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Video-Based Detection of Generalized
Tonic-Clonic Seizures Using Deep Learning

Yonghua Yang, Rani A. Sarkis, Rima El Atrache , Tobias Loddenkemper, and Christian Meisel

Abstract—Timely detection of seizures is crucial to im-
plement optimal interventions, and may help reduce the
risk of sudden unexpected death in epilepsy (SUDEP) in pa-
tients with generalized tonic-clonic seizures (GTCSs). While
video-based automated seizure detection systems may be
able to provide seizure alarms in both in-hospital and at-
home settings, earlier studies have primarily employed
hand-designed features for such a task. In contrast, deep
learning-based approaches do not rely on prior feature se-
lection and have demonstrated outstanding performance
in many data classification tasks. Despite these advan-
tages, neural network-based video classification has rarely
been attempted for seizure detection. We here assessed
the feasibility and efficacy of automated GTCSs detection
from videos using deep learning. We retrospectively iden-
tified 76 GTCS videos from 37 participants who underwent
long-term video-EEG monitoring (LTM) along with interictal
video data from the same patients, and 10 full-night seizure-
free recordings from additional patients. Using a leave-
one-subject-out cross-validation approach (LOSO-CV), we
evaluated the performance to detect seizures based on
individual video frames (convolutional neural networks,
CNNs) or video sequences [CNN+long short-term memory
(LSTM) networks]. CNN+LSTM networks based on video
sequences outperformed GTCS detection based on individ-
ual frames yielding a mean sensitivity of 88% and mean
specificity of 92% across patients. The average detection
latency after presumed clinical seizure onset was 22 sec-
onds. Detection performance increased as a function of
training dataset size. Collectively, we demonstrated that
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automated video-based GTCS detection with deep learning
is feasible and efficacious. Deep learning-based methods
may be able to overcome some limitations associated with
traditional approaches using hand-crafted features, serve
as a benchmark for future methods and analyses, and im-
prove further with larger datasets.

Index Terms—Epilepsy, seizure detection, video.

I. INTRODUCTION

R ELIABLE assessments of seizure frequency are essential
for epilepsy diagnosis, syndrome evaluation, treatment

selection, and prognosis. Similarly, timely seizure alerts are also
crucial to prevent potential complications from seizures such as
secondary injuries, and to initiate treatment to stop a seizure. In
patients with generalized tonic-clonic seizures (GTCSs), timely
detection of seizures may be particularly important in order to
limit the risk of sudden unexpected death in epilepsy (SUDEP)
[1]. Video-EEG monitoring performed in specialized epilepsy
monitoring units (EMUs) is the gold-standard in detecting and
classifying epileptic seizures. However, this technique is also
time-and labor-consuming and only available at specialized
centers. Automated methods to detect seizures, in particular
GTCSs, may help improve patient monitoring and reduce the
time and labor involved in screening and evaluating long-term
video-EEG data in specialized EMU settings. Apart from video
or EEG, other modalities, including accelerometry, electroder-
mal activity and electromyogram, have been explored for seizure
detection [28]–[31], [38], [39]. Detection of seizures using video
only, however, remains desirable since it does not require contact
with the patient, and can be employed relatively easily, including
the use of potentially already existing video hardware in many
settings.

The potential benefits associated with video-based seizure
detection have spurred research efforts in this direction for more
than a decade [33]. Initial studies have primarily employed hand-
designed features based on motion-strength, motion-trajectory
[2]–[4] or average differential luminance signals [5], [6] in
video segments in order to develop automated seizure detection
systems. These approaches focused mainly on motor signs, but
performance was sometimes limited by the inability of algo-
rithms to generalize and provide good performance results in
the setting of changing luminance or occlusion of the patient,
such as patients covered by a blanket [7]. Deep learning has led to
performance improvements in many fields. A recent systematic
review, for example, revealed that deep learning-based EEG
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analysis gained a 5.4% median accuracy increase over traditional
baselines across all relevant studies [27]. These improvements
also include computer vision, which may help overcome some
of the limitations associated with hand-crafted features. Com-
pared to traditional machine learning approaches, deep learning
techniques are capable of learning underlying spatio-temporal
feature representations from training data without the need for
hand-designed features [8]. In epilepsy, for example, the use
of convolutional neural networks (CNNs) has previously been
applied to seizure detection relying on a single video frame
approach [9]. Deep learning applied to video sequences has
also been used for motion and facial analysis in patients with
mesial temporal and extra-temporal lobe epilepsy [10]–[12].
Deep learning-based techniques are therefore a promising ap-
proach for detecting GTCSs from video with high sensitivity
and specificity. They may also help overcome the limitations of
more traditional machine learning methods and the need of hand-
crafted feature sets. Despite these advantages in performance
and methodology, deep learning-based video classification has
rarely been attempted for seizure detection. We here assessed
the feasibility and efficacy of automated GTCSs detection from
videos using deep learning. Specifically, we assess the feasibility
and compare the performance of a GTCS detection system based
on single video frames and video sequence data using deep
learning. Our work is motivated by the potential benefits of
such a system to monitor patients with seizure risk in both
hospital-based and home-based settings, improve seizure out-
come assessment, and provide caregivers and clinicians with
timely warnings, in particular for patients at risk for SUDEP.

II. MATERIALS AND METHODS

A. Video Data Collection

The video data were selected from participants undergoing
long-term video-EEG monitoring (LTM) at Boston Children’s
Hospital. The study was approved by the Institutional Review
Board at Boston Children’s Hospital and written informed
consent was obtained from all participants or from their par-
ents/guardians. LTM recordings were recorded using conven-
tional scalp EEG montages according to 10-20 electrode system.
The majority of the videos were recorded by a high-definition
camera (Sony SNC 550, Tokyo, Japan), which was mounted at
the ceiling of the monitoring room. The cameras used in this
study had a BW/RGB auto-switching function. In low light they
used B/W, in bright light color. Sometimes the technician/staff in
the EMU may have locked settings to B/W, if the image quality
looked better. Recorded videos were sampled in AVI format with
a resolution of 1080 × 720 or 320 × 240 pixels at 30 frames
per second and 4096 kbps. Videos were reviewed for clinical
purposes by an independent board-certified epileptologist. For
further analysis, only videos were included from participants
who had at least one generalized tonic-clonic seizure (GTCS)
with either focal or generalized onset. Four videos of seizures
had to be excluded because the patient was either off camera
at the beginning of the seizure, the video was of poor quality
(pixelated and shaky images), the video ended before the start
of the tonic phase, or the seizure evolved into status epilepticus.

Based on these criteria, we identified 76 videos with GTCSs
from 37 participants. These seizure video-EEGs were then re-
reviewed independently by two epileptologists (RAS, TL) to
determine electrographic and clinical seizure onset and offset,
onset of the tonic phase, clinical manifestation, as well as seizure
semiology. Patient data were obtained by chart review, including
demographics, seizure history, and MRI findings.

Additionally, we identified ten full night seizure-free video
recordings (8 hours: 10 pm-6 am) from ten additional partici-
pants, according to the LTM report verified by an independent
board-certified epileptologist as well as annotations in Natus by
EEG technologists and epileptologists.

B. Video Data Preprocessing

Seizure video clips were saved from clinical seizure onset to
clinical seizure offset for each seizure. In one seizure the clinical
onset and offset were not clear because of occlusion by a blanket,
and in this case the EEG onset and offset were used. Interictal
videos were obtained from the same participants and included
seizure-free periods that occurred at least 10 seconds prior to
a seizure and at least 15 minutes after a previous seizure. All
interictal, ictal and night video clips were recorded, and then
resampled as MP4 format using Camtasia (version 2019.0.7,
TechSmith, Okemos, MI, USA) with whole screen mode in 480
× 270 pixel resolution. We limited our analysis to video data
only, thus discarding the audio component of the original videos.
To account for potential confounders, such as number of people
in the video, we noted the number of the people in the ictal video
clips in addition to the patient as applicable at each second in
the ictal video.

C. Preparation of Training and Test Data

We applied a leave-one-subject-out cross-validation (LOSO-
CV) approach where matched data from 36 participants were
used for training, and testing was done on all of the collected
video data from the remaining out-of-sample patient. For prepa-
ration of the training datasets, we first separated all video files
into consecutive, non-overlapping 5-second clips. We included
all ictal 5-second clips after the start of the tonic phase in a patient
for training and matched them with an equal number of randomly
chosen interictal 5-second clips from the same patient. This
matching was performed to handle the imbalanced data during
training where interictal data often outnumber ictal data by a
large factor. Next, the matched data from 36 participants were
used for training while testing was performed on the remaining
patient’s full videos (ictal, interictal). Additionally, each trained
network was also applied to the ten full night recordings for
inference.

D. Neural Networks and Training

We assessed detection based on two different approaches:
single video frames (CNN approach) and frame sequences, i.e.,
taking also the temporal dynamics into account [CNN+long
short-term memory (LSTM) approach]. Video frames were first
resized to 224 x 224 pixel resolutions. Then, a CNN network for
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Fig. 1. Outline of data processing for automated video seizure detection. A, Consecutive ictal video clips of 5 seconds duration (red) were matched
with the same number of interictal video clips (green) for each patient. B, A leave-one-out cross-validation (LOSO-CV) approach that trained on
matched data from all but one patient and evaluated on the full data from the remaining patient was implemented to assess performance. C, Area
under the ROC curve (AUC) for seizure detection based only on static video frames (CNN only) and for CNN+LSTM networks. D, Learning curves
for CNN+LSTM2 networks. Signed consent forms authorizing publication have been obtained for all identifiable patients.

each patient in the LOSO-CV approach was trained individually
using the first frame of each 5-second video clip and used for
testing on the one left-out patient. Fig. 5 shows details of the
CNN architecture and hyperparameters. For the CNN+LSTM
approach, these trained CNN networks were then used for
encoding of individual video frames, excluding the CNN top
layers. The output of the CNNs, a 100-element long vector, was
subsequently fed to a stacked LSTM architecture, to encode the
temporal sequence of these outputs. For each 5-second video
clip, LSTMs were thus fed with a tensor of 150 frames (at 30 Hz)
by 100. LSTMs are specifically designed architectures for learn-
ing underlying representations in time series data. We tested two
LSTM architectures with varying numbers of hidden units; the
output of the hidden recurrent layer is finally fed into a densely
connected layer with a sigmoid activation function. To limit
networks from overfitting, regularization methods (dropout)
were incorporated and training was performed on matched data
where both classes appeared equally often (Fig. 1 A, B). CNN
and CNN+LSTM network training was done by optimizing the
binary cross-entropy loss using the Adam optimizer. Analyses
were performed with in-house written code in Python (version
2.7) and Keras (Tensorflow backend).

E. Performance Metrics

We applied a LOSO-CV approach where matched ic-
tal/interictal video clips from 36 participants were used for
training, and testing was done on the full data of the one remain-
ing out-of-sample patient (Fig. 1 A, B). The detection method
provided a value between 0 and 1 for each 5-second interval
(based on video or first frame in this interval). We assessed
detection performance in terms of area under the ROC curve
(AUC), sensitivity, and specificity. AUC was calculated for all

5-second segments after the annotated start of the tonic phase
and the interictal data. For the following metrics, a 5-second
interval was defined as ictal if the detection method predicted a
value of equal or larger than 0.5 for this interval and as interictal
otherwise. Sensitivity was then defined as the fraction of seizures
correctly detected, i.e., during which at least one 5-second epoch
was classified as ictal. Specificity was defined as the fraction of
true negative 5-second epochs during interictal data. We also
assessed latency of detection after the clinically annotated start
of the seizure, defined as the time difference of the first 5-second
segment classified as ictal to the clinically annotated start of
the seizure. The false detection rate (FDR) was assessed in
ten additional full-night, seizure-free recordings where it was
determined as the number of false positive alarms per night (8
hours; 10 pm to 6 am) and allowed a 10-minute buffer before a
new, consecutive alarm could be sounded.

III. RESULTS

A. Demographics and Clinical Characteristics of the
Enrolled Participants

Our training dataset consisted of 76 GTCSs from 37 par-
ticipants (14.2 ± 2.5 years, mean ± standard deviation (SD),
54.1% females, Table I). Demographic characteristics in de-
tail are shown in Table III. The mean duration of ictal video
data per patient was 2.73 ± 0.33 minutes. About half of
the seizures occurred during sleep (39/76). The proportion
of focal to bilateral tonic-clonic seizure was 77.6% (59/76).
The seizure characteristics are shown in Table IV. For each
patient, we also considered interictal videos (mean duration
15.35 ± 3.75 minutes) during which participants were either
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TABLE I
SUMMARIZED CHARCTERISTICS OF GTCS PATIENTS (N = 37)

1If the seizure frequency is a value in a range, we took the average of the boundary
values as the seizure frequency for further analysis. For one patient who had multiple
unquantifiable seizures per day, we used 100 as the seizure frequency per 30 days. For
two patients who had several/a few unquantifiable seizures per month, we used 3 as their
seizure frequency per 30 days.
2Patients may have been represented in more than one category and numbers, therefore,
numbers do not add up to 37 (100%).
3Other MRI findings include Sturge Weber syndrome, hydrocephalus, tuberous sclerosis,
and cavernoma.

sleeping or awake, and engaged in baseline activities. Addi-
tionally, we also included 10 nights from 10 different partic-
ipants without seizures (10.7 ± 5.0 years, mean ± SD; 60%
female). The detailed demographic characteristics are shown
in Table V.

B. Performance of Individual-Frame and Video-Based
GTCS Detection Systems

We first assessed seizure detection performance when only in-
dividual video frames were considered (CNN approach) and then
compared it to more complex methods taking into consideration

TABLE II
COMPARISON OF FACTORS INFLUENCING DETECTION LATENCIES

Fisher’s exact test was used for the comparisons. Group 1: detection latencies are within
10 s. Group 2: detection latencies are longer than 10 s.

also the temporal succession of video frames (CNN+LSTM
approaches). Thus, the detection based on individual frames
served as a baseline performance measure for comparison and
benchmarking of the more complex CNN+LSTM approaches.
Based on AUC, seizure detection using only individual video
frames performed worst, albeit better than chance. Performance
increased when CNNs were combined with LSTM networks
to take the temporal succession of video frames into account
(Fig. 1 C). Learning curves indicated no sign of overfitting (Fig. 1
D). The best performance was achieved for an LSTM network
with 1000 hidden units (CNN+LSTM2) which outperformed
smaller networks (CNN+LSTM1). The following results are
reported for this best-performing approach, as an average over
two independently trained networks for each patient. Fig. 2
shows the performance in terms of sensitivity and specificity for
all 37 participants. Nine of the 76 seizures were not detected.
Across participants, we report a mean sensitivity of 88 ± 5%
(mean± standard error of the mean (s.e.m)) and mean specificity
of 92 ± 2%. The average seizure detection latency as measured
from clinical seizure onset was 22 ± 3 seconds. As an additional
estimate of specificity, the false discovery rate determined across
ten additional full-night, seizure-free recordings yielded 12 ± 1
per night.

C. Possible Factors Influencing Detection Performance

To assess potential influence of appearance of other people
(e.g., caregivers) in the video on the CNN+LSTM2 seizure
detection, we labeled the times when one or more persons
in addition to the patient appeared in the video for the first
time. Fig. 3 shows the time course of seizure likelihood for all
participants along with an indicator when other persons appear in
the video for the first time (black vertical lines) and the start of the
tonic phase (black round markers). Ten seizures were correctly
detected prior to appearance of another person in the video
(Fig. 3). Furthermore, two seizures were detected without any
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TABLE III
GTCS PATIENT CHARACTERISTICS IN DETAIL

other visible people in the videos. Collectively, these analyses
and examples indicate that the algorithm did not solely use the
presence of other people in the video to classify video data as a
seizure.

We also analyzed other possible factors which might influ-
ence detection latencies, including wakefulness (before seizure
onset), occlusion status, interaction with other people, other
people appearing in the videos, resolution of the original video,

and illumination changes before or during the time of seizure
detection (Table II). Sixty-four percent of seizures (49/76) were
detected within 10 seconds from the start of the GTCS onsets.
Compared to the seizures with longer latencies, the differences
of the proportion in occlusion, illumination, other people appear-
ing in the videos, wakefulness, resolution of the original video,
and interaction with other people were not significant (P>0.05,
Fisher’s exact test).
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TABLE IV
CHARACTERISTICS OF SEIZURES (76)

D. Performance Improvement With Larger Training Set
Size

Deep learning may benefit from large datasets that afford
learning of the underlying data representations while also pro-
viding sufficient variability to permit generalization to novel

data. To determine the relationship between seizure detection
performance and size of the training dataset, we evaluated
performance based on different amounts of training data. For
this purpose, instead of training on all 36 patients in a leave-
one-subject-out approach, as described above, we systematically
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TABLE IV
CONTINUED

reduced the amount of training data by considering only a
smaller number of patients (n = 5 or n = 20 patients) for
training. Performance, assessed by AUC ROC values, increased
with more patients used for training (Fig. 4 ). This may indi-
cate further improvement of seizure detection performance with
larger datasets in the future.

IV. DISCUSSION

Deep learning has rarely been attempted for video-based
seizure detection. In this study, we used deep learning to 1)
evaluate GTCS detection on videos, 2) compare approaches
based on individual frames vs. videos, 3) determine the role
of possible factors influencing detection performance, and 4)

determine the algorithm performance’s dependence on training
data size. Our results indicate that video-based GTCSs detection
using deep learning without the need for feature-designing is
feasible and outperforms approaches based on individual frames
only. Detection accuracy may further improve with a larger
dataset. Further improvements based on this approach may thus
afford reliable automated detection in hospital and home settings
in the future.

We chose to focus on detecting GTCSs because of their
common occurrence, their clinical severity and secondary asso-
ciated risks, including SUDEP. GTCSs are a well-established
risk factor for SUDEP, and their timely detection and re-
lated early intervention may decrease the incidence of SUDEP
[13]. GTCSs are also promising candidates for video-based
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TABLE V
CHARCTERSTICS OF THE PATIENTS FOR NIGHT VIDEOS

Fig. 2. Detection performance results. A, Sensitivity. B, Specificity. C, Number of seizures for each patient. D, Total duration of video data for each
patient.

detection algorithms due to their characteristic motor manifes-
tations, which may be captured by computer vision systems.

In our study, we combined CNN and LSTM deep learning
algorithms because of their often-superior performance capa-
bilities and the ability to classify video sequences without the
need for specific feature engineering. Pretrained CNNs were
first employed to extract spatial representations from individual
video frames, and these representations were then fed into the
LSTM network. LSTM architectures are capable of extracting
distinct temporal representations. CNN+LSTM algorithms are
end-to-end networks which do not require expert knowledge

or hand-crafted features of the particular context in which they
are applied. They may thus directly infer motion patterns from
videos, even when complex scenarios are encountered. In our
case, for example, the seizure may occur far from the camera, or
the motions of articulation may be complex during the seizures.
These attributes make such an architecture desirable for a seizure
detection approach. Also, the entire body can be analyzed simul-
taneously by the CNN+LSTM architecture, without the need
for prior localization of the patient’s position [11]. Once trained,
inference with CNN+LSTM networks, as used here, is relatively
fast. This is important to allow real-time video classification,
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Fig. 3. Predicted seizure likelihood over the course of each seizure.
A, Predicted seizure likelihood for one seizure. Likelihood is assessed
every 5 seconds; if likelihood is smaller than 0.5 no seizure is detected
(green), otherwise a seizure is detected during this 5-second epoch
(red). B, Likelihood time course for all seizures. Black vertical lines
indicate the first time another person aside from the patient is visible
in the video. Black round markers indicate the onset of the tonic phase.

which would be particularly relevant to alert caregivers, for
example in the setting of an imminent SUDEP event.

For a seizure detection system to be useful it must not
only be sensitive but also specific in order to avoid spurious
false alarms [14]. Seizure detection based on EEG has been
shown to be feasible with low energy consumption [34], [35],
[36] while still achieving high sensitivity and low FDR results
as well as detection delays of about 13 seconds [37], thus
being comparable to our results, as pertaining to generalized
tonic-clonic seizures. Here we report sensitivity, specificity and
detection latency derived from a LOSO-CV approach, which
allows for an unbiased estimation of the true generalization
error by evaluating subject-to-subject variation. This approach
guarantees that the training does not underpin training for an
individual but for a group dataset – and as such, the performance
is more reliable and generalizable. Our results show that the
video-based GTCS detection system is encouraging in terms
of overall performance, but also requires further improvement
to be clinically useful. These performance values are superior
to some previous video-based detection systems for neonatal

Fig. 4. Improvement of detection performance as a function of size of
training data. A, Learning curves for training on 5 (left), 20 (middle) and
36 (right) patients and testing on one patient. B, The corresponding AUC
values. Whiskers and shaded error markers denote standard error of the
mean (s.e.m.).

clonic seizure (sensitivity of 48-86%, specificity of 67-89%)
[6] or nocturnal myoclonic seizures (sensitivity of 74%) [15].
Focusing on convulsive seizures, one study recently reported an
outstanding sensitivity of 100% and a low false positive rate
using a hand-crafted detection algorithm [16]. In this setting,
a detection latency of � 10 seconds was achieved in 78% of
patients with convulsive seizures. In contrast to our approach,
which included data from sleeping and awake patients pursuing
different kinds of activities, however, these studies only focused
on nocturnal seizures which may be one explanation for the
stronger performance reported therein. Furthermore, we here
studied a pediatric patient population, and pediatric GTCSs are
often not as stereotyped and may thus be harder to detect in
comparison. Only very few studies have previously explored
deep learning for video seizure detection. One video-based study
explored detection using gated recurrent unit (GRU) networks
[17]. However, it is not clear which seizure types were consid-
ered for analysis in this study, making a direct comparison to
our results based on GTCSs difficult. More generally, our work
highlights that it is crucial to include long and variable data both
for training and testing. While it may be important to report the
general feasibility of an approach using only relatively short data
segments, e.g., for the detection of seizures based on individual
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Fig. 5. Network architectures. When the CNN was combined with LSTM networks, the top layer was removed yielding a 100-element long vector
which was then fed into the LSTM network. To train the CNN network, learning rate was set to 0.001, batch size to 32, Adam optimizer, 150 epochs.
To train LSTM networks, learning rate was set to 0.01, batch size to 32, Adam optimizer, 100 epochs.

video frames or on video sequences, the true performance and
clinical relevance of an approach can only be assessed on longer
data samples that capture variability under realistic conditions,
as attempted in our study. Higher variability in our data may
thus explain the relatively high FDR in comparison to other
studies, yet provide a more realistic real-life application of
these methods. While this relatively high FDR requires further
improvement to become a viable real-time closed loop warning
system for home use, it is already a functional detection system
as it flags suspicious video segments that can subsequently be
reviewed by nurses, technicians, or clinicians more rapidly.

From a use-perspective, detection latency is another important
characteristic of any detection algorithm. If seizures are detected
only a few seconds after onset, then chances for a timely warning
to caregivers and respective earlier treatment increase [14]. In
this study, we assessed the latency based on clinical onset; of
note, typical convulsions are often not present at the onset. A
recent study reported detection latency (�10 seconds) in 78%
of convulsive patients with use of an automatic segmentation
detection system that was based on optical flow [16]. Another
study reported shorter detection latency (3.41 seconds) of a

detection system based on video and deep learning [17]; how-
ever, details regarding the population or seizure types are not
fully available, making the comparison to our specific pediatric
GTCS detection results under real-life monitoring conditions
difficult. Finally, our approach differs from a commercially
available nocturnal movement monitor (SAMi) [18], which was
developed for detection of abnormal movements during sleep.
This device is designed to be used at night and to detect abnormal
movements that continue for at least 15 seconds. In contrast, the
detection system we introduce here was trained on data from day
and night video monitoring, including patients lying in bed or
being awake, engaging in various activities, and it is specifically
targeted at GTCS detection with relatively low detection latency,
therefore potentially providing fewer false positive detections.

During inpatient seizure videos, caretakers and family mem-
bers are frequently approaching the bed and the patient, which
may impact the performance of a detection algorithm, or po-
tentially influencing seizure identification criteria. In control
analyses adjusting for potential confounding by other persons
in the seizure video, we found that ten seizures were detected
without any other people appearing in the videos. These results
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suggest that the proposed video seizure detection works with
and without other people in the video, thus ruling out sole
seizure detection based on the presence of other people in the
video.

The performance of the detection system could also be in-
fluenced by other factors, including occlusion by a blanket,
illumination changes and interaction with other people [19].
In our study, the proportion of occlusion, illumination, other
people appearing in the videos, wakefulness, different resolution
of the original video, and interaction with other people were not
significantly different between the shorter and longer detection
latency groups. Therefore, these factors may not have obvious
effects on detection latencies in our study. Furthermore, the
functionality of our system may not be impaired under condi-
tions of normal home or in-hospital settings when the patient is
typically alone. Other factors, including the distance between
the patients and camera or resolution changes of video data
may potentially influence the performance of the model. While
regression analysis may further untangle the potential effects
of these various variables in future studies, the current findings
suggest that our GTCS detection system may overcome some
limitations of previous approaches.

Results need to be interpreted in the setting of data acquisition.
In this study, we aimed to use video data “as is” in an attempt
to most closely capture real-life conditions. To retain the natural
condition of the patient and use as much data as possible, we
thus also included several ictal videos with patients covered by
a blanket throughout the occurrence of the seizure. As such,
some of the seizures were subtle and not easy to detect, even
from a perspective of a trained human looking for GTCS.
Inclusion of these videos along with the high variability of
patient positions and actions associated with daytime videos
may have contributed to detection rates slightly less than 90%.
In addition, the inclusion of the patients was not random and
inclusion of multiple seizures by the same patient may have
contributed to selection bias. While the goal of the current study
was to generally assess the feasibility of deep learning based
GTCS seizure detection algorithm and compare it to detection
based on individual video frames, detection performance will re-
quire further improvement and validation in future prospective,
long-term studies. Deep learning generally benefits from large
datasets. This has also been demonstrated in the current study as
well as in other detection and forecasting applications related
to epilepsy [20]. Thus, it is conceivable that additional data
will help improve our detection algorithm further, taking into
account variability seen in the videos and other variables, such as
changes in camera position, among others. Future methods may
potentially benefit from hybrid approaches including feature
extraction or model-based image pre-processing in order to
address variability. Lastly, our detection system was solely based
on video. Real-life data may offer additional modalities, such as
sound, among others. Integrating additional data, such as audio
along with other multimodal data streams, such as EEG [32],
[40], presumably may lead to further improvements in detection
performance.

Our approach to recognizing seizures in video recordings
resembles some similarity to other work on human activity

recognition (HAR), a field of extensive study with success-
ful applications including home behavior analysis [21], video
surveillance [22], gait analysis [23], and gesture recognition
[24]. HAR has also greatly benefited from deep learning [25]. In
principle, seizure detection may also benefit from using methods
like DeepPose [26]. The partial covering of body parts as seen
in our videos along with the high variability of semiology
phenotypes and the limited data availability relative to other
applications of DeepPose, however, may pose some limitations
to this approach and will need to be assessed.

V. CONCLUSION

Automated video-based GTCS detection based on deep learn-
ing is feasible and efficacious, with good performance (mean
sensitivity: 88%, mean specificity: 92%, average detection la-
tency after presumed clinical seizure onset: 22 s). This approach
may overcome some limitations associated with more traditional
methods, may serve as a benchmark for future analyses, and
may improve further with larger datasets and multi-modal data
streams.
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