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Machine Learning Models for Classification of
Cushing’s Syndrome Using Retrospective Data

Senol Isci , Derya Sema Yaman Kalender, Firat Bayraktar, and Alper Yaman

Abstract—Accurate classification of Cushing’s Syn-
drome (CS) plays a critical role in providing the early and
correct diagnosis of CS that may facilitate treatment and
improve patient outcomes. Diagnosis of CS is a complex
process, which requires careful and concurrent interpre-
tation of signs and symptoms, multiple biochemical test
results, and findings of medical imaging by physicians with
a high degree of specialty and knowledge to make correct
judgments. In this article, we explore the state of the art
machine learning algorithms to demonstrate their potential
as a clinical decision support system to analyze and clas-
sify CS to facilitate the diagnosis, prognosis, and treatment
of CS. Prominent algorithms are compared using nested
cross-validation and various class comparison strategies
including multiclass, one vs. all, and one vs. one binary
classification. Our findings show that Random Forest (RF)
algorithm is most suitable for the classification of CS. We
demonstrate that the proposed approach can classify CS
with an average accuracy of 92% and an average F1 score
of 91.5%, depending on the class comparison strategy and
selected features. RF-based one vs. all binary classification
model achieves sensitivity of 97.6%, precision of 91.1%,
and specificity of 87.1% to discriminate CS from non-CS on
the test dataset. RF-based multiclass classification model
achieves average per class sensitivity of 91.8%, average per
class specificity of 97.1%, and average per class precision
of 92.1% to classify different subtypes of CS on the test
dataset. Clinical performance evaluation suggests that the
developed models can help improve physicians’ judgment
in diagnosing CS.

Index Terms—Classification, cushing’s syndrome,
decision support systems, machine learning, prediction,
random forest.

Manuscript received July 24, 2020; revised November 25, 2020 and
December 23, 2020; accepted January 21, 2021. Date of publication
January 29, 2021; date of current version August 5, 2021. (Correspond-
ing author: Alper Yaman.)

Senol Isci is with the TUBITAK BILGEM Informatics, and Infor-
mation Security Research Center, 41470 Kocaeli, Turkey (e-mail:
senol.isci@tubitak.gov.tr).

Derya Sema Yaman Kalender is with the Department of Endocrinol-
ogy, Faculty of Medicine, Izmir Katip Celebi University, 35620 Izmir,
Turkey (e-mail: derya.sema@gmail.com).

Firat Bayraktar is with the Division of Endocrinology and Metabolism,
Department of Internal Medicine, Dokuz Eylul University Medical
School, 35340 Izmir, Turkey (e-mail: firat.bayraktar@gmail.com).

Alper Yaman is with the Department of Biomechatronic Systems,
Fraunhofer Institute for Manufacturing Engineering, and Automation
IPA Nobelstr. 12, 70569 Stuttgart, Germany (e-mail: alper.yaman@
ipa.fraunhofer.de).

Digital Object Identifier 10.1109/JBHI.2021.3054592

I. INTRODUCTION

CUSHING’s Syndrome (CS) is a potentially lethal disorder
caused by abnormally high levels of cortisol hormone, first

described in 1912 by Harvey Cushing [1], [2]. The estimated
incidence of CS is 0.2–5 per 1 million per year, and its prevalence
is 39–79 per million in various populations. The median age is
41.4 years, and the female to male ratio is 4 to 1 [3], [4]. It may
stem from prolonged intake of glucocorticoids-steroid hormones
that are chemically similar to natural cortisol, such as anti-
inflammatory medications prescribed for asthma, rheumatoid
arthritis, lupus, and other inflammatory diseases. Such hormones
may also be taken after an organ transplant to suppress the
immune system and prevent organ rejection. There are also
endogenic causes in which the body produces an excessive
amount of cortisol by itself. Cushing Disease, a form of CS, is the
most common cause of excess endogenous cortisol production
by the adrenal glands. It is caused by a pituitary tumor (i.e.
adenoma which is usually a benign tumor in glands) that secretes
an excessive amount of adrenocorticotropic hormone (ACTH),
which then signals the adrenal glands to produce cortisol. CS
might be a result of an adrenal gland tumor or adrenal hyperplasia
(i.e. a genetic disorder in the adrenal gland), which can cause
the adrenal gland to overproduce cortisol. Ectopic CS is another
form of CS in which a tumor in another part of the body such as
the pancreas, lung, or thyroid can result in CS by producing
ACTH. It is called ectopic ACTH production because it is
produced somewhere other than the pituitary gland.

Early diagnosis plays a crucial role in reducing mortality
and improving the prognosis of this syndrome. However, the
diagnosis of CS can be difficult, for instance, due to the gradual
development of symptoms, and due to overlap with features of
metabolic syndrome like increased blood pressure, high blood
sugar, excess body fat around the waist, and abnormal choles-
terol or triglyceride levels. Moreover, many of these features are
common in the general population [5].

Laboratory investigations for patients with clinically sus-
pected CS are divided into two stages. Stage-1 tests are screening
tests for diagnostic purposes and applied to prove the presence
of hypercortisolism. Stage-2 includes follow-up tests to evaluate
the cause of hypercortisolism [4], [6], [7]. The most commonly
used evaluation procedure for the exclusion or confirmation of
CS has urine cortisol test which measures the cortisol level in
a 24-hour sample of urine, saliva cortisol test which measures
the cortisol level in the saliva, and low-dose dexamethasone test
which measures the cortisol level in the blood after intake of
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the drug Dexamethasone. Despite the predictive value of these
methods, cases with inconclusive test results still happen. Incon-
clusive results can be seen in patients with initial stages of this
disease or in periodic forms of CS. Sometimes the diagnosis can
only be made after long-term follow up or prolonged procedures,
and may require hospitalization of the patient [6]. For patients
with incidental adrenal mass, it is difficult to make a diagnosis or
operation decision only with test results [8]. Incidental adrenal
mass refers to the incidentally discovered adrenal mass during
imaging which was not performed for suspected adrenal disease.
Some conditions (e.g., obesity, diabetes mellitus, or depression)
which have common features with CS may cause physiological
hypercortisolism, and lead to incorrect results of the Dexam-
ethasone suppression test (DST) [9].

Factors like laboratory errors, patient-induced errors, differ-
ences between groups, age, and gender may cause inconsistent
test results. Traditionally, the diagnostic values of the test results
have been analyzed using statistical methods and based on
different selected cut-offs for sensitivity and specificity tradeoff.
Therefore, the evaluation of the tests performed for the diagnosis
and the identification of the cause may significantly vary. In
many studies, different cut-off values have been found depend-
ing on the varying settings of the medical test and the employed
statistical methods [10]. The diagnosis of CS and identifica-
tion of its cause require careful and concurrent interpretation
of signs and symptoms, results of multiple biochemical test
measurements, and findings of medical imaging by physicians
with a high degree of specialty and knowledge to make correct
judgments.

We believe that these difficulties would be handled by utilizing
a generalizable machine learning (ML) approach. In this article,
we explore the state of the art ML algorithms, and demonstrate
their usefulness as a clinical decision support system to evaluate
results of the medical tests, and predict CS to facilitate the diag-
nosis and prognosis of CS. Furthermore, clinical performance
evaluation of the suggested method was performed by compar-
ing model predictions to the judgments of expert physicians.

We developed a publicly accessible web application (at https:
//cushings-syndrome-prediction.herokuapp.com/) as a clinical
decision support tool for public use where a user can input the
patient’ s test findings and receive prediction for CS. We used
the Python scikit-learn ML library v0.21.3 [11], which contains
implementations of all models used in this study. The software
code is available at https://github.com/SenolIsci/cushing01.

A. Related Work

ML approach has been applied to CS related problems [12].
The automated interpretation of urine steroid profiles to classify
normal and abnormal profiles of several metabolic conditions
including CS has been studied [13]. Classification of CS us-
ing gene expression data of tumor tissues has been demon-
strated [14]. The use of ML to identify predictors of early post-
surgical and long-term outcomes in patients treated for Cushing
disease (CD) has been studied [15]. Another study has aimed to
identify facial anomalies associated with endocrinal disorders
including CS using ML approach to facilitate the process of
diagnosis and follow-up [16]. To the best of our knowledge,

our study is the first to present a comprehensive investigation of
the application of ML approach to diagnose CS and classify its
subtypes using retrospective medical data.

II. MATERIALS

A. Subjects

The retrospective medical records of 241 subjects (183 fe-
male and 58 male, age mean±standard deviation = 52.02±13.33
years) were used. The subjects were admitted to the endocrinol-
ogy outpatient clinic of Dokuz Eylul University Medical Faculty
due to CS symptoms or incidental adrenal adenomas between
2005 and 2016. We excluded 3 subjects of ectopic CS since
data samples were not sufficient for further processing. The
results of diagnostic tests including basal cortisol, basal ACTH,
1 mg DST cortisol, 2 mg DST cortisol, 8 mg DST cortisol,
midnight cortisol, 24-hour urine cortisol (hospital reference
range: 58–403 µg/24 h), and adrenal and pituitary imaging tests
were examined. Dokuz Eylul University Faculty of Medicine
Ethics Committee approved this research study and waived the
requirement for consent (2019/28-26).

B. Dataset Profile

The CS dataset consists of 241 samples and 11 features (i.e.
predictor variables). The target variable represents 3 classes of
subtypes (i.e., pituitary (PT), adrenal (AD), subclinical (SC)) for
patients with CS and 1 class (i.e., nonfunctional adrenal adenoma
(NF)) for patients without CS. The statistical properties (i.e.
mean, standard deviation, ratio, and counts (n)) of the dataset
features according to the type of diagnosis are given in Table I.
Dataset has missing values because some of the medical tests
were not performed depending on the symptoms and results of
the accompanying tests as decided by the physicians. A number
of the feature distributions were observed to be skewed (i.e.
asymmetry of the distribution about its mean), especially all
the distributions of cortisol and ACTH related features. Dataset
faces a moderate class imbalance problem because one of the
classes (i.e. NF) is represented by a large number of samples
whereas the others are represented by fewer samples. Age and
gender features were reported for reference purposes, and they
were not used in the rest of the study.

III. TECHNICAL APPROACH

Fig. 1 shows a flowchart of the technical approach. The
following sections provide the details of steps, procedures, and
algorithms of the overall technical approach.

A. Dataset Splitting and Subset Preparation

The input dataset was randomly split into T&V (Train and
Validation) dataset (n = 168, 70%) and FIT dataset (n = 73,
30%) by stratified sampling ensuring that ratios of classes are
represented in the newly created datasets. Due to the limited
dataset size, two-sample Kolmogorov-Smirnov (K-S) test was
performed for each feature to check whether both T&V and
FIT datasets are representative of the same distribution. The
procedure is tested for repetitiveness over 10 sampling cases

https://cushings-syndrome-prediction.herokuapp.com/
https://github.com/SenolIsci/cushing01
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TABLE I
PROPERTIES OF THE DATASET

Fig. 1. The flowchart of the overall method.

and randomly chosen data subsets were used. Two-sample K-S
test with 5% significance level yielded high values of p-values
between 0.354 and 1 and K-S statistics between 0.003 and
0.128, indicating that the datasets were representative of the
same distribution.

We intend to evaluate multiclass, one vs. all, and one vs. one
binary classification strategies for the task of CS type classifi-
cation. Therefore, the data subsets were created accordingly for
these class comparison strategies (n = 11). Multiclass strategy
consists of fitting one classifier for all classes, namely, PT,
AD, SC, and NF. One vs. one strategy consists of fitting one
classifier per class pair. One vs. all strategy consists of fitting
one classifier per class, and for each classifier, the class is fitted
against all the other classes. The dataset properties according to

class comparison strategy are listed in Table II. ALL refers to
all classes in multiclass setting whereas it refers to the rest of
the classes in binary setting. This means that class labels were
merged together for classes in the same comparison. For Stage-1,
bc, bacth, 1 mgDSTc, mc, and ufc features were used. For
Stage-2, in addition to the features used in Stage-1, 2 mgDSTc,
8 mgDSTc, adrMass, and pitMass features were used.

B. Preprocessing

1) Missing Value Imputation: Physicians may decide to skip
some of the tests if the previous tests are sufficient for the diag-
nosis. For example, 8 mg DST test is performed for identifying
the type of CS only after the screening tests such as 1 mg DST.
If a subject is believed to have nonfunctional adrenal adenoma,
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TABLE II
CLASS COMPARISON STRATEGIES, ASSOCIATED DATASETS, AND FEATURES

8 mg DST is almost always skipped. Depending on the severity
of symptoms and other indicators, the physician may decide to
skip low dose DST test and jump to 8 mg DST test. Therefore,
we avoided omitting features with missing values, and we used
imputation.

The treatment of missing data is a broad statistical problem,
and there is no universal imputation method performing best in
every situation [17]. The simplest option is discarding samples
with missing values. However, in this study, dropping samples
with missing values of features was not considered as an option
because missing values are ubiquities in the original dataset. This
means that such omissions would result in severe information
loss and a very small dataset. The missing value for a given
feature was replaced by the median of all known values of
that feature calculated separately both for T&V dataset and
FIT dataset. In this way, information leakage is prevented, and
independence of the FIT dataset is preserved from the rest of the
training process, however, at the expense of degrading statistics.

2) Skewed Feature Distributions Problem: In general,
skewed distributions of the feature in the dataset will degrade
the model’s ability to describe more prevalent cases to deal with
much rarer cases that happen to take extreme values. Some ML
algorithms (e.g. LDA classifier) have normality assumption for
the underlying populations, and their performance is adversely
affected by the violation of this assumption [18]. Classifiers that
are free of any distributional assumptions (e.g. RF) are expected
to perform well with a variety of distributions as long as the
class distributions are reasonably distinct [19]. In this study, we
applied logarithmic transformation (log base 10) to the dataset
to make feature distributions less skewed and reported the level
of skewness using Fisher-Pearson coefficient of skewness [20],
[21]. Mean absolute skewness was reduced from 2.398 to 0.897
after the transformation of the T&V dataset.

C. Machine Learning Algorithms

We compared several ML algorithms, all of which can be
employed in multiclass, one vs. all, and one vs. one binary
classification strategy for the task of classification of CS.

Multiclass strategy encompasses the fitting of one classifier for
all classes. One vs. one strategy includes fitting one classifier
per class pair. One vs. all strategy consists of fitting one
classifier per class, assuming the label of the class as positive
and labels of other classes as negative. The algorithms evaluated
are Support Vector Machine (SVM) [22], K-nearest Neighbor
(KNN) [23], Logistic Regression (LG) [24], Linear Discriminant
Analysis (LDA) [25], Decision Tree (DT) [26] based on the
Classification and Regression Tree (CART) algorithm, Random
Forest (RF) [27], Adaptive Boosting (AdaBoost) [28], and
Gradient Boosting (GB) [29]. Generalization of AdaBoost for
multiclass classification has also been introduced, which is
referred to as AdaBoost-SAMME [30]. In our study, we used
CART DT as a weak learner in the AdaBoost-SAMME model.

D. Performance Metrics and Measurement Tools

We presented our results using basic evaluation metrics de-
rived from confusion matrix associated with the classifier: the
area under the Receiver Operating Characteristics (ROC) curves
(ROC AUC), accuracy (ACC) measured by ROC AUC, the
area under the curve (PRC AUC) values of the precision-recall
curve (PRC) for the models, Sensitivity or Recall (SENS),
Specificity (SPEC), Precision (PREC), and F1 Score. We also
employed average per class F1 score (F1m) for multiclass or
binary classification setting, which is calculated by averaging
F1 scores over all classes. F1m was used as the primary metric
for comparisons throughout the study. The mean and variance of
AUC were calculated over 5 ROC curves. The variance roughly
shows how the classifier output is affected by changes in the
training data. PRC shows the trade-off between precision and
recall of different thresholds.

In the diagnosis of CS and identification of its cause, one
can interpret the outcome of the model and determine the most
impactful medical tests by “feature importance”. Therefore we
present relative importance of features in the selected models
using the mean decrease in impurity calculation [31].

E. Definition, Comparison, and Selection of the Best
Algorithm

We aim to evaluate ML algorithms in terms of their predictive
performance (i.e. generalization accuracy) on unseen indepen-
dent data and identify the ML algorithm that is best suited for
the diagnosis of CS. We compared trained models from the algo-
rithm’s model space and selected the best performing models by
tweaking the hyperparameters of the algorithm. Furthermore, we
aim to optimize hyperparameters from a given hyperparameter
space by comparing and selecting values of hyperparameters
with respect to their performance in minimizing error. Nested
cross-validation (NCV) approach is well suitable for these tasks
under limited data size and produces almost unbiased perfor-
mance estimates [32]. NCV is relatively straightforward as it is
a nesting of two k-fold cross-validation (CV) loops: the inner
loop is responsible for the model selection and hyperparameter
optimization, and the outer loop is responsible for estimation of
the generalization accuracy for model evaluation.

The classifiers for the class comparisons were listed in
Table II. Class comparisons were iterated for the features of
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diagnostic Stage-1 and diagnostic Stage-2. In the end, 22 clas-
sifier models were evaluated per each algorithm.

We evaluated each algorithm and its associated models with
a 5× 3 NCV procedure with steps as the following (Fig. 1): the
input T&V dataset was divided into stratified 5 folds (i.e. each
fold contains approximately the same percentage of samples of
each target class as in the input dataset.). For each iteration in
the outer loop, 1 data fold was reserved as held-out validation
data for model evaluation. The remaining 4 folds were passed
to the inner loop where model parameter tuning was performed.
All the models have hyperparameters that must be compared and
selected. These include, for example, penalty term for overfitting
in LG, the kernel coefficient in SVM, and the number and depth
of trees in RF. The input data passed from the outer fold was
divided into stratified 3 folds. The inner loop included a grid
search over candidate hyperparameters using 2 folds of data.
Each parameter setting was evaluated with the remaining 1 fold
validation data. The inner loop was repeated 3 times, each time
holding out a different validation fold. The hyperparameters that
yielded the best average CV score were selected and reported
back to the outer loop. The model was then trained on the data
in the 4 folds using the best parameters passed from the inner
loop and then evaluated for its predictive performance using the
1 fold held-out validation data in the outer loop. This process
was repeated 5 times in the outer loop, resulting in evaluations
of model performance 5 times, and the average evaluation score
was obtained from averaging outer held-out validation datasets.
Scores using several evaluation metrics were reported. NCV
procedure was repeated for each of the classification algorithms
(n = 8) and each class comparison strategy (n = 11) using a
different feature set for each of the diagnostic stages (n = 2).
Overall, NCV was performed 8× 11× 2 = 176 times. The best
performing algorithm was selected according to the highest
grand average for all runs.

F. Training, Testing, and Evaluation of the Best Algorithm

Following the algorithm selection, the selected algorithm
was used to build classification models with different class
comparison strategies and feature sets which were selected after
discussing it with physicians specialized in CS as to how useful
it will be in clinical diagnosis and prognosis. We created similar
classifiers as listed in Table II for multiclass comparison for
all class types, one vs. one binary comparisons, and one vs.
all binary comparisons. Class comparisons are iterated for the
features of diagnostic Stage-1 and diagnostic Stage-2.

The hyperparameters used in the models were determined by
3-fold CV hyperparameter search approach similar to the one in
the algorithm selection procedure. However, this time, all of the
T&V dataset was used in the search.

In the training phase, ML model was inferred from T&V
dataset with known class labels. The parameters of the model
were optimized by fitting the observations in the dataset to
the output target variable. Afterward, the trained models were
evaluated on the FIT dataset for their predictive performance
(i.e. generalization accuracy) for unseen data. At the final step,
the complete dataset was used to train final classification models
to be used for testing new samples.

TABLE III
OVERALL RESULTS OF ALGORITHM COMPARISON

G. Clinical Performance Evaluation

It is of importance to assess calibration to see how reliable
is the predicted outcomes of the models for clinical usefulness.
Calibration refers to the level of agreement between observed
outcomes and predictions [33]. We present the calibration curve
for the model.

The clinical performance of ML models was evaluated by
comparing their predictions to the judgments made by human
experts. For this comparison, patient test dataset of 73 cases (i.e.
FIT dataset) was used. A group of 4 physicians specialized in CS
was asked separately to make judgments about whether a patient
has CS or not by assigning probability values to each class label
using Stage-1 and Stage-2 features through all samples in the
test dataset. We, then, applied soft voting to combine expert
predictions. Namely, the predicted class probabilities provided
by each expert were collected and averaged. The final class
label was derived from the class label with the highest average
probability.

IV. RESULTS

A. Algorithm Comparison

Table III summarizes the algorithm comparison results in
terms of performance estimates in classification of each of 4
classes (i.e. NF, SC, AD, and PT) computed by 5 × 3 NCV
procedure on the T&V dataset. It also includes overall average
scores over all models (n = 22). Each score in Stage-1 and
Stage-2 columns in Table III is the mean of performance scores
averaged over validation folds in 5 × 3 NCV for each model
(n = 11) created for all class comparison strategies.

The highest F1m scores for Stage-1 (88.1±9), Stage-2
(90.9±8), and overall average (89.5±9) were achieved by RF.
Other algorithms had comparable average scores to RF algo-
rithm, but RF models had smaller standard deviations. It could
be seen from these results that models built using RF showed
better performance compared to the other algorithms for both
Stage-1 and Stage-2 diagnosis. It was also observed that model
performance increases with the increase in the number of fea-
tures. This is an indication that important features were added
to the model building and that promoted the prediction power.

Table IV gives the decomposition of NCV scores of ML
algorithms averaged over Stage-1 and Stage-2 against class
comparison strategies. In 6 of 11 class comparison strategies,
RF ranked first. The highest score for RF was 97.8±7 achieved
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TABLE IV
COMPARISON OF ALGORITHMS AGAINST CLASS COMPARISON STRATEGY

TABLE V
BEST HYPERPARAMETERS FOR RF MODELS OBTAINED FROM

CROSS-VALIDATED GRID SEARCH

in PTvsNF comparison whereas the lowest score was 81.3±4
for multiclass comparison ALL. It was seen that SCvsALL,
ADvsSC, and multiclass ALL classifications were the cases in
which algorithms generally achieved lower performance.

According to NCV results, RF algorithm was found to be
the best performing algorithm and selected for in-depth study.
A subset of RF models from 11 different class comparison
strategies was selected for training after discussing the clinical
methods and models with physicians specialized in CS. Usually,
at Stage-1, it is aimed to diagnose patients with hypercortisolism.
Discrimination between nonfunctional adrenal adenoma and CS
regardless of its subtype is required. Therefore, ALLvsNF one
vs. all binary classification model with Stage-1 features was
employed. At Stage-2, identification of a specific CS subtype
against the rest of alternative CS subtypes is required. Therefore,
SCvsALL, ADvsALL, and PTvsALL one vs. all binary models
with Stage-2 features were employed. Multiclass classification
was employed with both Stage-1 and Stage-2 features.

B. Parameter Optimization of the Best Algorithm

Table V shows the optimized hyperparameters and mean per-
formance scores obtained from 3-fold cross-validated exhaustive
search over hyperparameter values for selected RF models using
the complete T&V dataset. Optimized hyperparameters were
found to be the number of decision trees employed in the RF,
max depth of decision trees, split criterion, and class weight
criterion.

C. Training of the Best Algorithm

Fig. 2 shows the cross-validated learning curves of ALLvsNF
model at Stage-1 and Multiclass ALL model at Stage-2 in
training phase. CV scheme is employed due to the limited dataset

Fig. 2. Cross-validated learning curves of ALLvsNF model at Stage-1
(top) and multiclass ALL model at Stage-2 (bottom) in training phase.

size and selected to be based on stratified random sampling with
replacement in 20 random splits with 80% training and 20%
validation sets with preserved class proportions. Afterwards, the
scores are averaged over all 20 runs for each training subset size
and plotted against the varying data size. For multiclass ALL
model at Stage-2, high scores in the learning curve starting from
the low data sizes indicate low bias, and this is usually typical for
tree-based algorithms. Training and validation curves appear to
be converging but there is slight variance (i.e., the gap between
curves) in both models. These characteristics show slight over-
fitting in the learning procedure. Overfitting may be reduced and
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TABLE VI
TRAINING RESULTS OF RF MODELS

generalization accuracy may be improved by increasing the size
of the dataset as more samples become available.

Table VI shows the performance results of the trained RF
models. High sensitivity and specificity were achieved in all
models, ranging from 92.7% to 100% and from 93.7% to 100%,
respectively. ALLvsNF model had 100% sensitivity and was
able to correctly catch all CS samples at Stage-1. It also correctly
generated a negative result for NF samples at 95.9% specificity.
Precision or Positive Predictive Power (PPV) of ALLvsNF
model was 96.9% that means only 3.1% of positive results
generated by the model were actually NF.

PTvsALL achieved the highest classification score (F1m)
of 100% whereas ADvsALL had the lowest score of 90.3%.
AD type had the lowest precision of 87.5% compared to other
types in the multiclass ALL model. Multiclass ALL model at
Stage-2 achieved 96.4% classification score (F1m) and improved
on sensitivity and specificity compared to the multiclass ALL
model at Stage-1.

All ROC curves have high mean AUC values: 0.9690±0.017
for ALLvsNF, 0.947±0.074 for ADvsALL, 0.926±0.022 for
SCvsALL, and 0.995±0.000 for PTvsALL. This means that
classifiers are better at classifying positive and negative observa-
tions. CV roughly shows how the classifier output is affected by
changes in the training data. Standard deviations calculated for
CV folds indicate that PTvsALL model is more robust to changes
in the data whereas ADvsALL model is more susceptible to data
perturbations.

D. Feature Importance

Fig. 3 shows the relative feature importance levels of the
trained models. For multiclass ALL model at Stage-1, the fea-
tures 1 mgDSTc, bacht, and mc were found to be the relatively
most important features that contribute most to the classification
performance. For ALLvsNF model, 1 mgDSTc was by far the
most important feature and mc being the second. Relatively most
important features for multiclass ALL model at Stage-2 were
inferred to be 1 mgDSTc, bacth, pitMass, and mc. For SCvsALL
model, 1 mgDSTc, 2 mgDSTc, bacth and mc rank at top. The
features mc, 1 mgDSTc, and bacth were found to be the most
important features for ADvsALL model, For PTvsALL model,
pitMass was by far the most important feature, accompanied by
bacth and 8 mgDSTc.

Fig. 3. Feature importance levels of RF models.

We highlight that imaging alone is not adequate to correctly
identify and classify CS. For example, 40% of patients with
proven Pituitary CS have normal pituitary MRI [7]. The sen-
sitivity of computed tomography (CT) is between 40–50%,
whereas the sensitivity of magnetic resonance imaging (MRI)
is in the range of 50–60%. This low sensitivity is due to the
average size of corticotropic adenomas (i.e., benign tumor in
the corticotropic cells of the pituitary gland) being 5–6 mm.
Some of these tumors are 1–3 mm. Ectopic pituitary adenomas
(i.e., tumor of pituitary tissue found in sinus or nasal cavity) are
one of the false-negative causes in diagnosis based on MRI. In
people aged 30–40 years, incidental pituitary adenomas occur
around 10%. That is, no imaging results should be interpreted
without biochemical results [4].

This situation is also reflected in our dataset. For some sam-
ples, it is seen that imaging results overlap. For example, 8
patients out of 36 patients with proven Pituitary CS have positive
pituitary imaging but they also have positive adrenal imaging
results. Four patients out of 42 patients with proven Adrenal CS
have positive adrenal imaging results as well as positive pituitary
imaging result. Eight patients out of 59 Subclinical CS patients
have both positive adrenal and pituitary imaging results. It is also
noted that imaging adds to clinical value. The overall F1 score
achieved by features including adrenal and pituitary imaging was
92.1% as reported in Table VII. To elaborate, we ran the model
without imaging features, and overall F1 score was reduced to
85.7%.
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TABLE VII
TEST RESULTS OF RF MODELS

E. Final Testing

Table VII shows the results of the testing of trained models
using FIT dataset to show their generalization accuracy to unseen
independent samples. ALLvsNF model at Stage-1 achieved the
highest F1m score (93.8%), ROC AUC (0.969), and PRC AUC
(0.972) with 97.6% sensitivity, 87.1% specificity, and 91.1%
precision.

For Stage-1, the sensitivity value for PT class was 100%,
which means that multiclass ALL model was able to catch all
PT samples. It had moderate sensitivity values for SC and AD,
respectively. All specificity values for classes were high, ranging
from 91.9% to 98.1%. Precision values for NF and AD were
above 90%. However, precision values were moderate for SC
and PT. Multiclass ALL model at Stage-2 improved in all aspects
compared to the Stage-1 multiclass ALL model.

SCvsALL model had 81.6% classification performance score
(F1m), a moderate sensitivity of 72.2%, high specificity of
90.9%, and moderate precision of 72.2%. It is also seen AD-
vsALL model had high classification performance (F1m) of
97.6%, moderate sensitivity of 76.9%, maximum specificity of
100%, and maximum precision of 100%. PTvsALL model had
maximum score, sensitivity, specificity, and precision of 100%.
The model was able to correctly discriminate all PT type samples
and samples of the rest of the classes.

F. Clinical Performance Evaluation

The calibration curve for the ALL vs NF Model at Stage1
is shown in Fig. 4. Predictions (i.e., mean of binned predicted
probabilities) are on the x-axis. The observed proportions (i.e.,
proportion of samples whose class is the positive class) are on
the y-axis. Perfect case is represented by 45◦ line with a slope of
1 and intercept of 0 on the x-axis. The calibration curve of the
model has slope of 1.083 and intercept of −0.062, and is close
to 45◦ line. This supports that predictions made by the model
are reliable.

The clinical performances of ML models and human experts
were listed in Table VIII. In Stage-1, ML models achieved
better predictions with F1m score of 93.8% compared to human
experts with F1m score of 84.6%. In Stage-2, human experts
achieved lower scores. The results reveal that ML model is able
to find underlying patterns in the CS data with a constraint set
of features among biochemical tests, presence of other illnesses,
or other clinical findings.

Fig. 4. Calibration curve for the ALL vs NF Model at Stage1.

TABLE VIII
CLINICAL PERFORMANCE COMPARISON OF ML MODELS VS. HUMAN

EXPERTS

V. DISCUSSIONS

ML algorithm comparison results indicate that most of the
compared algorithms achieve good estimates of predictive per-
formances. However, RF algorithm is found to be the best algo-
rithm in overall performance according to the scores achieved
for different class comparison schemes and feature sets. The
algorithms generally show better performance with features of
Stage-2 than with features of Stage-1. This is probably due to
the inclusion of more informative features into the models, and
it helps better fitting of model parameters to the data. This is
actually observable in the relative feature importance levels of
RF-based multiclass models that were inferred in the training
phase as seen in Fig. 3. For the RF-based multiclass model
at Stage-1, bacth, 1 mgDSTc, and mc contributed much to
the predictive power so that the model achieved classification
accuracy of 95% (See Table VI). Similarly, for the RF multiclass
model at Stage-2, the same features were found to be the most
important features besides the newly added pitMass feature,
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and the model achieved an improved classification accuracy of
96.4%.

Although models based on one vs. one class comparison strat-
egy technically show good performance results at the algorithm
selection step, one vs. one binary models were excluded from
further training and testing because of their limited clinical use.
For example, for ADvsSC binary model, one has to eliminate
other classes beforehand, and a dataset consisting of only these
two classes is required for the classification results to have real
meaning. This looks infeasible because one has to first eliminate
NF and PT classes from the samples, which are not yet known.
Moreover, the biochemical tests performed at Stage-1 are gener-
ally aimed to discriminate nonfunctional adrenal adenoma and
CS regardless of its subtype. Clinical testing at Stage-2 aims to
discriminate the cause of CS such as adrenal CS, ectopic CS, or
pituitary CS.

Ectopic CS samples were not utilized in model training due
to the lack of enough samples. Therefore, our system cannot
directly classify ectopic CS. Approximately 20% of ACTH-
dependent cases are ectopic CS whereas approximately 80%
of ACTH-dependent CS is pituitary CS (i.e. Cushing Dis-
ease) [4], [7]. Since both pituitary CS and ectopic CS are ACTH-
dependent, some of the samples predicted as pituitary CS in the
original dataset may actually be ectopic CS. Therefore, further
study needs to be done by the physicians to diagnose correctly.
Bilateral inferior petrosal sinus sampling (BIPSS) test, imaging
findings, bacth levels, and rate of suppression in cortisol level
after 8 mg DST are usually informative in separating ectopic CS
from pituitary CS. As we gather more data samples for ectopic
CS, the models can be easily updated to discriminate ectopic CS
as well.

Median imputation induces a bias in the relationship be-
tween features and the target variable, and may not perform
as good as more elaborate methods such as KNN, Maximum
Likelihood, and Multivariate imputation by chained equations
(MICE). However, such approaches introduce additional param-
eters, and this may lead to errors due to unsuccessful tuning of
the parameters, and eventually reduced generalizability in case
of limited data size [34]–[36]. As we continue to collect more
data, we intend to evaluate alternative imputation methods.

Class imbalance in the dataset is known to reduce the pre-
dictive performance of a model [37]. Several methods exist to
alleviate this problem, such as downsampling and oversampling
methods. Since the dataset size is relatively small, downsam-
pling the majority class causes information loss. Oversampling
is likely to introduce bias to the accuracy since the new data
samples are generated from a few old samples, and they cannot
introduce much variance to the dataset. Therefore, we address
this problem by using ML algorithms that can inherently han-
dle imbalanced data classification with class weighting in the
learning process.

The ML approach outperforms the human expert judgments
in clinical performance evaluation. This is mainly because of
the expert’ s failure in discriminating the cases with subclini-
cal CS. More than 20 characteristic signs and symptoms have
been reported for CS [12]. These and other features make the

diagnosis complex and sometimes confusing. It is also known
that subclinical CS does not have typical signs and symptoms of
hypercortisolism. The mild cortisol secretion may cause hyper-
tension, central obesity, impaired glucose tolerance or diabetes,
hyperlipemia, and osteoporosis. However, these complications
are frequent in the population and cannot be directly attributed
to the subclinical CS [38]. As a consequence, physicians have to
diagnose subclinical CS by checking the biochemical test results
as well as the aforementioned metabolic complications after a
follow-up period.

The interpretation of medical tests to diagnose CS and classify
its subtypes is time-consuming and limited by the physicians’
capacity and experience to integrate numerous and complex
information. Results from studies in other hospitals and medical
centers may vary, and be related to factors such as laboratory
errors, patient induced errors, differences between groups, age,
and gender. We demonstrated that an ML-based decision support
system might help.

Our approach is adaptable to new data and will improve as
new samples are gathered. Once trained, the prediction models
require very low computational resources. Furthermore, the fea-
tures of the models are derived from tests routinely collected in
the hospital. It can also serve as a general framework and allows
the integration of data from different hospitals and medical
centers. These models can help to screen a large portion of
negative cases at the early stages of clinical diagnosis, prognosis,
and treatment.

VI. CONCLUSION

We compared several prominent ML algorithms and demon-
strated the ability of the RF-based models to accurately predict
clinical interpretation of CS, despite the moderate size of the
dataset and class imbalance problem. We think that the success of
the RF algorithm is because of its capabilities of handling small
sample and imbalanced CS data, learning complex dependen-
cies, reducing variance, inherently determining the cut-off levels
of the features, and not requiring data scaling and standardization
in advance. We suggest the use of ALLvsNF model to discrimi-
nate between NF and CS in the screening testing stage (Stage-1)
for the diagnosis of CS in clinical evaluations. Furthermore, we
suggest the use of multiclass ALL model to discriminate among
subtypes of CS in the follow-up testing stage (Stage-2) for the
identification of the cause of CS in clinical evaluations. Also,
multiclass ALL model with Stage-1 features can be employed
to get an early opinion about the subtype of CS for diagnosis,
prognosis, and treatment choices. The developed ML models
outperformed the physicians’ judgments under the constraint of
using only the selected biochemical test findings utilized in ML
model development. These suggest that ML approach can help
improve physicians’ judgment in diagnosing CS subtypes with
limited biochemical tests which are cumbersome and stressful
for patients.
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