant impact on the accuracy of
the neural network.

While the neural network -based scoring is not perfect, its
accuracy is still relatively close to the inter-scorer agreement
seen between manual scorers [28], [29], [31] and to the inter-
scorer agreement of the training data [30]. In addition, the neural
network scoring will not differ with different hospitals or scoring
environments and always scores similar input the same way.

This is a major factor as the accuracy of the manual scoring
can be largely dependent on the training and scoring habits of
the scorers. In some cases, the diagnosis for the same patient
can even vary from healthy to severe OSA between different
scorers [32]. In addition, the neural network is not susceptible
to human error factors such as stress or alertness level making it
very consistent. Furthermore, since the neural network produces
scoring for all respiratory events, it can be reviewed visually
should it be desired. The presented neural network is also fast,
taking only a few seconds per patient, and does not require
any manual labor to perform the scoring. For these reasons, the
developed neural network solution could be applied for example
in analyzing large datasets for research purposes where manual
analysis of thousands of patients may be unfeasible due to time
or cost constraints. Alternatively, the neural network could be
used with portable monitors to perform and analyze sleep studies
conducted at home. This way, sleep could be monitored for
multiple consecutive nights quickly and cost-effectively and
therefore the error caused by inter-night variation [33] of OSA
severity could be reduced with minimal additional labor.

The presented neural network approach has certain limita-
tions. One limitation is that we only used signals from pulse
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oximetry (SpO2), thermistor, nasal pressure sensor, and res-
piratory belt. As EEG signals were not included, hypopneas
associated with only an arousal might not be detectable and
therefore some of the hypopneas might be missed. However, the
exclusion of EEG allows the neural network to be also utilized
in datasets that do not include EEG. In addition, all of the used
signals are easy to record and are present in all modern PSG
and home sleep apnea test recording setups. Only some older
datasets might not include a nasal pressure sensor and since
all of these four input signals are required to use the neural
network, this might limit the use of the neural network in these
older datasets. In addition, the current neural network is not
able to differentiate between obstructive, mixed, and central
events. From a clinical point of view, this weakness could limit
treatment decisions and therefore it warrants investigation in
future studies whether this differentiation between central and
obstructive apneas could also be added to the neural network.
However, since the prevalence of central sleep apnea is very low
[34], more training data, especially from patients suffering from
central sleep apnea, would likely be also needed for accurate
detection of central events. Another limitation is that the neural
network has only been tested in the current dataset. While we
have shown that the presented neural network has strong perfor-
mance in a completely independent test set, no information is
available on how the network performs in a completely different
dataset which might have different manual scoring preferences
and different recording setup. In addition, if different sensors
such as different type of oximeter or respiratory belt are used,
they might produce a slightly different signal which could affect
the performance of the neural network. Therefore, it would be
beneficial to evaluate in the future, how the neural network
performs in another dataset. In addition, it would be interesting
to investigate how the neural network responds to respiratory
signal loss compared to manual scorers. Furthermore, it would
be valuable to comprehensively study, which input signals are
the most significant for the neural network performance and if
the inputs could be further limited.

Finally, it is good to acknowledge that the epoch-wise agree-
ment measure is only a rough estimate of scoring agreement
and allows a relatively large variation in the scores while still
retaining good agreement. Therefore, using this measure could
hide some scoring errors by the neural network. However, as
the epoch-wise agreement is the standard measure used in
literature, we also used it in this study to allow comparison
to the inter-scorer agreement in manual scoring. In addition,
it should be noted, that when the error in AHI is used as a metric
for studying scoring agreement, it allows some differences in
the scorings while retaining high agreement in AHI. Since the
neural network missed some events and misidentified others,
these errors partially cancel each other out. However, the same
effect is also present when comparing the scoring agreement
between two manual scorers.

V. CONCLUSION

In conclusion, automatic, neural network -based scoring of
respiratory events was found to be possible with high accuracy

and high agreement with manual scoring. The presented auto-
matic scoring method could be used to greatly reduce the work
required for PSG scoring and enable diagnosis and treatment
for many who are suffering from OSA, but are not diagnosed
due to limited diagnostic resources. In addition, since the neural
network provides easily interpretable scoring for individual res-
piratory events, the automatic scoring could be visually reviewed
or corrected if a final manual check is preferred.
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