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Interpretable and Lightweight 3-D Deep
Learning Model for Automated ACL Diagnosis
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Abstract—We propose an interpretable and lightweight
3D deep neural network model that diagnoses anterior cru-
ciate ligament (ACL) tears from a knee MRI exam. Previous
works focused primarily on achieving better diagnostic ac-
curacy but paid less attention to practical aspects such
as explainability and model size. They mainly relied on
ImageNet pre-trained 2D deep neural network backbones,
such as AlexNet or ResNet, which are computationally ex-
pensive. Some of them tried to interpret the models using
post-inference visualization tools, such as CAM or Grad-
CAM, which lack in generating accurate heatmaps. Our
work addresses the two limitations by understanding the
characteristics of ACL tear diagnosis. We argue that the
semantic features required for classifying ACL tears are
locally confined and highly homogeneous. We harness the
unique characteristics of the task by incorporating: 1) at-
tention modules and Gaussian positional encoding to re-
inforce the seeking of local features; 2) squeeze modules
and fewer convolutional filters to reflect the homogeneity
of the features. As a result, our model is interpretable: our
attention modules can precisely highlight the ACL region
without any location information given to them. Our model
is extremely lightweight: consisting of only 43 K trainable
parameters and 7.1 G of Floating-point operations per sec-
ond (FLOPs), that is 225 times smaller and 91 times lesser
than the previous state-of-the-art, respectively. Our model
is accurate: our model outperforms the previous state-of-
the-art with the average ROC-AUC of 0.983 and 0.980 on the
Chiba and Stanford knee datasets, respectively.
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I. INTRODUCTION

MRI is a widely accepted imaging technique for Anterior
Cruciate Ligament (ACL) tear diagnosis. However, the

current diagnosis process requires time-consuming manual ex-
amination by radiologists that is also error-prone at scale. A
radiologist is required to examine each slice of the MRI scan,
looking for ACL ruptures and other secondary complications,
such as bone marrow edema and anterior tibial translation [3].
To improve the diagnosis productivity and accuracy, several
AI models have been proposed to automate the ACL tear
classification [1], [2], [4], [5]. Though the proposed models
achieve good diagnostic accuracy, they suffer from two main
limitations:

1) They employ Class Activation Map (CAM) to interpret
learned features. However, the technique fails to isolate
ACL from other neighboring ligaments and meniscus that
are non-significant.

2) The models are heavily parameterized and computation-
ally expensive. Thus, they are not suitable for resource-
constrained devices and Federated Learning (FL).

A. Needs for Explainable Models

We need an interpretable AI for effective human-machine
collaboration. The risk of model mis-classification is high in
healthcare as it could directly affect a patient’s well-being.
To minimize the risk, we are required to understand the AI’s
decision-making process and discard if it is deemed illogical or
does not coincide with radiologist’s opinion [6].

The most common interpretation techniques adopted by state-
of-the-art ACL tear classification models [1], [2] are CAM [7]
and Grad-CAM [8], [9]. However, as shown in the bottom two
rows of Figure 1, they produce imprecise ACL localization. The
heatmaps only roughly highlight the central part of the knee that
contains both ACL and other lesions (meniscus and posterior
cruciate ligaments) that are non-significant. As a result, the
heatmaps provide insufficient evidence for clinicians to accept
the model’s prediction. Furthermore, the techniques are compu-
tationally expensive. They are post-inference visualization tools
that require additional computation overheads on top of model
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Fig. 1. Comparison of our proposed interpretation technique (top)
to previously proposed techiques (middle and bottom). Our tech-
niques achieves much sharper and accurate localization of torn ACL
compared to previous state-of-the-arts: MRNet [1] (middle) and EL-
Net [2] (bottom).

inference, making the techniques less suitable for practical de-
ployments.

B. Needs for Smaller Models

Smaller deep neural networks (DNNs) [10]–[12] are preferred
over bigger models if they have comparable performances. As
illustrated in Figure 2, smaller DNNs are not only suitable
for resource-constrained devices but also accelerate Federated
Learning (FL). They require much fewer memory and Floating-
point operations per second (FLOPs); thus, they are more suit-
able for budget devices with limited computational power. Also,
small DNNs solve the communication bandwidth problem of FL
without having to compress the models [13], [14].

Despite the apparent benefits that small DNNs could offer,
most AI applications in healthcare ignore the matter. With the
ACL tear classification task, we show that it is not only possible
but also more effective to build much smaller DNNs for medical
imaging tasks.

C. Characteristics of ACL Tear Classification

Natural images are subjected to huge external variations such
as lighting, viewpoint, and scale. Also, the object of interest
can appear at any location. A strong DNN is a model that is
robust to all of such variations. DNNs commonly solve the
issue by introducing more parameters, as is evident from the
ever-growing model size [11], [15]–[18]. With more parameters,
DNN is capable of memorizing a wider range of variations [19],
[20].

In contrast to the natural image tasks, ACL tear classification
relies only on a handful of highly localized low-level features
such as ACL fibers discontinuity, ACL angle, and bone mar-
row edema [3]. Also, Knee scans have a consistent viewpoint,

lighting, and scale. These imply that a small DNN is sufficient
to memorize the small set of variations while not harming the
model performance.

D. Contributions

We construct an interpretable and lightweight 3D Convolu-
tional Neural Network (CNN) for ACL tear diagnosis based on
our in-depth understanding of the task.

We introduce lightweight attention modules to visually inter-
pret prediction outcomes instead of relying on post-inference
visualization techniques such as CAM or Grad-CAM. Our at-
tention module has several advantages over the post-inference
visualization techniques. As aforementioned, features for ACL
tear classification are highly localized. Our module is designed
to focus only on locally confined features. Also, the technique
introduces negligible computation overheads, making our tech-
nique more ideal for budget devices.

Also, we show that a small DNN is sufficient for achieving
a near-human-level ACL detection performance. We minimize
the model size by replacing standard convolutional modules
to squeeze modules and using fewer convolutional filters. Our
squeeze module, inspired by Fire module [11] and Ghost mod-
ule [21], addresses the homogeneity characteristic of ACL tear
classification task by re-using convolutional filters after trans-
forming them with cheap linear operators.

II. RELATED WORKS

A. Explainable AI

Recent advancements in AI have led to widespread adoption
of the technique in various industrial applications such as text
translation [22], speech recognition [23] and recommendation
system [24]. However, we observe a much slower adoption rate
of AI from industries, such as healthcare, autonomous vehicle,
and recruitment, that involve bigger risks or potentially raise
ethical problems. For healthcare, in particular, we have a huge
gap between the number of newly proposed techniques and their
actual implementation cases. Explainability of AI models is
regarded as the main reason for the slow adoption rate of AI [6].
Therefore, to accelerate the adoption rate of AI in healthcare, we
not only have to focus on attaining better diagnostic accuracy
but also improving its explainabilty [25].

1) Explainable AI in Imaging Tasks: In computer vision,
given a grayscale image x ∈ RH×W , where H and W are
the Heights and Width of the image, we interpret a CNN
model fθ by generating a saliency mask a ∈ [0, 1]H×W . The
saliency mask assigns higher values to regions with greater
feature importance and vice versa. We group various saliency
mask generation techniques into two: 1) model diagnosis and
2) attention approach. The model diagnosis approach does not
require any modification to a CNN model. However, apart from
the main classification task, it requires an additional computation
in generating the saliency mask. On the other hand, the attention
approach generates a saliency mask by embedding attention
modules into a CNN model. The attention module is trained
to deactivate non-significant regions in an image automatically.
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Fig. 2. Broader AI application with smaller DNNs. (a) Small deep neural nets (DNNs) integrate seamlessly to various devices, reducing the
financial burden for health institutes in deploying AI systems. (b) Small DNNs accelerate Federated learning (FL) by minimizing the required
communication bandwidth for parameter transfer.

2) Model Diagnosis Approach: One of the first attempts to
interpret a CNN model via a saliency mask was proposed by
Zeiler et al. [26]. The technique censors a small portion of an
image x with a binary mask mh,w, where h,w denote the center
of masking region. Saliency mask is generated by mapping
the classification accuracy measured across different masking
locations (i.e. ah,w = 1− fθ(mh,w � x)).

Local Interpretable Model-agnostic Explanations (LIME),
proposed by Ribeiro et al. [27], produces non-rigid masking in-
stances of an image with a super-pixel method. A saliency mask
is generated by selecting the masking instance that produces the
highest classification score.

CAM, proposed by Zhou et al. [7], generates the mask by
computing the weighted sum of the final embedding z with the
weights from a linear projection head w (i.e. ah,w =

∑
k w ·

zh,w), wherek is the code size of the final CNN embeddingz. For
Grad-CAM [8], [9], the weightsw are obtained by computing the
derivatives of model prediction ŷ with respect to the embedding
(i.e. w =

∑
h,w

∂ŷ
∂zh,w

).
The model diagnosis approaches were used extensively in

various medical imaging tasks. CAM and Grad-CAM were ap-
plied for interpreting chest radiograph diagnosis [28]–[30], bone
fracture [31]–[33] and Alzheimer’s disease [34], [35]. LIME was
applied for interpreting lymph node classification [36], as well
as non-imaging tasks such as diabetes prediction [6].

3) Attention Approach: Wang et al. [37] proposed Residual
Attention module. The proposed attention module is divided into
two branches: mask branch and trunk branch. The mask branch
is a small encoder-decoder architecture to produce an attention
map with large receptive field size. The trunk branch performs
a feature extraction that is indifferent to other CNN models.

Woo et al. [38] proposed Convolutional Block Attention Mod-
ule (CBAM). CBAM has two modules that separately handle
spatial and channel attentions. The spatial attention module is
constructed similarly to the Residual Attention module. The

channel attention module is constructed with Squeeze-and-
Excitation (SE) module [39].

Seo et al. [40] proposed progressive attention network (PAN).
PAN introduces a query-guided attention module that suppresses
irrelevant regions in an input image. However, the attention mod-
ule is not applicable to a general classification task as it requires
an additional query label. As a remedy to the problem, Jetley
et al. [41] proposed a refined version of PAN that substitutes the
query vector with a learnable representation.

For medical imaging, Oktay et al. [42] and Schlemper
et al. [43] proposed attention gating (AG), a modified attention
module from PAN, for fetal ultrasound screening and pancreas
segmentaion tasks. Hu et al. [44] modified CBAM for pediatric
echocardiography segmentation task. Li et al. [45] applied at-
tention module for grading cancer from a high-res whole slide
image.

B. Small Models

AlexNet [46] revolutionized the way we view computer vision
problems. Similar CNN models have been proposed ever since,
mainly focusing on achieving better classification accuracy [11],
[15]–[18]. However, the models have evolved to become more
complex with newly proposed techniques and layers [16], [47],
[48]. Simultaneously, there were attempts to oppose against the
ever-growing complexity of CNN models. Cp-decomposition
method, proposed by Lebedev et al. [49], reduces the computa-
tional cost of a 2D CNN model by decomposing a multi-channel
2D convolution operation into three separate 1D convolution
operations. Forrest et al. [11] derived a CNN model that is 50
times smaller than AlexNet with Fire modules. Fire module
computes the next hidden feature by first “squeezing” input
features to a lower dimension and passes the squeezed feature
to [1×1] and [3×3] convolutional layer simultaneously. The
outputs from the two layers are then concatenated to form
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Fig. 3. Model Illustration. The two cubes on the left represent the inputs to our model: a 3D knee scan (bottom) and Gaussian feature (top), each
with shape [D ×H ×W ], where D, H, W denotes the Depth, Height and Width of the scan. Our model outputs two values: an ACL tear prediction
score p(tear|scan) and a slice with highest attention score argmaxD(a). Different computational units are represented with colored blocks. In the
“Conv” and “Squeeze” units, c denotes the output channel size and (k, k, k) denotes the convolutional filter size. Though not explicitly mentioned,
we introduce “ReLu” layer for every “conv” and “squeeze” units. In the “Attention” block, a denotes the number of [1× 1× 1] convolution filters in the
module. In the “Pool” block, (p, p, p) denotes pooling size. (:, :, :) denotes a global max-pooling. Lastly, the (out, in) in the “Dense” layer denotes
the size of output and input feature.

the final feature. ShuffleNet [10] proposed channel-wise Group
convolution that splits input features into groups of features and
applies convolution to each group. Channel shuffling is applied
subsequently to promote the exchange of information across the
groups. Han et al. [21] proposed a Ghost module that reuses
convolutional filters by slightly transforming them with cheap
operations.

C. Models for ACL Tear Detection

Bien et al. proposed MRNet [1]: a 2D CNN classification
model that can predict three kinds of diagnosis (ACL tear,
Meniscus tear, and Abnormality) from 3 different knee scans
(Sagittal, Coronal, and Axial). The model predicts each diagno-
sis by separately encoding each plane with a 2D CNN model
such as AlexNet and aggregating the encoded features with a
linear classifier. The model has approximately 9 M parameters.

Liu et al. [5] proposed a two-step approach that first segments
cartilage lesions from a scan and finds diagnostic abnormalities
from the segmented region. The segmentation is performed
using 2D-UNet [50]. Small image patches are extracted around
the segmented cartilage lesions. The extracted patches are used
to fine-tune the encoder of 2D-UNet for ACL tear prediction.
2D-UNet is a huge architecture with 7 M parameters.

Tsai et al. proposed ELNet [2]. The model achieves higher ac-
curacy than MRNet by introducing two additional computational
layers: Multi-Slice normalization and Blur-pool. The model
currently achieves state-of-the-art accuracy in ACL detection
with a ROC-AUC of 0.96 on the Stanford knee dataset. ELNet

is the smallest ACL tear classification model of all with 0.3 M
parameters.

III. METHODOLOGY

A. Architecture

As illustrated in Figure 3, our model takes two input features:
a knee MRI scan and a Gaussian positional feature. Based on
the two features, our model not only learns how to diagnose
ACL tears but also highlights parts of the scan that contribute
strongly to the diagnosis. Broadly, our model consists of 5 fea-
ture extraction modules, 2 attention modules that are branched
out from the 3 rd and 4th feature extraction modules, and a dense
layer. The feature extraction modules progressively map the raw
features (a knee MRI scan and a Gaussian positional feature) into
a new set of features that represent more abstract meanings, such
as ligaments, muscle, and bone. The attention modules compare
the semantic similarity of the embedded features across different
feature extraction modules. The dense layer maps the outputs
from the two attention modules to a final diagnosis score. We
provide a more detailed explanation of different learning blocks
in the next sections.

1) Attention Module: Let’s denote the set of features ex-
tracted across L different feature extraction blocks by {z}Ll=1

and assume that the features have identical spatial size (i.e.
zl ∈ RCl×D×H×W ). Our attention module learns to compute the
similarity al ∈ [0, 1]D×H×W between the last feature g = zL

and a feature from other layer zl , l �= L :

ald,h,w =< zld,h,w , gd,h,w > (1)
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Fig. 4. Illustrations of (a) squeeze module and (b) attention mod-
ule. (a) illustrates our proposed squeeze module that replaces the stan-
dard convolutional layer. Squeeze module computes the next hidden
feature zl+1 by first squeezing an input feature zl to a lower dimen-
sion using [1× 1× 1] convolution layer with Cl/r filters. The resulting
tensor passes through [1× 1× 1] and [k × k × k] convolutional layers,
both with Cl+1/2 filters. Figure (b) illustrates our proposed attention
modules that are mounted to the 3 rd and 4th feature extraction blocks.
The module generates an attention map by computing the similarity
between two features: feature from the last layer g and any feature
other previous layers zl. We define the similarity as al

d,h,w = σ(wout ·
ReLU(wT

in z
l
d,h,w + gd,h,w)), where win and wout are the only learnable

weights in the attention module.

We formulate the similarity function as :

ald,h,w = σ(wout · ReLU(wT
inz

l
d,h,w + gd,h,w)) (2)

ReLU is a non-linear activation function (i.e. ReLU(x) =
max(0,x)). We define the normalization function σ as the
softmax across spatial dimensions (D,H,W ) such that the
attention values across the spatial dimensions sums to 1 (i.e.∑

d,h,w ald,h,w = 1). This is to promote competition across the
features in space such that it results in a more confined attention
map. Our attention module is lightweight. win ∈ RL×l and
wout ∈ RL are the only learnable weights in the module. A
graphical illustration of our attention module is provided in
Figure 4 (b). As shown in Figure 3, We apply the attention
module to the outputs from the 3 rd and 4th feature extraction
block.

2) Squeeze Module: As shown in Figure 3, the first two
feature extraction modules are typical convolutional blocks,
each consisting of 2 3D convolutional layers (with Relu) and
a pooling layer. For the remaining feature extraction modules,
we replace convolutional layers with squeeze blocks to reduce
our model’s overall size.

Given a 3D feature zl ∈ RCl×D×H×W in layer l, a standard
convolutional layer computes the next hidden feature zl+1 ∈
RCl+1×D×H×W by convolving zl with Cl+1 convolutional fil-
ters, each with [k × k × k] kernel size. Therefore, a standard
convolutional layer requires a total of Cl · Cl+1 · k3 trainable
parameters.

As shown in Figure 4 (a), our squeeze module computes the
next hidden feature zl+1 by first “squeezeing” input features zl

to a lower dimension using [1× 1× 1] convolutional layer with

Cl/r filters. The constant r is a hyper-parameter that controls
the degree of dimension reduction. The squeezed tensor then
passes through [1× 1× 1] and [k × k × k] convolutional layers,
both with Cl+1/2 filters. The final feature zl+1 is computed by
concatenating the outputs from the two [1× 1× 1] and [k ×
k × k] convolutional layers. A squeeze module requires a total
parameter of:

[Cl · Cl/r] + [Cl/r · Cl+1/2] + [(Cl/r) · (k3 · Cl+1/2)]
(3)

If we set the reduction factor r = 4, the kernel size k = 3 and
double the output feature size Cl+1 = 2˜Cl, our squeeze mod-
ule attains 7 times reduction in paramater size, as compared to
the standard covolutional layer. Replacing convolutional layers
in the 3 rd, 4th, and 5th feature extraction blocks to squeeze
modules reduces the overall model size 4 times.

3) Gaussian Positional Encoding: Positional encoding is a
common technique in both computer vision [51] and natural
language processing [52], [53] to assist with the training of DNN
by providing a positional prior to an input feature.

One unique aspect of ACL tear classification task is that
the outer regions of a knee scan do not contain any valuable
information for prediction. It is mainly the central part of the
scan that contains valuable information for prediction, such as
ligaments, bone marrow edema, and anterior tibial translation.
Our model incorporates the prior information about the task
by adding a 3D Gaussian feature. 3D Gaussian feature softly
highlights the central part of a scan by assigning higher values.
As shown in figure 3, we concatenate a 3D Gaussian feature to
an input feature. We generate 3D Gaussian feature by quantizing
3D Gaussian distribution with μ = (D2 ,

H
2 ,

W
2 ) and σ2 = I3.

4) Top-Heavy I3D: To further reduce the model size, we
adopt Top-heavy [54] approach for our model design. The
top-heavy approach only introduces 3D convolution during the
last few feature extraction blocks. As shown in Figure 3, we
apply 3D convolution only at the 5th feature extraction block.

A Knee MRI scan has large slice thicknesses (≈ 4 mm). This
implies that there is relatively little information to gather across
slices than within a slice. Therefore, it is reasonable to adopt
a Top-heavy design that tries to gather inter-slice information
only when the features are more abstract. Also, a Top-heavy
design closely simulates a radiologist’s knee examination steps.
For each slice, a radiologist first seeks high-level features that
indicate the sign of ACL tear. The high-level features are aggre-
gated across neighboring slices only at the final decision-making
step.

B. Data

We evaluate our model on two knee MRI datasets: the Chiba
and Stanford datasets. Our study was approved by the NUS
Institutional Review Board (NUS-IRB).

1) Chiba Dataset: A total of 1177 Knee MRI scans were
collected from two institutions in Chiba, Japan, between April
1, 2014, and October 31, 2018. The common indications for the
knee MRI examinations in the study included acute, chronic pain
and injury, trauma. A 3.0 T MRI (Ingenia CX, Philips Medical
Systems) with 16 channel transmit/receive knee coil, and a 1.5 T
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MRI (Excelart Vantage, Canon Medical Systems) with 7 channel
transmit/receive knee coil was used for Institute H and institute
K, respectively (the actual names of the institute were masked
following the local data protection guidelines).

2) Stanford Dataset: A total of 1370 knee MRI scans were
collected from Stanford University Medical Center between Jan-
uary 1, 2001, and December 31, 2012. The common indications
for the knee MRI scan in the dataset included acute and chronic
pain, follow-up or preoperative evaluation, injury/trauma, and
other/not provided. GE scanners (GE Discovery, GE Healthcare,
Waukesha, WI) with standard knee MRI coil were used for the
extraction. Further detail on the data demographics can be found
in the original paper [1].

C. Training

1) Loss: Both datasets have a severe class imbalance prob-
lem. The Stanford and Chiba datasets have approximately 4 and
2 times more positive cases (ACL tear) than negative cases, re-
spectively. There are various ways in treating the class imbalance
problem, such as oversampling of positive samples, undersam-
pling of negative cases, or weighted misclassification penaliza-
tion. To match with previous works’ training approaches, we
treat the class imbalance problem with the weighted misclassi-
fication penalization. Therefore, our loss function is a weighted
Cross-Entropy :

LCE = −Ex[β · y · log(P (y|x)) + (1− y) · log(P (y|x))]
(4)

Where β is the proportion between negative and positive cases
(i.e. β = Pnormal/Pacl).

2) Training Pipeline: We apply identical data-preprocessing
and augmentation schemes to all training instances to prevent
possible training biases. For both datasets, we preprocess each
scan to have a standardized voxel spacing of [4, 0.72, 0.72], and
per-scan intensity mean and variance of μx = 0 and σx = 1.

We apply two augmentation techniques: 3D affine transform
and random volume cropping. The affine transform performs
3 kinds of image distortions: rotation, translation, and scale.
We set the possible range of rotation, translation, and scale to
±15◦, ±10 pixel, and 1± 0.1, respectively. We randomly crop
the affine transformed volume to size [32× 256× 256].

We optimize all models using Adam optimizer [55]. How-
ever, we apply varying learning rates across different training
instances. A detailed explanation of how we obtain the learning
rates is discussed in the next section. We train all models for 150
epochs with a batch size of 10.

3) Model Evaluation & Parameter Tuning: The performance
evaluation on the Chiba dataset is executed with 5-fold cross-
validation, We apply a grid search method on the first iteration
of the 5-fold cross-validation to find the optimal learning rate
and apply the same learning rate for the remaining 4 iterations.
We attempt 3 learning rates: 1e-3, 1e-4 and 5e-5. The best
performing learning rate for our models and MRNet models
are found to be 1e-3 and 5e-5, respectively. We use prediction
outcomes from the 5 folds to estimate the mean and variance of
performance metrics (ROC-AUC, Sensitivity, and Specificity).

The Stanford dataset’s performance evaluation is executed on
the validation set since the test set is sequestered. An identical ap-
proach was taken in other works that use the Stanford dataset [2],
[56]. Hence, we find the best learning rate with the train set and
test directly on the validation set. The best performing learning
rate for our models and MRNet models is found to be 1e-3 and
1e-4, respectively.

IV. RESULTS & DISCUSSION

A. Accuracy & Model Size

Table I compares the diagnostic accuracy and the model
size of our proposed models to other ACL detection models.
“Our+squeeze” is the proposed model configuration illustrated
in Figure 3. The second model, “Our+conv,” is constructed by
replacing squeeze modules from the “Our+squeeze” model with
convolutional modules.

Our best performing model, “Our+conv,” outperforms all
previous models on the Stanford knee dataset evaluation.
“Our+conv” model achieves ROC-AUC of 0.983± 0.006 and
0.983 on the Chiba and Stanford knee datasets, respectively.
“Our+squeeze” model achieves ROC-AUC of 0.977± 0.004
and 0.963 on the Chiba and Stanford datasets, respectively.

“Our+squeeze” model has the smallest model size, requiring
merely 43 K parameters. Our model is smaller than MRNets
with different backbones: VGGNet, AlexNet, and SqueezeNet
by 367, 58, and 17 times, respectively.

From the results, we show that small models are sufficient to
achieve state-of-the-arts ACL tear diagnosis performance. We
also confirm our hypothesis that ACL tear diagnosis is an easy
task for AI models due to the low variability of knee scans and
locally confined features.

B. Computational Efficiency

Figure 5 shows the computational efficiency of our models
in 4 different aspects: inference Floating point operations per
second (FLOPs) utilization, inference & train time per scan (s),
and model size (MB).

FLOP(G) measures the number of floating-point calcula-
tions(such as addition and multiplication) performed per second
when running an application. Our proposed model requires only
7 GFLOPS: 4 times smaller than the original MRNet (”MR-
Net+AlexNet”) and 91 times smaller than “MRNet+VGGNet”.
We compute the inference & training time in Figure 5 by
measuring the average computation time required to iterate over
10 scans (batch size of 10) and divide the measured time by the
number of scans.

Our model takes 0.02 and 0.03 seconds to test and train on
one scan, respectively. Though our model is much smaller than
MRNets, we do not observe significant speed improvements
over the MRNets. We speculate that this is due to the multiple
sub-blocks in a squeeze module that can not be parallelized, as
illustrated in Figure 4.

The last plot measures the size of models in MB. We measure
the model size simply from PyTorch’s . pt extension. The plot
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TABLE I
DIAGNOSTIC ACCURACY AND MODEL SIZE. EVALUATION RESULTS OBTAINED ON THE CHIBA AND STANFORD KNEE DATASETS. THE TABLE COMPARES THE

DIAGNOSTIC PERFORMANCE OF OUR PROPOSED MODELS TO OTHER ACL TEAR DETECTION MODELS. THE HIGHEST PERFORMANCE FOR EACH
EVALUATION METRIC IS HIGHLIGHTED IN BOLD FONT. WE USE 5-FOLD CROSS-VALIDATION TO EVALUATE ON THE CHIBA DATASETS AND TRAIN & TEST SET
EVALUATION ON THE STANFORD DATASET. WE OMIT THE EVALUATION OF ELNET [2] AND OTHER WORKS [57], [58] ON THE CHIBA DATASET SINCE THEIR

IMPLEMENTATION CODES ARE NOT PUBLICLY AVAILABLE

Fig. 5. Computational cost, speed, and size. The figure displays the computational efficiency of our models and MRNets in 4 different aspects:
Floating point operations per second (FLOPs) utilization, inference & train time per scan (s), and model size (MB).

shows that our model is 15 times smaller than the original MRNet
configuration.

We obtain the values using a 3D input with size [16× 256×
256]. We carry out the experiment on a G560 V5 server with a
Tesla V100 GPU and an Intel(R) Xeon(R) Gold 6138 CPU. We
use PyTorch as our model framework.

C. Visual Interpretation

Figure 6 demonstrates our model’s ability to precisely locate
ACL regions from both the Stanford and Chiba knee datasets.
We generate the final attention mapa by adding the two attention
maps generated from the 3th and 4th feature extraction modules:

ad,h,w =< gd,h,w, z
3
d,h,w > + < gd,h,w, z

4
d,h,w > (5)

We automatically locate the slice with ACL by finding the depth
d which gives the highest attention value (i.e. argmaxd(a)).

Interestingly, the attention maps from the Chiba dataset are
noticeably sharper compared to the Stanford dataset. Both MR
sequences are water-sensitive sequences to detect edema or
hemorrhage from ACL tears. However, the Chiba dataset’s MR
sequence is a non-fat suppressed sequence, while that from
Stanford is a fat-suppressed sequence. With a non-fat suppressed
sequence, the contrast between ACL and surrounding fat is much
higher. That possibly helps our model to make a more confident
judgment.

TABLE II
EFFECT OF ATTENTION MODULE ON DIAGNOSTIC ACCRUACY

Figure 7 shows a more detailed evaluation of our model’s vi-
sualization capability and prediction capability. The percentage
is our model’s confidence that the scan has an ACL tear. For
the top row scan, our model is very sure, with 92 % confidence,
that the image has an ACL tear. For the bottom scan, our model
predicts that a tear is less likely with 21%. The attention map
does not highlight the torn area (arrows) to help radiologists
identify the missing ACL.

D. Ablation Studies

In this section, we access the effect of attention module and
squeeze module on diagnostic accuracy. All experimental results
are obtained with 5-fold cross-validation on the Chiba dataset.

Table II shows that adding attention modules not only helps in
generating heatmaps but also marginally improves performance.
Our model with attention module (“OUR+ATT”) achieves
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Fig. 6. Heatmaps generated from our attention module. MR sequence from Chiba is a non-fat suppressed sequence, while that from Stanford
is a fat-suppressed sequence. The images are unbiasedly sampled from the test set of each dataset. Note the sharp attentions that correctly focus
on the ACL region in all cases.

Fig. 7. Automated ACL tear localization. Our attention module au-
tomatically selects the MR sequence with an ACL, and within the slice,
zooms in precisely to a location where ACL exists. The percentage is
our model’s confidence that the scan has an ACL tear. For the top row
picture, our model is very sure that the image has an ACL tear. For the
bottom picture, our model predicts that a tear is less likely with 21%.

higher performance than the model without attention (“OUR-
ATT”) in all metrics. “OUR-ATT” model makes a prediction
using the features from the last feature extraction block g = zL

by feeding the feature directly to a dense layer.

TABLE III
EFFECT OF SQUEEZE MODULE WITH VARYING REDUCTION RATE ON

DIAGNOSTIC ACCRUACY

Table III shows that increasing the squeeze module’s re-
duction factor (r) can greatly reduce the model size; however,
diagnostic performance is marginally sacrificed in return. Nev-
ertheless, we notice that the drop in performance is not drastic
compared to the drop in model size. From this observation, we
confirm that our squeeze module effectively reduces model size
while keeping the performance fairly consistent.

V. LIMITATION & FUTURE WORK

A. Generalization to Other Knee Injuries

There are four major ligaments of the knee: ACL, posterior
cruciate ligament (PCL), medial collateral ligament (MCL), and
lateral collateral ligament (LCL). In actual clinical settings, in
many cases, more than one ligament can be injured. Radiologists
are expected to diagnose these ligamentous injuries accurately,
and so is AI. We are planning to expand our lightweight algo-
rithm to multiple knee injuries. Our small and fast model will
allow us to makes this application widely accessible. Especially
in busy emergency departments, fast and accurate diagnosis of
multiple ligamentous injuries from acute knee trauma will help
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orthopedic surgeons plan patients’ treatment and surgery in a
timely fashion. We will implement our application in emergency
departments and prospectively evaluate the usefulness of AI
diagnosis of multiple knee ligament injuries after acute traumas
such as motor vehicle accidents.

Also, our lightweight AI algorithm is vendor-neutral. It can
learn from various MRI vendors quickly and implement any
machines easily. We will investigate the accuracy of our model
using multiple MRI vendors and different magnetic field ma-
chines.

B. Application to Other Medical Imaging Tasks

As aforementioned, our model makes two strong assumptions
about a task: 1) the task should rely on a small set of features,
and 2) the features should be well confined. These assumptions
can be met in many medical imaging tasks other than the ACL
injury tasks, such as bone fracture diagnosis and various chest
X-ray screening. These tasks commonly have fairly consistent
imaging quality (lighting, viewpoint, and scale) and have few
class labels to predict.

However, not all medical imaging tasks meet the require-
ments. Our model is expected to perform poorly on tasks that
require many non-local features and have poor imaging quality.
Such tasks include mammogram screening and skin lesion anal-
ysis. Unlike X-ray or MRI, mammography and dermoscopic im-
age have high inter-image variances. Also, a model should learn
to access non-local semantic features such as the distribution of
micro-calcifications and shapes of skin lesions.

VI. CONCLUSION

We have demonstrated the possibility to create an inter-
pretable and lightweight AI system for ACL tear diagnosis. Our
model can precisely locate ACL and only requires 43 K trainable
parameters. Our model’s diagnostic accuracy in detecting ACL
tear surpasses previously proposed models on the two knee MRI
datasets. The findings from our study confirms the importance
of having deeper understandings about medical imaging tasks
to achieve a model that is interpretable, small and accurate.

REFERENCES

[1] N. Bien et al., “Deep-learning-assisted diagnosis for knee magnetic res-
onance imaging: Development and retrospective validation of MRNet,”
PLoS Med., vol. 15, no. 11, 2018, Art. no. 1002699, [Online]. Available:
https://www.mdpi.com/1424-8220/19/13/2969

[2] C.-H. Tsai, N. Kiryati, E. Konen, I. Eshed, and A. Mayer, “Knee injury
detection using mri with efficiently-layered network (ELNET),” 2020,
arXiv:2005.02706.

[3] W. H. Ng, J. F. Griffith, E. H. Hung, B. Paunipagar, B. K. Law, and P. S.
Yung, “Imaging of the anterior cruciate ligament,” World J. Orthop., vol. 2,
no. 8, pp. 75–84, 2011. [Online]. Available: https://doi.org/10.5312/wjo.
v2.i8.75

[4] P. D. Chang, T. T. Wong, and M. J. Rasiej, “Deep learning for detection of
complete anterior cruciate ligament tear,” J. Digit. Imag., pp. 1–7, 2019.

[5] F. Liu et al., “Fully automated diagnosis of anterior cruciate ligament tears
on knee mr images by using deep learning,” Radiol. Artif. Intell., vol. 1,
no. 3, 2019, Art. no. 180091. [Online]. Available: https://doi.org/10.1148/
ryai.2019180091

[6] M. A. Ahmad, C. Eckert, and A. Teredesai, “Interpretable machine learning
in healthcare,” in Proc. ACM Int. Conf. Bioinf., Comput. Biol., Health
Inform., 2018, pp. 559–560.

[7] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. Comput. Vis. Pattern
Recognit., 2016, pp. 2921–2929.

[8] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra, “Grad-CAM: Visual explanations from deep networks via gradient-
based localization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 618–
626.

[9] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
“Grad-CAM: Generalized gradient-based visual explanations for deep
convolutional networks,” 2017, arXiv:1710.11063.

[10] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient
convolutional neural network for mobile devices,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2018, pp. 6848–6856.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and 0.5mb model size,” 2016, arXiv:1602.07360.

[12] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[13] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, and B. He, “A Survey on federated
learning systems: Vision, hype and reality for data privacy and protection,”
2019, arXiv:1907.09693.

[14] J. Li, X. Shen, L. Chen, and J. Chen, “Bandwidth slicing to boost federated
learning in edge computing,” arXiv, vol. abs/1911.07615, 2019.

[15] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Comput. Vision-ECCV 2014, Springer, 2014, pp. 818–833.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

[17] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 2261–2269.

[19] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning requires rethinking generalization,” 2016,
arXiv:1611.03530.

[20] D. Arpit et al., “A closer look at memorization in deep networks,” in Proc.
Int. Conf. Mach. Learn., PMLR, 2017, pp. 233–242.

[21] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More
features from cheap operations,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 1580–1589.

[22] T. B. Brown et al., “Language models are few-shot learners,” 2020,
arXiv:2005.14165.

[23] Aäron van den Oord et al., “WaveNet: A generative model for raw audio,”
2016, arXiv:1609.03499.

[24] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube
recommendations,” in Proc. 10th ACM Conf. Recommender Syst., 2016,
pp. 191–198.

[25] A. Vellido, “The importance of interpretability and visualization in ma-
chine learning for applications in medicine and health care,” Neural
Comput. Applications, pp. 1–15, 2019.

[26] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Proc. Eur. Conf. Computer Vis., Springer, 2014, pp. 818–833.

[27] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust
you?” Explaining the predictions of any classifier,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowledge Discov. Data Mining, 2016,
pp. 1135–1144.

[28] J. Irvin et al., “CheXpert: A large chest radiograph dataset with uncertainty
labels and expert comparison,” in Proc. AAAI Conf. Artif. Intell., vol. 33,
no. 01, 2019, pp. 590–597.

[29] H. Alshazly, C. Linse, E. Barth, and T. Martinetz, “Explainable COVID-19
detection using chest CT scans and deep learning,” Sensors, vol. 21, no. 2,
2021, Art. no. 455.

[30] T. Zebin and S. Rezvy, “COVID-19 detection and disease progression
visualization: Deep learning on chest X-rays for classification and coarse
localization,” Appl. Intell., vol. 51, no. 2, pp. 1010–1021, 2021.

[31] P. Rajpurkar et al., “MURA: Large dataset for abnormality detection in
musculoskeletal radiographs,” 2017, arXiv:1712.06957.

[32] C.-T. Cheng et al., “Application of a deep learning algorithm for detection
and visualization of hip fractures on plain pelvic radiographs,” Eur. radiol.,
vol. 29, no. 10, pp. 5469–5477, 2019.

https://www.mdpi.com/1424-8220/19/13/2969
https://doi.org/10.5312/wjo.v2.i8.75
https://doi.org/10.1148/ryai.2019180091


JEON et al.: INTERPRETABLE AND LIGHTWEIGHT 3-D DEEP LEARNING MODEL FOR AUTOMATED ACL DIAGNOSIS 2397

[33] R. Lindsey et al., “Deep neural network improves fracture detection by
clinicians,” Proc. Nat. Acad. Sci. USA, vol. 115, no. 45, pp. 11 591–11
596, 2018.

[34] V. Golkov et al., “q-space deep learning for Alzheimer’s disease diagnosis:
Global prediction and weakly-supervised localization,” Proc. 27th Annu.
Meeting ISMRM, Paris, France, vol. 1580, 2018.

[35] T. Iizuka, M. Fukasawa, and M. Kameyama, “Deep-learning-based
imaging-classification identified cingulate island sign in dementia with
lewy bodies,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019.

[36] I. P. De Sousa, M. M. B. R. Vellasco, and E. C. DaSilva, “Local in-
terpretable model-agnostic explanations for classification of lymph node
metastases,” Sensors (Basel, Switzerland), vol. 19, no. 13, 2019, [Online].
Available: https://www.mdpi.com/1424-8220/19/13/2969

[37] F. Wang et al., “Residual attention network for image classification,” in
Proc. IEEE Conf. Computer Vis. Pattern Recognit., 2017, pp. 3156–3164.

[38] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Computer Vis., 2018, pp. 3–19.

[39] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Computer Vis. Pattern Recognit., 2018, pp. 7132–7141.

[40] P. H. Seo, Z. Lin, S. Cohen, X. Shen, and B. Han, “Progressive attention
networks for visual attribute prediction,” 2016, arXiv:1606.02393.

[41] S. Jetley, N. A. Lord, N. Lee, and P. H. S. Torr, “Learn to pay attention,” in
Proc. 6th Int. Conf. Learn. Representations, ICLR 2018, Vancouver, BC,
Canada, Apr. 30 - May 3, 2018, Conf. Track Proc. OpenReview.net, 2018.
[Online]. Available: https://openreview.net/forum?id=HyzbhfWRW

[42] O. Oktay et al., “Attention U-Net: Learning where to look for the pancreas,”
2018, arXiv:1804.03999.

[43] J. Schlemper et al., “Attention-gated networks for improving ultrasound
scan plane detection,” Medical Image Comput. Comput.-Assisted Inter-
vention: MICCAI—Int. Conf. Medical Image Comput. Comput.-Assisted
Intervention, Apr. 2018, submitted to MIDL2018 OpenReview: https:
//openreview.net/forum?id=BJtn7-3sM

[44] Y. Hu et al., “AIDAN: An attention-guided dual-path network for pediatric
echocardiography segmentation,” IEEE Access, vol. 8, pp. 29 176–29 187,
2020.

[45] J. Li, W. Li, A. Gertych, B. S. Knudsen, W. Speier, and C. W. Arnold,
“An attention-based multi-resolution model for prostate whole slide im-
ageclassification and localization,” 2019, arXiv:1905.13208.

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Adv. Neural. Inf. Process. Syst.,
vol. 25, pp. 1097–1105, 2012.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2015, pp. 448–456.

[48] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” 2016, arXiv:1607.08022.

[49] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” 2014, arXiv:1412.6553.

[50] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Computer Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[51] R. Liu et al., “An intriguing failing of convolutional neural networks and
the coordconv solution,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 9605–9616.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North American Chapter Association Comput. Linguistics: Human
Lang. Tech., Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, Jun. 2019, pp. 4171–4186.
[Online]. Available: https://www.aclweb.org/anthology/N19-1423

[53] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[54] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking spatiotem-
poral feature learning: Speed-accuracy trade-offs in video classification,”
in Proc. Eur. Conf. Comput. Vis., 2018, pp. 305–321.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[56] M. J. Awan, M. S. M. Rahim, N. Salim, M. A. Mohammed, B. Garcia-
Zapirain, and K. H. Abdulkareem, “Efficient detection of knee anterior
cruciate ligament from magnetic resonance imaging using deep learning
approach,” Diagnostics, vol. 11, no. 1, 2021.

[57] I. Irmakci, S. M. Anwar, D. A. Torigian, and U. Bagci, “Deep learning for
musculoskeletal image analysis,” in Proc. 53rd Asilomar Conf. Signals,
Syst., Comput., IEEE, 2019, pp. 1481–1485.

[58] M. Dunnhofer, N. Martinel, and C. Micheloni, “Improving MRI-based
knee disorder diagnosis with pyramidal feature details,” in Proc. Fourth
Conf. Medical Imaging Deep Learn. (MIDL), 2021.

https://www.mdpi.com/1424-8220/19/13/2969
https://openreview.net/forum{?}id$=$BJtn7-3sM
https://www.aclweb.org/anthology/N19-1423


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


