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COVID-19 in CXR: From Detection and Severity
Scoring to Patient Disease Monitoring

Maayan Frid-Adar , Rula Amer, Ophir Gozes, Jannette Nassar, and Hayit Greenspan

Abstract—This work estimates the severity of pneumonia
in COVID-19 patients and reports the findings of a longitudi-
nal study of disease progression. It presents a deep learn-
ing model for simultaneous detection and localization of
pneumonia in chest Xray (CXR) images, which is shown to
generalize to COVID-19 pneumonia. The localization maps
are utilized to calculate a “Pneumonia Ratio” which indi-
cates disease severity. The assessment of disease severity
serves to build a temporal disease extent profile for hospi-
talized patients. To validate the model’s applicability to the
patient monitoring task, we developed a validation strategy
which involves a synthesis of Digital Reconstructed Radio-
graphs (DRRs - synthetic Xray) from serial CT scans; we
then compared the disease progression profiles that were
generated from the DRRs to those that were generated from
CT volumes.

Index Terms—COVID-19, DRR, detection, localization,
patient monitoring, pneumonia, severity scoring.

I. INTRODUCTION

THE COVID-19 pandemic is spreading worldwide, in-
fecting millions of people and affecting everyday lives.

Most patients experience mild symptoms including a fever, dry
cough, and a sore throat. However, some patients deteriorate and
experience complications such as Acute Respiratory Distress
Syndrome (ARDS), organ failure and even death [1]–[3].

Studies investigating which imaging modality to use for
COVID-19 patients, have compared the advantages of CT vs.
Chest Xray (CXR), and vice versa [4], [5]. The decision to use
one modality over another depends on the phase of the disease
and community norms. In countries where access to RT-PCR
tests is limited, the general approach is to encourage patients
to contact their doctors early. If suspected patients manifest
mild symptoms, a CT scan is performed because it is more
sensitive to changes in the lungs caused by mild pneumonia than
a CXR examination. In contrast, in countries where the directive
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approach is to instruct patients to wait to go to the hospital until
they experience advanced symptoms, the preferred modality is
CXR since it clearly shows abnormalities in the lungs. Another
factor that favors the CXR is the high contagiousness of the
COVID-19 virus. The complications related to patients’ transfer
CT suites involve the risk of cross-infections along the route, and
in the scanning room. In addition there is a lack of sterilization
equipment in some parts of the world. These complications
therefore favor the use of the CXR modality for the identification
and follow-up of COVID-19 patients. CXR is very useful for
assessing disease progression in hospitalized patients for whom
the disease state is more likely to be advanced.

The rapid spread of the coronavirus pandemic has made AI
important to healthcare specialists in terms of the diagnosis and
prognosis of the disease. AI is being actively harnessed to fight
COVID-19 as shown in recent applications [6]. Reviews of AI-
empowered publications [7], [8] point to the numerous machine
learning-based studies on segmentations of infected regions in
CT scans of COVID-19 patients. However, most CXR publica-
tions target the classification task for multiple classes [9]–[12]
and provide interpretable and explainable class activation maps
(CAM), rather than accurate COVID-19 pneumonia segmenta-
tions. Most of these methods were published at the start of the
pandemic, and thus trained solely on a few examples of COVID-
19 that were mainly aggregated from publications and radiolog-
ical websites. In [13] and [14] experiments were conducted to
prove that this data selection might cause the network to learn
features that are dataset-biased rather than learning disease-
specific characteristics, especially when images of different
labels are selected from different databases. Since most current
works focus on the diagnosis of COVID-19, it is only recently
that we see works targeting severity assessment of the disease
in CXR. Moreover, to the best of our knowledge, almost no AI-
based work has studied and validated the follow-up and patient
monitoring of COVID-19 patients using chest radiographs.

In this work, we evaluate the degree of severity of pneumonia
in COVID-19 patients and monitor patients’ disease progression
over time. Fig. 1 illustrates the process flow: We first deter-
mine whether pneumonia is present and localize the infected
area of the lung (green blocks). Then, by combining a lung
segmentation step (black) and applying a threshold over the
localization map that produces accurate lesion segmentation,
we measure the relative area of the lung that is infected. We
then assess the severity of the case as well as monitor patients
over time (yellow). For hospitalized patients who have an ex-
tended record of disease, we generate a disease profile over
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Fig. 1. Overview: Detection and localization models are described
in Section III. The methods used for lung segmentation, severity as-
sessment, patient monitoring and CT-DRR duality-based validation are
presented in Section IV.

time. To validate our results, we utilize a novel CT-Xray duality
(orange). Using the CT and its accurately defined disease extent,
we generate a corresponding synthetic Xray, using a newly
developed scheme for Digital Reconstructed Radiograph (DRR)
generation. Disease profiles in CT and Xray space are extracted
and compared. Another analysis is then conducted to determine
the relationship between CT and Xray in defining disease states.
The detection and localization components of the system are
detailed in Section III. The generation of severity estimates and
monitoring in time are presented in Section IV. Experiments
and results are presented in Section V, followed by a discussion
and conclusion in Section VI.

This work makes five main contributions:
� We propose a dual-stage training scheme in the detection

and localization network, to accurately segment regions
in the lungs infected with pneumonia from inaccurate
ground truth (GT) bounding boxes. We exploit the Grad-
CAM [15] algorithm to generate localization proposals,
and use them to learn accurate segmentations that are
directly outputted from the model.

� We prove our model’s ability, when trained on non-
COVID-19 pneumonia patients, to generalize the detec-
tion, localization, severity scoring, and monitoring of
COVID-19 pneumonia cases.

� We introduce a robust lung segmentation method, using
unconventional augmentation methods such as synthetic
radiographs of abnormal lungs, gamma correction, and
blob implanting. Our proposed augmentations ameliorate
the segmentation of pathological lungs.

� We demonstrate the system’s ability to measure the
spread of pneumonia in the lungs and to track disease
progression.

� We present a novel validation strategy for the CXR-
based patient disease monitoring, by utilizing CT scans of

COVID-19 patients over time, producing corresponding
DRRs, and exploring the CT and Xray duality.

II. RELATED WORK

Multiple studies have been published on COVID-19 detection
in chest radiographs since the outbreak of the pandemic [12],
[16]–[18]. Here we review several related works. For additional
reviews, we refer the reader to the overview papers [7], [19] and
the COVID-specific Special Issues of TMI.1

In Wang et al. [9], the “COVID-Net” architecture is presented
for COVID-19 detection in CXR. Three datasets, collected from
different sources [20]–[22], were used to train the network to
predict three categories: no infection (normal), non-COVID19
infection, and COVID-19 viral infection. They reported a sensi-
tivity of 0.95, 0.94, 0.91 for each class with a test set of 100
normal, 100 non-COVID-19 pneumonia and 100 COVID-19
images, respectively. Apostolopoulos et al. [10] adopted state-
of-the-art CNNs that were proposed over the last few years
for small medical datasets using a transfer learning method.
They utilized the public datasets of COVID-19 from [23], [24]
for bacterial pneumonia, viral pneumonia of COVID-19, and
normal image classification. The authors reported the results for
10-fold-cross-validation on two datasets of COVID-19, com-
mon bacterial pneumonia (with and without non-COVID-19
patients) and normal cases. Optimal results with a sensitivity and
specificity exceeding 0.96 were obtained with the MobileNet v2
network on 224 COVID-19 images. Zhang et al. [11] developed
a deep anomaly detection model for COVID-19 vs. non-COVID-
19 pneumonia classification. They used 100 COVID-19 images
from [20] and 1431 additional CXR images confirmed as other
pneumonia from the public ChestX-ray14 dataset [25]. They
reported an AUC of 0.95.

Severity scoring has also attracted increasing attention in
CXR publications [26]–[31]. Signoroni et al. [26] designed a
multi-purpose network for COVID-19 pneumonia prediction,
lung segmentation and lung alignment that outputs the severity
prediction by dividing the lungs into 6 regions. They utilized
5,000 annotated CXR images from the ASST Spedali Civili of
Brescia, Italy, in addition to 194 images from the public dataset
in [20]. The mean absolute error (MAE) of the severity score on a
subset of 150 images from the private dataset was 1.8 compared
to the gold standard with a correlation coefficient of 0.85. The
MAE on the 194 images from the public dataset was 2.18. Cohen
et al. [27] developed a model to predict COVID-19 pneumonia
severity based on CXR: they pre-trained a DenseNet on 18
common radiological findings from multiple public datasets, and
then trained a linear regression model on a subset of the COVID-
19 dataset that was scored by three experts to predict the severity
scores using different sets of extracted features. The correlation
coefficient, R2 and MAE, on a test set of 50 images were 0.78,
0.58 and 0.78, respectively for the pneumonia extent score, and
0.8, 0.6 and 1.14, respectively for the opacity score (encoun-
ters with the opacity texture features of consolidation/ground
glass).

1https://www.embs.org/tmi/

https://www.embs.org/tmi/
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Fig. 2. Diagram of the proposed Detection and Localization network.
(a) Backbone: pre-trained ResNet50, (b) Detection Head: detection of
pneumonia and (c) Localization Head: fuses intermediate convolutional
layers of the ResNet50 to form a localization prediction.

Here we use the severity scoring to evaluate our predictions of
the infected lung area, and focus on both COVID-19 detection
and severity scoring in CXR to present an end-to-end solution
for COVID-19 disease management.

III. COVID-19 PNEUMONIA DETECTION AND LOCALIZATION

To assess the severity of pneumonia in COVID-19 patients,
the pneumonia region in the CXR of positive patients needs
to be accurately segmented. In this section we introduce our
pneumonia detection and localization network which involves a
two-stage training methodology, to generate fine-grained local-
ization maps from coarse ground truth labels.

A. Detection and Localization Network

Grad-CAM [15] has become a useful tool for localizing
COVID-19 pneumonia infection in CXR [11], [12]. This method
is generally used when localization GT data are not available.
In this scenario the Grad-CAM method enables only rough
localization. Training a network that combines detection and
localization would allow for a more accurate disease extent
evaluation.

We propose a deep-learning model to predict pneumonia
labels and localization maps simultaneously. An illustration of
the proposed network is shown in Fig. 2. It consists of three
components: a backbone, a detection head and a localization
head. A detailed description of each component is given below.

The backbone is a 50-layer residual network (ResNet50) [32].
The network is pre-trained on the ImageNet dataset. As shown
in Fig. 2(a), the images are fed to a convolutional layer with
7× 7 kernels and a stride of 2, followed by a 3× 3 max-pooling
layer with a stride of 2. This is followed by convolution and
identity blocks with skip connections. Each convolution block
has 3 convolution layers and another convolution layer in the
skip connection, and each identity block also has 3 convolution
layers.

The last dense layer of ResNet50 is replaced with three con-
secutive dense layers with 1024, 256 and 1 neurons, respectively.

Fig. 3. Illustration of the training and testing stages of the Detection
and Localization network.

A dropout layer is inserted between the first two dense layers.
Finally, a sigmoid activation function is applied to generate the
pneumonia prediction of the detection head.

The localization head is a feature pyramid-like network [33],
as shown in Fig. 2(c). Low resolution features extracted from
the final identity block, termed Act− 14, are upsampled by a
factor of 2 using nearest neighbor interpolation. The upsampled
features undergo a 1× 1 convolution layer to reduce the channel
dimensions. Next, each lateral connection fuses feature maps of
the same spatial size from the previous residual block output
(Act− 28) by element-wise addition. This process is repeated
for the higher resolution features (activation output of the previ-
ous identity block: Act− 56). Finally, a 3× 3 convolution layer
followed by ReLU activation is applied to the last summation
and forms the localization output. The last convolution layer
formed has 128 feature maps of size 56× 56, which enables a
level of uncertainty in the localization output edges. In order to
create one localization map in the inference stage, the maximal
value of the 128 output maps is taken for each matching pixel.

B. Training Pipeline

The proposed network is trained using the RSNA Pneumonia
Detection Challenge Dataset [22]. Pediatric patients were re-
moved from the dataset to prevent bias due to age. The remaining
images in the RSNA dataset are split to three sets: training
(9004 images), validation (1126 images) and testing (1124
images). The dataset includes annotation labels of pneumonia/
non-pneumonia (in equal amounts) and bounding box annota-
tions of the pneumonia regions. The training images are resized
to a fixed size of 448× 448 pixels. A pre-processing step con-
sisting of a Contrast Limited Histogram Equalization (CLAHE)
method is applied to the images before training, followed by
normalization according to the mean and standard deviation
values of the ImageNet database.
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Fig. 4. Localization map results of example images as produced from
the localization head and presented as heatmap images: (a) input CXR
images, (b) heatmaps produced from first stage of the model (DLNet-1),
(c) heatmaps produced from the second stage of the model (DLNet-2).

The training pipeline consists of two stages (see Fig. 3). In
the first stage, we train the network on the training images with
the corresponding bounding boxes. Next, we use the trained
model to generate accurate localization proposals for subsets of
the training images using Grad-CAM method, and then replace
the bounding box annotations with the accurate localizations to
train the model again. Fig. 4 compares the produced localization
maps of the network after each training stage, and shows the
generation of more fine-grained localization after the second
stage. A detailed description of the stages appears below:

1) First Stage: The network is trained on RSNA data, where
the GTs in this stage are the labels of pneumonia/non-pneumonia
and the corresponding bounding boxes. We denote this detection
and localization model asDLNet− 1. Prior to training, a binary
image is produced from the bounding boxes where multiple
bounding boxes of the same image are combined into one binary
image. Then the binary image is dilated with a 5× 5 kernel
and finally smoothed with a Gaussian Blur. This last processing
step guarantees an accurate prediction of the bounding boxes
location, and gives a percentage of uncertainty in the edges.
The proposed network is trained using the Adam optimizer. The
initial learning rate is set to 1e− 4 and decreases by a factor
of 0.2 when learning stagnates for 2 epochs. The batch size
is set to 8 images and the max number of epochs to 30. The
loss is comprised of two parts: (1) the detection loss (binary
cross entropy) and (2) the localization loss (mean squared error).
To compute the localization loss, the localization prediction
maps are normalized between 0 to 1 and compared against
the binary GT images. The total loss is a linear combination
of the two losses, where the binary cross entropy loss on the
prediction and the GT label is denoted by BCE(lpred, lgt), and
the mean squared error byMSE(BBpred, BBgt). The total loss
is described in (1):

Loss = BCE(lpred, lgt) + λMSE(BBpred, BBgt) (1)

where λ is set to 1e− 5 to scale the localization loss according
to the detection loss scale.

2) Second Stage: The first trained model is exploited to
generate a more accurate pneumonia localization proposals as
GT for training the second stage. We denote this model as
DLNet− 2. This is done using the Grad-CAM [15] algorithm.
Two activation maps are produced, the first generated by back-
propagating the gradients from the last convolution layer of the
localization head up to the Act− 28 activation layer, and the
second up to the Act− 14 activation layer. The activation maps
are then resized to full image size. The two activation maps are
combined to generate one map, whose pixel class probability
is more accurate than each map separately. The two activation
maps are combined by taking the maximum value of matching
pixels from both maps. The final map is then smoothed and
normalized. To generate the final GT localization proposals,
a threshold of 0.4, a value that gave the highest performance
according to intersection with the GT bounding boxes over
the testing set, is applied to the fused map. These accurate
localization proposals are multiplied by the GT bounding boxes
to eliminate false positives, and then smoothed with a Gaus-
sian Blur to account for possible uncertainties in the edges.
Localization proposals are generated for half of the positive
images in the training set that passed a 0.8 detection prediction
threshold. The remaining positive images are kept with their
corresponding bounding boxes. Those images, together with
the negative images, are used for further training the proposed
network. The second stage model is trained for 30 epochs with
the same training parameters, optimizer and losses that were
mentioned in the previous subsection.

IV. SEVERITY SCORING AND PATIENT MONITORING

In this section, we focus on measuring the extent of pneumonia
in the lungs of detected positive patients to assess disease sever-
ity. We utilize the severity estimates to monitor patients over
time. A novel validation strategy is proposed that uses the CT-
Xray duality: we perform validations on digitally reconstructed
radiographs (DRRs) synthesized from CT scans and compare
them to the original CT images when monitoring the patients’
disease state.

A. Lung Segmentation

To accurately measure the extent of pneumonia in the lungs,
we introduce a lung segmentation method for patients with
severe opacities and low visibility of the lung fields.

The proposed architecture is a modified U-Net [34] in which
the pre-trained VGG-16 [35] encoder replaced the contracting
path (the encoder) in the U-net, as was introduced by Frid-Adar
et al. [36] for segmentation of anatomical structures in chest
radiographs. The original model, namedLSNet, was trained on
the Japanese Society of Radiological Technology (JSRT) dataset
with traditional augmentations (zoom, translation, rotation and
horizontal flipping). Here, we propose an improved model
(LSNet−Aug) that is more robust, generalizes to images with
severe infections and reduces false detections. The model was
improved by challenging the training process with enriched
augmented training data. In addition to the original training
JSRT dataset, we added images and lung masks GT from the
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Fig. 5. Two examples of synthesized abnormal CXR images: (a) nor-
mal image, (b) corresponding lung segmentation generated by XLSor
and (c–f) abnormal CXRs augmented from the input image using MU-
NIT.

Montgomery County (MC) - Chest X-ray Database [37], [38],
the XLSor dataset [39] and 100 images from the NIH dataset
that were provided by the XLSor authors. The XLSor dataset
consists of real and synthetic radiographs: an image-to-image
translation module (MUNIT [40]) is utilized to synthesize radio-
realistic abnormal CXRs (synthesized radiographs that appear
anatomically realistic) from the source of normal ones, for
data augmentation purposes. The lung masks of these synthetic
abnormal CXRs are propagated from the segmentation results
of their normal counterparts, and then serve as pseudo masks
for robust segmentation training. The aim is to construct a large
number of abnormal CXR pairs with no human intervention, in
order to train a powerful, robust and accurate model for CXR
lung segmentation. Fig. 5 shows two examples of normal lung
images, the GT segmentation maps, and their corresponding
synthesized abnormal CXRs.

Additional augmentations were implemented such as gamma
correction and blob implanting. The gamma correction simulates
Xray images with different intensities from different sources.
The blob implanting simulates obstructions in the CXR images,
such as tubes, machines and strong infections. The model is
trained with Dice loss and optimized using the Adam optimizer.
The images are resized to 448× 448 and normalized by their
mean and standard deviation. The output score map is thresh-
olded to generate a binary lung segmentation mask.

B. Severity Measurement

We examined patients that were imaged multiple times during
their hospitalization. To evaluate the progression of pneumonia,
we suggest a “Pneumonia Ratio” metric which quantifies the
relative area of the segmented pneumonia regions with respect
to the total lungs area.

The pneumonia ratio is calculated from both the lung seg-
mentation and the pneumonia segmentation to generate a sever-
ity measure of the patient’s disease. The lungs are segmented
using the lung segmentation module as described above and the
segmentation of the suspected pneumonia region is produced by
taking the maximal value for each pixel of the 128 predicted
localization output maps of the localization head and applying a
threshold, only for patients that were identified with pneumonia
by the detection head. The outputted segmentation map is then
multiplied by the lung mask to restrict pneumonia detections
to the lung area. The area of the lungs (Arealungs) and the

pneumonia segmentation (Areapneumonia) are calculated ac-
cording to the total number of pixels involved, and a pneumonia
ratio is calculated using the following equation:

Pneumonia Ratio = 100× Areapneumonia

Arealungs
(2)

The system’s components and pneumonia ratio calculation steps
are shown in Fig. 6.

C. CT and Xray Duality for Patient Monitoring

To illustrate the efficacy of our model in performing a follow-
up task, we describe a strategy to evaluate the accuracy of disease
progression using CXR. Rendering realistic DRRs from serial
COVID-19 patients’ CT scans is manipulated to validate our
method. In particular, the DeepDRR framework [41], [42]
is implemented to generate DRRs from CT. These DRRs are
then inputted to our model to calculate the pneumonia ratio
following the steps in Fig. 6. The CXR pneumonia ratio is then
compared with the CT pneumonia ratio, using the the CT disease
localization method described in [43].

The system of DRR generation and evaluation is depicted in
Fig. 7 and described in detail next.

DeepDRR: DeepDRR is a machine learning-based method
that consists of four modules: (1) material decomposition (air,
soft tissue and bones) in CT volumes using a deep segmentation
ConvNet, (2) analytic forward projection, (3) scattering estima-
tion in 2D images using a neural network-based Rayleigh, and
(4) noise injection. This framework enables the user to generate
synthetic Xray images with different parameter configurations,
while controlling for image size, resolution, spectrum energy
level, image view (rotation), noise and scatter control and others.
This can be exploited for data augmentation and parameter
tuning. The selected parameters set for the generated DRRs in
this work were a 1024× 1024 image size, with a 0.168 mm
pixel size. The spectrum of a tungsten anode operating at 120 kV
with 4.3 mm aluminum was used and a high-dose acquisition
was assumed with 105 photons per pixel. Posterior-anterior (PA)
and anterior-posterior (AP) images are produced for each CT
volume.

Chest Body Part Segmentation: A thoracic CT may include
scanned objects exterior to the body part such as the patient’s
bed. These objects are seen on the DRRs, conceal parts of the
chest and appear as undesirable noise. Thus, a pre-processing
step is applied to keep only the chest parts. First, bit-wise
operations are applied to the masks of the decomposed materials:
the air mask is inverted using a NOT operation, then an OR
operation is performed on the inverted air mask, the soft tissue
mask and the bones mask. This step creates a mask of the chest
part (without the air in the lungs) as the bed and other unrelated
objects are composed of different materials. To produce a binary
mask of the whole chest part including the lungs, a hole-fill
algorithm is applied. Finally, the filled mask is multiplied by the
CT volume, excluding all the unrelated objects.

Post-processing: The DRRs are first inverted since they
appear dark. They are then converted to 8-bit values. Images
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Fig. 6. Severity score computation - Block diagram: The input image enters the detection and localization network. If the detection prediction is
lower than a pre-determined threshold, the image is classified as negative; otherwise, a threshold is applied over the final localization output map
to generate the pneumonia segmentation. At this point, the pneumonia segmentation and the lung segmentation blocks are utilized to compute the
“Pneumonia Ratio”.

Fig. 7. CT and Xray Duality for Patient monitoring. The block diagram
shows the steps used to create the DRR; the Pneumonia Ratio can
then be computed on both the CT image as well as on the generated
synthetic CXR image. .

that are very bright (with an average intensity value exceeding
220) undergo gamma correction with γ = 0.2.

V. EXPERIMENTS AND RESULTS

A. Datasets

To train our network, the main source of data was the RSNA
Pneumonia Detection Challenge [22], [44] These data are com-
prised of AP and PA and include: 20,672 radiographs that are

labeled ‘Normal’ or ‘No Lung Opacity / Not Normal’ indicating
that the image is negative for pneumonia, and 6,012 which
are labeled with suspected pneumonia (’Lung Opacity’). The
patients in this study ranged in age from 1− 100.

In testing the proposed system, three testing scenarios were
used. In what we termDataset1, data were set aside from within
the RSNA Pneumonia Detection dataset for patients above age
18: 562 CXR images from pneumonia patients, and 562 CXR
images diagnosed as healthy or with lung pathologies other than
pneumonia (total of 1124 images); the number of PA and AP
images was 470 and 654, respectively.

In the second testing scenario, termed Dataset 2, two data
sources were merged: the main source of the data was the open
source COVID-19 Image Data Collection [20]. This dataset
consists of COVID-19 cases (as well as SARS and MERS
cases) with annotated CXR and CT images; data were collected
from public sources as well as through indirect collections from
hospitals and physicians. At the time of the writing of this paper,
the number of CXR images in the dataset was 339, of which 287
(from 180 patient) PA and AP images and the rest are lateral
view position. To balance the data, we randomly selected, and
merged, 287 non-pneumonia images from the RSNA Dataset.
Subsets of Dataset 2 included additional GT labels, such as
lung mask images and severity scoring (see Section V-C).

Motivated by the COVID-Net experiment conducted in [9],
we collected the same dataset and data split for our third testing
scenario (Dataset 3). This dataset is composed of a total of
8,066 patient cases who have no pneumonia (i.e., normal), 5,538
patient cases who have non-COVID19 pneumonia, and 358 CXR
images from 266 COVID-19 patient cases. Of these, 100 normal,
100 pneumonia, and 100 COVID-19 images were randomly
selected for testing. A detailed description of the data split for
all the datasets used in this paper is shown in Table I.
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TABLE I
NUMBER OF IMAGES USED FOR TRAINING, VALIDATION AND TESTING FOR

EACH DATASET

B. COVID-19 Pneumonia Detection

Several experiments were conducted to evaluate the system’s
detection performance. Rows 1− 5 in Table II summarizes the
results over the three datasets defined above in terms of area un-
der the ROC curve (AUC), accuracy (ACC), positive predictive
value (PPV ), sensitivity (Sens) and specificity (Spec).

In the first experiment we evaluated the model’s performance
for both detection and localization on Dataset 1, which does
not include COVID-19 patients. Starting with the evaluation
of the pneumonia localization maps (examples over the test
set are shown in Fig. 4), we measured our proposed network
localization predictions vs. GT labels of bounding boxes us-
ing an intersection performance metric. For a fair comparison,
we used thresholding over the localization map (“localization
threshold”), and set a tight bounding box around the segmented
region. Different localization threshold values affected the lo-
calization performance. The overall localization performance
was assessed by the mean average precision (mAP) at multiple
intersection over union (IoU ) thresholds (“IoU threshold”) as
suggested by the RSNA pneumonia challenge.2 The IoU was
calculated using (3):

IoU(A,B) =
A ∩B

A ∪B
,

A− prediction, B − ground truth (3)

We used IoU threshold values from 0.4 to 0.75 with a step
size of 0.05, and counted the number of true positive (TP ), false
negative (FN ), and false positive (FP ) detections calculated
from the comparison of the predicted to the GT bounding boxes.
The suggested precision by the challenge (RSNA− precision)
of a single image i was calculated at each IoU threshold t:

RSNA− precisioni(t) =
TP (t)

TP (t) + FP (t) + FN(t)
(4)

The average precision of a single image was calculated as the
mean of the above precision values for all IoU thresholds. The
overall mAP was then defined as the average of the precision for

2https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview/
evaluation

all the images i:

mAP =
1

|images|
∑

i

1

|thresholds|
∑

t

precisioni(t) (5)

The |images| and |thresholds| in the equation indicate the
number of the images and IoU thresholds, respectively. In
order to define the best localization threshold value over the
localization maps that optimized the mAP, we measured the
mAP at different threshold values from 0.5 to 0.9 as depicted
in Fig. 8(a). The optimal localization threshold value was 0.8
which resulted in a mAP of 0.27.

In Fig. 9, we provide examples of bounding box predictions of
our network generated by thresholding over the localization map
and set a tight bounding boxes around the segmented regions,
in comparison to the GT bounding boxes from the same test set.
The top row shows successful predictions and the bottom row
depicts discrepancies between the GT and the prediction boxes.

The pneumonia detection performance was evaluated using
pneumonia/non-pneumonia labels from Dataset 1. Fig. 8(b)
shows the Receiver Operating Characteristic (ROC) curve that
plots the trade off between sensitivity and specificity at different
thresholds on the test set. The reported AUC was 0.93. The
Sens, Spec and ACC at the optimal predictions threshold of
0.62 was set as the point that satisfied the minimal Euclidean
distance from the point (1, 0), are 0.87, 0.85 and 0.86, respec-
tively. The PPV , which is the probability that the disease is
present when the test is positive was 0.86.

In the second experiment, we examined the model’s robust-
ness to COVID-19 data by testing it on Dataset 2, which
includes COVID-19 patients. The reported AUC for Dataset 2
is 0.94. The Sens, Spec, ACC and PPV were 0.86, 0.91,
0.89 and 0.90, respectively, which shows the model’s successful
generalization to COVID-19 patients’ data.

In the last experiment, we use Dataset 3, which includes
pneumonia and COVID-19 patients. For a fair comparison,
we trained our network according to the data-split suggested
by the authors in [9], where we merged the non-COVID-19
pneumonia and COVID-19 pneumonia images into one class to
fit our network. In this detection task, we achieved a 0.98 AUC,
with 0.92 Sens and 0.97 Spec. These results are comparable
to state-of-the-art performance. When comparing the detection
performance of a single network (ResNet50) with our model
that incorporates the localization task as well, our results out-
perform the ResNet50 on the same dataset. Note that the method
exhibited high sensitivity for COVID-19 pneumonia detection,
thus proving its capability to detect COVID-19 pneumonia in
addition to non-COVID-19 pneumonia.

To summarize, the results in Table II show high performance
on non-COVID-19-pneumonia detection (Dataset 1), and an
even higher performance on COVID-19-pneumonia detection
(Dataset 2), despite the fact that the network was not trained on
COVID-19 images. Including COVID-19 images in the training
dataset (Dataset 3) yielded even better performance, competi-
tive with the state-of-the-art. The joint learning of detection and
localization achieved higher detection results as compared to
results from a system focusing on only one of the tasks.

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview/evaluation
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TABLE II
ROWS 1–5: QUANTITATIVE RESULTS OF PNEUMONIA DETECTION IN COVID-19 AND PNEUMONIA PATIENTS OVER THREE DATASETS. ROWS 6–9:
COMPARISON OF THE SEVERITY SCORING PERFORMANCE METRICS OF OUR METHOD AFTER THE FIRST/SECOND STAGE WITH/WITHOUT LUNG

SEGMENTATION IMPROVEMENT

*Results are taken from [9].
**Results are reported only for 50 test images of Dataset 2, the remaining were used for training.

Fig. 8. (a) Mean average precision (mAP) at different thresholds over the localization output of the network. The localization threshold that yields
the maximum mAP is selected to produce the segmentations for the final model. (b) ROC curve of our model’s performance on pneumonia detection.

C. COVID-19 Severity Scoring and Follow-Up

1) Lung Segmentation Evaluation: Lung segmentation is es-
sential to calculate an accurate severity score. We present a
model for lung segmentation, dubbed LSNet, and suggest an
improved model LSNet−Aug that generalizes to images with
severe infections such as COVID-19, by using various data
augmentation techniques and including abnormal data sources.
The evaluation was run on 210 images provided in Dataset 2.
The lung masks of these images were generated using the
model described in [45] as this achieved the most accurate
segmentations. Therefore, we consider Selvan’s method as our
reference, and compared it to our lung segmentation models. The
results were evaluated using the Dice and Jaccard coefficient.
Table III shows an improvement in both metrics for lung seg-
mentation after adding the augmentations and the datasets during
training.

TABLE III
LUNG SEGMENTATION RESULTS REPORTED FOR BOTH THE U-NET BASED
VGG-16 ENCODER METHOD AND THE SAME METHOD WITH ADDITIONAL

ABNORMAL DATASETS AND AUGMENTATIONS. GROUND TRUTH MASKS
WERE GENERATED USING [45]

2) Quantitative Analysis: Dataset 2 includes a cohort of
94 PA CXR images that are assigned a severity score of
[0/1/2/3/4], indicating the extent of ground glass opacity
or consolidation in each lung (right and left lung). The im-
ages were labeled by three experts, based on score strategy
adapted from [46]. The opacity extent was scored as follows:
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Fig. 9. Example results on the test set. The top row depicts successful
predictions and the bottom row shows errors. Predictions and GT are
shown as red and blue overlays, respectively.

0 = no involvement; 1 =< 25% involvement; 2 = 25− 50%
involvement; 3 = 50− 75% involvement; 4 => 75% involve-
ment. The total extent score in both lungs ranged from 0 to
8. To compare our results to the GT scores, we computed the
pneumonia ratio for each lung. We divided the pneumonia ratio
into four levels using the same GT criterion, and the total score
was summed for both lungs. The severity scoring is evaluated
using a correlation coefficient of the fitted model between the
predicted and the GT scores.

Fig. 10(a) shows the predicted severity scores against the GT
scores from the 94 patient cohort. The correlation coefficient of
the fitted model was 0.83 and R2 = 0.67. These results exceed
the reported severity estimation reported in [27], which was
tested on a subset of the same dataset. The confusion matrix in
Fig. 10(b) shows larger confusion between close severity scores
such as the low levels [0, 1, 2]. Even though the high severity
level images are slightly underestimated, none were scored as a
mild condition stage and vice-versa. Given the high inter-rater
variability, our plots show satisfactory agreement.

Rows 6–9 in Table II presents the severity scoring perfor-
mance using the different development phases of our method
and demonstrates the improvement of the severity measure for
each component; Using the basic model for lung segmentation,
LSNet, and the localization model after the second stage of
training for the pneumonia localization (DLNet− 2), perfor-
mance was higher than using the localization model after the
first stage of training. The accuracy of the severity score vs.
the GT further improved when using the advanced model for
lung segmentation (LSNet−Aug). These results exceed the
reported severity estimation reported in [27], which was tested
on a subset of the same dataset.

3) Qualitative Analysis: To estimate the progression and
severity of pneumonia in COVID-19 patients, we explored the
pneumonia ratio for patients from Dataset 2, scanned at multi-
ple time points. The intervals between patients’ two subsequent
time points were inconsistent and ranged from 1-8 days. Thus the
analysis did not rely on time intervals. We provide a qualitative
analysis over time for three selected patients. Fig. 11 shows the
CXR scans of these patients, superimposed with red contours
indicating the predicted regions of pneumonia. The pneumonia
ratio indicates the severity of pneumonia in these patients in
percentages out of the lung field, right lung and left lung.

In patient 10, the pneumonia ratio shows evidence of disease
deterioration over time. In patient 117, there was a substantial
increase followed by a period without major change and then
another increase in disease severity. In contrast, for patient
171 the ratio indicated recovery from the disease following a
substantial increase in level of infection.

D. CT-Xray Duality for Patient Monitoring Validation

To further validate the method, a quantitative analysis
based on the strategy described in IV-C was performed. The
DeepDRR framework was applied to 9 patients with severe
disease as indicated by their measured infiltration volume in
CT. The patients were scanned at Wenzhou hospital in China
and were diagnosed with COVID-19 with the RT-PCR test. Each
patient had a chest CT scan (slice thickness, {1, 1.5}mm) at one
or multiple time points (up to 4). The first CT scan was obtained
1–4 days after the manifestation of the first signs of the virus
(fever, cough) and the intervals between each two points ranged
from 3 to 10 days.

After generating the DRRs, we applied our pneumonia detec-
tion and localization method (without re-training the model), and
the pneumonia ratio was computed for each patient’s generated
Xray. The ratio of the detected infection in the lungs was also
computed from the CT volume, as done in [43], [47]. A brief
summary of the CT-based solution is the following: Following a
lung segmentation module (based on [36]), a ResNet50 is used
to classify the lung regions of each CT slice. For each positive
(COVID-19) slice, a Grad-CAM procedure [15] is utilized to
generate a fine-grained localization map. These localization
maps are used to calculate the “Corona Score” by summation
of all the pixels above a predetermined threshold. The AUC
of COVID-19 detection of this method was 0.99 with 0.94
sensitivity and 0.98 specificity, which makes this method a
gold standard compared to Xray. A linear regression model was
fitted to the CT and CXR pneumonia ratio values, as shown in
Fig. 12. The correlation coefficient between the two methods
was 0.74 (p < 0.001), where the slope of the line was 0.87 and
the intercept with the y-axis was −7.2, thus indicating overall
agreement.

Fig. 13 shows the pneumonia ratios extracted from the DRRs
and the ratios computed on CT volumes, for each time point
per patient. Our aim was to compare disease progression trends
using the two modalities. We observed that in most cases the
trend of the regression lines was similar; i.e., when the CXR ratio
increased, so did the CT ratio, and vice-versa. The agreement
between the two lines was quantified as follows: for each time
point, if the quotient of the current time point to the previous
point was greater than one, the sample was assigned a label of
1, otherwise 0. Using this definition, if the two lines agree in
terms of their labels, we consider this to be a true prediction
and the reverse (see agreement in green in Fig. 13). Overall, we
computed an accuracy of 0.87 between the CT and Xray trends.
The differences in ratio values between the CT and CXR are
worth noting. These are expected since the former was computed
over the 3D volume, and the latter on a 2D image. We expected
to see a dominant infiltration in CXR when the disease reached
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Fig. 10. (a) Scatter plot showing the relationship between the predicted and GT severity level. The dashed line corresponds to a perfect correlation
and the solid blue line shows our linear regression model. (b) Confusion matrix showing the number of images that were scored with different
combinations for severity scoring.

Fig. 11. Example of patient monitoring over time in three patients
using the pneumonia ratio.

an advanced stage in CT, as depicted in Fig. 13. When CT is
severe, the CXR ratio goes in the same direction, but after 3 or 4
time points (shaded points), the pneumonia infiltration decreases
and the ratios in the CXR start to be less accurate.

Fig. 12. Linear regression model depicting the relationship of the
pneumonia ratio on DRRs vs. the ratio calculated on the CT volume.

VI. DISCUSSION

The recent outbreak of COVID-19 has increased the need for
automatic diagnosis and prognosis of COVID-19 pneumonia
infections in CXR images. This includes the automatic follow-
up of coronavirus patients to monitor their condition and the
progression of the disease. In this work, we present an end-to-end
solution for COVID-19 pneumonia detection, localization, and
severity scoring in CXR.

The severity of pneumonia is directly associated with its
extent in the lungs; thus, an accurate segmentation of the regions
infected with pneumonia is crucial. In this paper we present a
dual-stage training scheme in a detection and localization net-
work, to accurately segment infected pneumonia regions from
inaccurate GT bounding boxes. To achieve reliable and accurate
segmentation, we developed a weakly supervised method that
exploits bounding box information and refines it in two stages.

Unlike previous works that have used Grad-CAM to provide
clinically interpretable saliency maps [12], [17], [18], we output



1902 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 6, JUNE 2021

Fig. 13. Comparison of patient monitoring using the pneumonia ratios
computed from CT volumes and the corresponding DRRs. The numbers
in green (on the x-axis) represent the agreement between change trends
of CXR and CT ratios that were used to calculate the accuracy of
change. Interval between time points 3-4 is shaded out to reflect mild
disease states based on the CT.

the accurate localization directly from the network and prove
its accuracy through the pneumonia severity scoring. The local-
ization maps provided by our network demonstrate our model’s
ability to learn features that are specific to the disease, thereby
showing that the calculations were not dataset-biased.

Several other works have attempted to solve the problem of
detecting COVID-19 in CXR images [9]–[11]. Most networks
have been trained and tested on COVID-19 patients with highly
imbalanced labels from distinct datasets, on relatively small
testing sets. This raises the concern that the network solutions
may be dataset-biased, and not as robust as desired [13], [14].
In order to assure the robustness of our solution we took special
care to train the network on a single dataset that included
non-COVID-19 pneumonia. In the inference phase, we tested
the method on a larger dataset including COVID-19 patients
from an external public dataset and achieved high performance
in these cases. Including COVID-19 cases in the training phase
improved the network’s results and yielded performance values
comparable to the state-of-the-art with AUC, sensitivity and
specificity values of 0.98, 0.92 and 0.97 respectively.

Lung segmentation is less accurate in pathological lungs,
specifically in severe conditions of pneumonia. We addressed
this issue by using unconventional augmentations in the training
process, including synthesizing pathological lungs from normal
lung cases and adding blobs to the images along with a gamma
correction. By applying these augmentations we were able to
improve the segmentation results considerably and overall en-
hance the network performance.

A measure of the relative pneumonia region to the total lung
region was found to strongly correlate with the disease severity
score estimation. In Table II we presented an analysis of the
effect of each training stage and the improved lung segmentation
on the performance of the severity scoring against the GT
labels, and show the contribution of each development step over

previous works [27], with a correlation coefficient of 0.83 and
R2= 0.67. In future work, we plan to consider merging both lung
segmentation and pneumonia detection into one architecture.

To validate patient-specific disease progression profiles, we
need a disease score per time-point as the GT. The lack of such
data prompted us to search for an alternative: we propose a novel
validation scheme of synthesizing Xray (DRR) from CT using
the DeepDRR AI-based technique to show a proof of concept
for patient monitoring in CXR. We used the proposed CT-Xray
duality for longitudinal comparison to assess the disease state
and trends in the severity of COVID-19 patients over time,
which yielded an overall accuracy of 0.87 between the CT and
Xray trends. In our analysis, we utilized cases of severe illness.
We focus on these cases due to the lower sensitivity of the
Xray in comparison to the CT in detecting pneumonia for mild
scenarios. This is exemplified in patient #9 in Fig. 13, where the
graph shows a ratio of 0 in CXR (indicating that the patient is
negative for pneumonia), whereas the CT shows a positive ratio.
Therefore, the pneumonia ratio is more accurate in monitoring
patients at an advanced stage of the disease.

VII. CONCLUSION

We presented a model that simultaneously detects and local-
izes the region of pneumonia and assesses its extent in the lungs.
We suggest dual-stage training that leverages the weak annota-
tions of bounding boxes in order to output an accurate segmen-
tation of pneumonia in COVID-19 patients. An improvement on
a previous lung segmentation method is described using uncon-
ventional additions that enhance the results of lung segmentation
on diseased lungs. The pneumonia and lung segmentation are
exploited to quantify a pneumonia ratio which indicates the
extent of pneumonia in the lungs. Additional exploration in
the CT-Xray coupling is described to validate the ability of our
method to monitor patients over time. Findings point to the utility
of AI for COVID-19 pneumonia quantification, severity scoring
and patient monitoring.
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