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Abstract—Colonoscopy is considered the gold standard
for detection of colorectal cancer and its precursors.
Existing examination methods are, however, hampered
by high overall miss-rate, and many abnormalities are
left undetected. Computer-Aided Diagnosis systems
based on advanced machine learning algorithms are
touted as a game-changer that can identify regions in the
colon overlooked by the physicians during endoscopic
examinations, and help detect and characterize lesions.
In previous work, we have proposed the ResUNet++
architecture and demonstrated that it produces more
efficient results compared with its counterparts U-Net
and ResUNet. In this paper, we demonstrate that further
improvements to the overall prediction performance of
the ResUNet++ architecture can be achieved by using
Conditional Random Field (CRF) and Test-Time Augmen-
tation (TTA). We have performed extensive evaluations and
validated the improvements using six publicly available
datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB,
ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video
Database, and CVC-VideoClinicDB. Moreover, we compare
our proposed architecture and resulting model with other
state-of-the-art methods. To explore the generalization ca-
pability of ResUNet++ on different publicly available polyp
datasets, so that it could be used in a real-world setting,
we performed an extensive cross-dataset evaluation. The
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experimental results show that applying CRF and TTA
improves the performance on various polyp segmentation
datasets both on the same dataset and cross-dataset. To
check the model’s performance on difficult to detect polyps,
we selected, with the help of an expert gastroenterologist,
196 sessile or flat polyps that are less than ten millimeters
in size. This additional data has been made available as
a subset of Kvasir-SEG. Our approaches showed good
results for flat or sessile and smaller polyps, which are
known to be one of the major reasons for high polyp
miss-rates. This is one of the significant strengths of our
work and indicates that our methods should be investigated
further for use in clinical practice.

Index Terms—Colonoscopy, polyp segmentation,
ResUNet++, conditional random field, test-time
augmentation, generalization.

I. INTRODUCTION

ANCER is a primary health problem of contemporary
C society, with colorectal cancer (CRC) being the third most
prevailing type in terms of cancer incidence and second in terms
of mortality globally [2]. Colorectal polyps are the precursors
for the CRC. Early detection of polyps through high-quality
colonoscopy and regular screening are cornerstones for the
prevention of colorectal cancer [3], since neoplastic lesions such
as adenomas can be found and resected before transforming to
cancer and subsequently reducing CRC morbidity and mortality.
Regardless of the achievement of colonoscopy in lower-
ing cancer burden, the estimated adenoma miss-rate is around
6-27% [5]. In a recent pooled analysis of 8 randomized tandem
colonoscopy studies, polyps smaller than 10 mm, sessile, and
flat polyps [6] are shown to most often be missed [7]. Another
reason why polyps are missed may be that the polyp either was
not in the visual field or was not recognized despite being in the
visual field due to fast withdrawal of the colonoscope [8]. The
adenoma miss-rate could be reduced by improving the quality
of bowel preparation, applying optimal observation techniques,
and ensuring a colonoscopy withdrawal time of at least six min-
utes [8]. Moreover, adenoma detection rate can also be improved
by using advanced techniques or devices, for example, auxiliary
imaging devices, colonoscopes with increased field of view,
add-on-devices, and colonoscopes with integrated inflatable,
reusable balloons [3].
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Fig. 1. Example images showing the variations in shape, size, color,
and appearance of polyps from the Kvasir-SEG [4].

The structure and characteristics of a colorectal polyp changes
over time at different development stages. Polyps have different
shapes, sizes, colors, and appearances, which makes them chal-
lenging to analyze (see Fig. 1). Moreover, there are challenges
such as the presence of image artifacts like blurriness, surgical
instruments, intestinal contents, flares, and low-quality images
that can cause errors during segmentation.

Polyp segmentation is of crucial relevance in clinical appli-
cations to focus on the particular area of the potential lesion,
extract detailed information, and possibly remove the polyp if
necessary. A Computer-Aided Diagnosis (CADX) system for
polyp segmentation can assist in monitoring and increasing the
diagnostic ability by increasing the accuracy, precision, and
reducing manual intervention. Moreover, it could lead to less
segmentation errors than when conducted subjectively. Such
systems could reduce doctor’s workload and improve clini-
cal workflow. Lumen segmentation helps clinicians navigate
through the colon during the examination, and it can be useful to
establish a quality metric for the explored colon wall [9]. Thus,
an automated CADx system could be used as a supporting tool
to reduce the miss-rate of the overlooked polyps.

A CADx system could be used in a clinical setting if it
addresses two common challenges: (i) Robustness (i.e., the
ability of the model to consistently perform well on both easy
and challenging images), and (ii) Generalization (i.e., a model
trained on specific intervention in a specific hospital should
generalize across different hospitals) [10]. Addressing these
challenges is key to design a powerful semantic segmentation
system for medical images. Generalization capability checks
the usefulness of the model across different available datasets
coming from different hospitals and must finally be confirmed
in multi-center randomized trials. A good generalizable model
could be a significant step toward developing an acceptable
clinical system. A cross-dataset evaluation is crucial to check
the model on the unseen polyps from other sources and test the
generalizability of it.

Toward developing a robust CADx system, we have previ-
ously proposed ResUNet++ [1]: an initial encoder-decoder
based deep-learning architecture for segmentation of medical
images, which we trained, validated, and tested on the publicly
available Kvasir-SEG [4] and CVC-ClinicDB [11] datasets. In
this paper, we describe how the ResUNet++ architecture can
be extended by applying Conditional Random Field (CRF) and
Test-Time Augmentation (TTA) to further improve its prediction

performance on segmented polyps. We have tested our ap-
proaches on six publicly available datasets, including both image
datasets and video datasets. We have intentionally incorporated
video datasets from colonoscopies to support the clinical sig-
nificance. Usually, still-frames have at least one polyp sample.
Videos have a situation where frames consist of both polyp and
non-polyp. Therefore, we have tested the model on these video
datasets and provided a new benchmark for the segmentation
task. We have used extensive data augmentation to increase
the training sample and used a comprehensive hyperparameter
search to find optimal hyperparameters for the dataset. We
have provided a more in-depth evaluation by including more
evaluation metrics, and added justification for the ResUNet++,
CREF, and TTA.

Additionally, we have performed extensive experiments on
the cross-data evaluation, in-depth analysis of best performing
and worst performing cases, and comparison of the proposed
method with other recent works. Moreover, we have pointed out
the necessity of solving tasks related to the miss-detection of
flat and sessile polyps, and showed that our combining approach
could detect the overlooked polyps with high efficiency, which
could be of significant importance in the clinical settings. For
this, we also released a dataset consisting of sessile or flat polyps
publicly. Furthermore, we have emphasized the use of cross-
dataset evaluation by training and testing the model with images
coming from various sources to achieve the generalizability
goal.

In summary, the main contributions are as follows:

1) We have extended the ResUNet++ deep-learning archi-
tecture [1] for automatic polyp segmentation with CRF
and TTA to achieve better performance. The quantitative
and qualitative results show that applying CRF and TTA
is effective.

2) We validate the extended architecture on a large range
of datasets, i.e., Kvasir-SEG [4], CVC-ClinicDB [11],
CVC-ColonDB [12], EITS-Larib [13], ASU-Mayo
Clinic Colonoscopy Video Database [14], and CVC-
VideoClinicDB [15], [16], and we compare our proposed
approaches with the recent state-of-the-art (SOTA) al-
gorithms and set a new a baseline. Moreover, we have
compared our work with other recent works, which is
often lacking in comparable studies.

3) We selected 196 flat or sessile polyps that are frequently
missed during colonoscopy examination [7] from the
Kvasir-SEG with the help of an expert gastroenterologist.
We have conducted experiments on this separate dataset to
investigate how well our model performs on challenging
polyps. Moreover, we release these polyp images and
segmentation masks as a part of the Kvasir-SEG dataset so
that researchers can build novel architectures and improve
the results.

4) Our model has better detection of smaller and flat
or sessile polyps, which are frequently missed during
colonoscopy [7], which is a major strength compared to
existing works.

5) In medical clinical practice, generalizable models are
essential to target patient population. Our work is focused
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on generalizability, previously not much explored in the
community. To promote generalizable Deep Learning
(DL) models, we have trained our models on Kvasir-SEG
and CVC-ClinicDB and tested and compared the results
over five publicly available diverse unseen polyp datasets.
Moreover, we have mixed two diverse datasets and con-
ducted further experiments on other unseen datasets to
show the behaviour of the model on the images captured
using different devices.

[I. RELATED WORK

Over the past decades, researchers have made several efforts
at developing CADx prototypes for automated polyp segmen-
tation. Most of the prior polyp segmentation approaches were
based on analyzing either the polyp’s edge or its texture. More
recent approaches used Convolutional Neural Network (CNN)
and pre-trained networks. Bernal et al. [11] introduced a novel
method for polyp localization that used WM-DOVA energy
maps for accurately highlighting the polyps, irrespective of
its type and size. Pozdeev et al. [17] presented a fully auto-
mated polyp segmentation framework using pixel-wise predic-
tion based upon the Fully Convolutional Network (FCN). Bernal
et al. [18] hosted the automatic polyp detection in colonoscopy
videos sub-challenge, and later on, they presented a comparative
validation of different methods for automatic polyp detection
and concluded that the SOTA CNN based methods provide the
most promising results.

Akbari et al. [19] used the FCN-8S network and Otsu’s
thresholding method for automated colon polyp segmentation.
Wang et al. [20] used the SegNet [21] architecture to detect
polyps. They obtained high sensitivity, specificity, and receiver
operating characteristic (ROC) curve value. Their algorithm
could achieve a speed of 25 frames per second with some
latency during real-time video analysis. Guo et al. [22] used
a Fully Convolutional Neural Network (FCNN) model for the
Gastrointestinal Image ANAlysis (GIANA) polyp segmentation
challenge. The proposed method won first place in the 2017
GIANA challenge for both standard definition (SD) and high
definition image and won second place in the SD image segmen-
tation task in the 2018 GIANA challenge. Yamada et al. [23]
developed a CADx support system that can be used for the
real-time detection of polyps reducing the number of missed
abnormalities during colonoscopy.

Poorneshwaran et al. [24] used a Generative Adversarial
Network (GAN) for polyp image segmentation. Kang et al. [25]
used Mask R-CNN, which relies on ResNet50 and ResNet101,
as a backbone structure for automatic polyp detection and
segmentation. Ali et al. [26] presented various detection and
segmentation methods that could classify, segment, and local-
ize artifacts. Additionally, there are several recent interesting
studies on polyp segmentation [27]-[30]. They are useful steps
toward building an automated polyp segmentation system. There
are also some works which have hypothesized that coupling
the existing architecture by applying a careful post-processing
technique could improve the model performance [1], [31].

From the presented related work, we observe that automatic
CADx systems in the area of polyp segmentation are becoming

mature. Researchers are conducting a variety of studies with
different designs ranging from a retrospective study, prospective
study, to post hoc examination of the prospectively obtained
dataset. Some of the models achieve very high performance with
smaller training and test datasets [1], [20], [32]. The algorithms
used for building the models are the ones that use handcrafted-,
CNN- or pre-trained-features from ImageNet [33], where DL
based algorithms are outperforming and gradually replacing the
traditional handcrafted or machine learning (ML) approaches.
Additionally, the performance of the models improves by the use
of advance DL algorithms, especially designed for polyp seg-
mentation task or any other similar biomedical image segmen-
tation task. Moreover, there is interest for testing the proposed
architectures with more than one dataset [1], [20].

The main drawbacks in the field are the minimal effort applied
towards testing the generalizability of the CADx system possible
to achieve with the cross-dataset test. Additionally, there is
almost no effort involved in designing a universal model that
could accurately segment polyps coming from different sources,
critical for the development of CADx for automated polyp
segmentation. Besides, most of the current works have proposed
algorithms that are tested on single, often small, imbalanced,
and explicitly handpicked datasets. This renders conclusions
regarding the performance of the algorithms almost useless
(compared to other areas in ML like, for example, natural image
classification or action recognition where the common practice
is to test on more than one dataset and make source code and
datasets publicly available). Additionally, the used datasets are
often not public available (restricted and difficult to access),
and the total number of images and videos used in the study
are not sufficient to conjecture that the system is robust and
generalizable for use in clinical trials. For instance, the model
can produce output segmentation maps with high sensitivity
and precision on a particular dataset and completely fails on
other modality images. Moreover, existing work often use small
training and test datasets. These current limitations make it
harder to develop a robust and generalizable systems.

Therefore, we aim to develop a CADx based support system
that could achieve high performances irrespective of the datasets.
To achieve the goal, we have done extensive experiments on
various colonoscopy images and video datasets. Additionally,
we have mixed the dataset from multiple centers and tested it on
other diverse unseen datasets to achieve the goal of building a
generalizable and robust CADx system that potentially produces
no segmentation errors. Moreover, we set a new benchmark for
the publicly available datasets that can be improved in the future.

[ll. THE RESUNET++ ARCHITECTURE

ResUNet++ is a semantic segmentation deep neural network
designed for medical image segmentation. The backbone for
ResUNet++ architecture is ResUNet [34]: an encoder-decoder
network and based on U-Net [35]. The proposed architecture
takes the benefit of residual block, squeeze and excite block [36],
atrous spatial pyramid pooling (ASPP) [37], and attention
block [38]. What distinguishes ResUNet++ from ResUNet is
the use of squeeze-and-excitation blocks (marked in dark gray)
atthe encoder, the ASPP block, (marked in the dark red) at bridge
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Fig. 2.  ResUNet++ architecture [1].

and decoder, and the attention block (marked in light green) at
the decoder (see Fig. 2).

In the ResUNet++ model, we introduce the sequence of
squeeze and excitation block to the encoder part of the network.
Additionally, we replace the bridge of ResUNet with ASPP.
In the decoder stage, we introduce a sequence of attention
block, nearest-neighbor up-sampling, and concatenate it with
the relevant feature map from the residual block of the encoder
through skip connection. This process is followed by the residual
unit with identity mapping, as shown in Fig. 2.

We also introduce a series of additional skip connections
from the residual unit of the encoder section to the attention
block of the decoder section. We assign the number of filters
[32, 64,128,256, 512], along with the levels in the encoder sec-
tion, which are the values in our ResUNet++ architecture. These
filter combinations achieved the best results in our ResUNet++
experiment. In the decoder section, the number of the filters are
reversed, and the sequence becomes [512, 256, 128, 64, 32]. As
the semantic gap between the feature map of the encoder and
decoder blocks are supposed to decrease, the number of filters in
the convolution layers of the decoder block is also decreased to
achieve better semantic coverage. Through this, we ensure that
the overall quality of the feature maps is more alike to the ground
truth mask. This is especially important as the loss in semantic
space is likely to decrease, and therefore it will become more
feasible to find a meaningful representation in semantic space.

The overall ResUNet++ architecture consists of one stem
block with three encoder blocks, an ASPP between the encoder
and the decoder, and three decoder blocks. All the encoder and
decoder blocks use the standard residual learning approach. Skip
connections are introduced between encoder and decoder for the

propagation of information. The output of the last decoder block
is passed through the ASPP, followed by a1 x 1 convolution and
a sigmoid activation function. All convolutional layers except
for the output layer are batch normalized [39] and are activated
by a Rectified Linear Unit (ReLU) activation function [40].
Finally, we get the output as binary segmentation maps. A
brief explanation of each block is provided in the following
sub-sections.

A. Residual Blocks

Training a deep neural network by expanding network depth
can potentially improve overall performance. Nevertheless, sim-
ply stacking the CNN layer could also hamper the training
process and cause exploding/vanishing gradient when backprop-
agation occurs [41]. Residual connections facilitate the training
process by directly routing the input information to the output
and preserve the nobility of the gradient flow. The residual
function simplifies the objective of optimization without any
additional parameters and boosts the performance, which is
the inspiration behind the deeper residual-based network [42].
Equation (1) below shows the working principle.

Here, x,, is the input and F'(-) is the residual function. The resid-
ual units consist of numerous combinations of Batch Normaliza-
tion (BN), ReLU, and convolution layers. A detailed description
of the combinations used and their impact can be found in the
work of He et al. [43]. We have employed the concept of a
pre-activation residual unit in the ResUNet++ architecture from
ResUNet.

B. Squeeze and Excitation Block

The squeeze and excitation (SE) block is the building block for
the CNN that re-calibrates channel-wise feature response by ex-
plicitly modeling interdependencies between the channels [36].
The SE block learns the channel weights through global spatial
information that increases the sensitivity of the effective feature
maps, whereas it suppresses the irrelevant feature maps [1]. The
feature maps produced by the convolution have only access
to the local information, meaning they have no access to the
global information left by the local receptive field. To address
this limitation, we perform a squeeze operation on the feature
maps using the global average pooling to generate a global rep-
resentation. We then use the global representation and perform
sigmoid activation that helps us to learn a non-linear interaction
between the channels, and capture the channel-wise dependen-
cies. Here, the sigmoid activation output acts as a simple gating
mechanism that ensures us to adaptively recalibrate the feature
maps produced by the convolution. The adaptive recalibration
or excitation operation explicitly models the interdependencies
between the feature channels. The SE net has the capability
of generalizing exceptionally well across various datasets [36].
In the ResUNet++ architecture, we have stacked the SE block
together with the residual block for improving the performance
of the network, increasing the effective generalization across
different medical datasets.
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C. Atrous Spatial Pyramidal Pooling

Since the introduction of atrous convolution by Chen
et al. [44] to control the field-of-view to capture contextual
information at multi-scale precisely, it has shown promising
results for semantic image segmentation. Later, Chen et al. [45]
proposed ASPP, which is a parallel atrous convolution block to
capture multiple-scale information simultaneously. ASPP cap-
tures the contextual information at different scales, and multiple
parallel atrous convolutions with varying rates in the input
feature map are fused [45]. In ResUNet++, we use ASPP as
a bridge between the encoder and the decoder sections, and
after the final decoder block. We adopt ASPP in ResUNet++ to
capture the useful multi-scale information between the encoder
and the decoder.

D. Attention Units

Chen et al. [46] proposed an attention model that can segment
natural images by multi-scale input processing. Attention model
is an improvement over average and max-pooling baseline and
allows to visualize the features importance at different scales
and positions [46]. With the success of attention mechanisms,
various medical image segmentation methods have integrated an
attention mechanism into their architecture [1], [47]-[49]. The
attention block gives importance to the subset of the network
to highlight the most relevant information. We conjecture that
the attention mechanism in our architecture will boost the ef-
fectiveness of the feature maps of the network by capturing the
relevant semantic class and filtering out irrelevant information.
Motivated by the recent achievements of attention mechanisms
in the field of medical image segmentation and computer vision
in general, we have integrated an attention block at the decoder
part of the ResUNet++ model.

E. Conditional Random Field

Conditional Random Field (CRF) is a popular statistical mod-
eling method used when the class labels for different inputs
are not independent (e.g., image segmentation tasks). CRF can
model useful geometric characteristics like shape, region con-
nectivity, and contextual information [50]. Therefore, the use
of CRF can further improve the models capability to capture
contextual information of the polyps and thus improve overall
results. We have used CRF as a further step to produce more
refined output to the test dataset for improving the segmentation
results. We have used a dense CRF for our experiments.

F. Test Time Augmentation

Test-Time Augmentation (TTA) is a technique of performing
reasonable modifications to the test dataset to improve the overall
prediction performance. In TTA, augmentation is applied to
each test image, and multiple augmented images are created.
After that, we make predictions on these augmented images,
and the average prediction of each augmented image is taken
as the final output prediction. Inspired by the improvement of
recent SOTA [22], we have used TTA in our work. In this paper,
we utilize both horizontal and vertical flip for TTA.

TABLE |
THE BIOMEDICAL SEGMENTATION DATASETS USED IN OUR EXPERIMENTS

Dataset Images Input size Availability
Kvasir-SEG [4] 1000 Variable Public
CVC-ClinicDB [11] 612 384 x 288 Public
CVC-ColonDB [12] 380 574 x 500 Public
ETIS Larib Polyp DB [13] 196 1225 x 966 Public
CVC-VideoClinicDB [15], [16]T¢ 11,954 384 x 288 Public
ASU-Mayo Clinic Colonoscopy 18,781 688 x 550 Copyrighted
Video Database [14]"

Kvasir-Sessile® 196 Variable Public

fGround truth for test data not available °Ground truth oval or circle shaped
*Part of Kvasir-SEG [4], only sessile polyps

Fig. 3. Example polyp and corresponding ground truth from the Kvasir-
SEG.

IV. EXPERIMENTS
A. Datasets

We have used six different datasets of segmented polyps
with ground truths in our experiments as shown in Table I,
i.e., Kvasir-SEG [4], CVC-ClinicDB [11], CVC-ColonDB [12],
ETIS Larib Polyp DB [13], CVC-VideoClinicDB [15], [16] and
ASU-Mayo Clinic Colonoscopy Video Database [14]. They vary
e.g., regarding number of images, image resolution, availability,
devices used for capturing and the accuracy of the segmen-
tation masks. One example is given from the Kvasir-SEG in
Fig. 3. The Kvasir-SEG dataset includes 196 polyps smaller than
10 mm classified as Paris class 1 sessile or Paris class Ila. We
have released this dataset seperately as subset of Kvasir-SEG.
Note that for CVC-VideoClinicDB, we have only used the
data from the CVC-VideoClinicDBtrainvalid folder since only
these data have ground truth masks. Moreover, the ASU-Mayo
Clinic Colonoscopy Video Database, which was made available
at the “Automatic Polyp Detection in Colonoscopy Videos”
sub-challenge at Endovis 2015 had ten normal videos (negative
shots) and ten videos with polyps. However, the test subset is
not available because of issues related to licensing. In our ex-
periments, while training, validating, testing with 80:10:10 split
on the ASU-Mayo, we used all 20 videos for experimentation.
However, for the cross-dataset test (i.e., Tables X and XI), we
only tested on ten positive polyp videos.

B. Evaluation Method

To evaluate polyp segmentation methods, where individual
pixels should be identified and marked, we use metrics used
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in earlier research [4], [18], [20], [22], [26], [51] and in com-
petitions like GIANA,' comparing the correctly and wrongly
identified pixels of findings. The Dice coefficient (DSC) and
the Intersection over Union (IoU) are the most commonly used
metrics. We use the DSC to compare the similarity between
the produced segmentation results and the original ground truth.
Similarly, the IoU is used to compare the overlap between the
output mask and original ground truth mask of the polyp. The
mean Intersection over Union (mloU) calculates IoU of each
semantic class of the image and computes the mean over all the
classes. There is a correlation between DSC and mloU. However,
we calculate both the metrics to provide a comprehensive results
analysis that could lead to better understanding of the results.
Moreover, other often-used metrics for the binary classi-
fication are recall (true positive rate) and precision (positive
predictive value). For the polyp segmentation, precision is the
ratio of the number of correctly segmented pixels versus the
total number of all the pixels. Similarly, recall is the ratio of
correctly segmented pixel versus the total number of pixels
present in the ground truth. In the polyp image segmentation,
precision and recall are used to indicate over-segmentation and
under-segmentation. For formal definitions and formulas, see the
definitions in for example [4], [51]. Finally, the receiver operat-
ing characteristic (ROC) curve analysis is also an important met-
ric to characterize the performance of the binary classification
system. In our study, we therefore calculate DSC, mloU, recall,
precision, and ROC when evaluating the segmentation models.

C. Data Augmentation

Data augmentation is a crucial step in increasing the number
of polyp samples. This solves the data insufficiency problem,
improves the performance of the model, and help to reduce
over-fitting. We have used a large number of different data
augmentation techniques to increase the training sample. We
divide all the polyp datasets into training, validation, and testing
sets using the ratio of 80:10:10 based on the random distribu-
tion except for the mixed datasets. After splitting the dataset,
we apply data augmentation techniques such as center crop,
random rotation, transpose, elastic transform, grid distortion,
optical distortion, vertical flip, horizontal flip, grayscale, random
brightness, random contrast, hue saturation value, RBG shift,
course dropout, and different types of blur. For cropping the
images, we have used a crop size of 256 x 256 pixels. For the
experiments, we have resized the complete training, validation,
and testing dataset to 256 x 256 pixels to reduce the computa-
tional complexity. We have only augmented the training dataset.
The validation data is not augmented, and the test datasets were
augmented while evaluation using TTA.

D. Implementation and Hardware Details

We have implemented all the models using the Keras frame-
work [52] with Tensorflow [53] as a backend. Source code of our
implementation and information about our experimental setup
are made publicly available on Github.? Our experiments were
performed using a Volta 100 Tensor Core GPU on a Nvidia

Uhttps://giana.grand-challenge.org/
Zhttps://github.com/DebeshJha/ResUNet-with- CRF-and-TTA

TABLE Il
RESULTS COMPARISON ON KVASIR-SEG

Method DSC mloU Recall Precision
UNet [35] 0.7147  0.4334  0.6306 0.9222
ResUNet [34] 0.5144 04364  0.5041 0.7292
ResUNet-mod [34] 0.7909  0.4287  0.6909 0.8713
ResUNet++ [1] 0.8119  0.8068  0.8578 0.7742
ResUNet++ + CRF 0.8129  0.8080  0.8574 0.7775
ResUNet++ TTA 0.8496  0.8318  0.8760 0.8203
ResUNet++ +TTA + CRF  0.8508  0.8329  0.8756 0.8228

DGX-2 Al system capable of 2-petaFLOPS tensor performance.
We used an Ubuntu 18.04.3LTS operating system with Cuda
10.1.243 version installed. We have performed different exper-
iments with different sets of hyperparameters manually on the
same dataset in order to select the optimal set of hyperparameters
for the ResUNet++. Our model performed well with the batch
size of 16, Nadam as an optimizer, binary cross-entropy as the
loss function, and learning rate of 1e—>5. The dice loss function
was also competitive. These hyperparameters were chosen based
on the empirical evaluation. All the models were trained for
300 epochs. We have used early stopping to prevent the model
from over-fitting. To further improve the results, we have used
stochastic gradient descent with warm restarts (SGDR). All the
hyperparameters were same except for learning rate, which was
adjusted based on the requirement. We have also included the
Tensorboard for the analysis and visualization of the results.

V. RESULTS

In our previous work, we have showed that ResUNet++
outperforms the SOTA UNet [35] and ResUNet [34] models
trained on Kvasir-SEG and CVC-ClinicDB dataset [1]. In this
work, we aim to improve the results of ResUNet++ by utilizing
further hyperparameter optimization, CRF and TTA. In this
section, we present and compare the results of ResUNet++ with
CRF, TTA, and both approaches combined on the same dataset,
mixed dataset, and cross-dataset. Although a direct comparison
of approaches from the literature is difficult due to different
testing mechanisms used by various authors, we nonetheless
compare the results with the recent work for the evaluation.

A. Results Comparison on Kvasir-SEG Dataset

Table IT and Fig. 4 show the quantitative and qualitative results
comparison. Fig. 7 shows the ROC curve for all the models.
As seen in the quantitative results (Table II), qualitative results
(Fig. 4), and ROC curve (Fig. 7), our proposed methods outper-
form ResUNet++ on the Kvasir-SEG dataset. The improvement
in results demonstrates the advantage of the use of the TTA, CRF
and their combinations.

B. Results Comparison on CVC-ClinicDB

CVC-ClinicDB is acommonly used dataset for polyp segmen-
tation. Therefore, it becomes important that we bring different
works from the literature together and compare the proposed
algorithms with the existing works. We compare our algorithms
with the SOTA algorithms. Table III demonstrates that the com-
bination of ResUNet++ and CRF achieves DSC of 0.9293 and
mloU of 0.8898, which is 2.23% improvement on PraNet [57]
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Image Ground Truth UNet ResUNet

Fig. 4.

ResUNet++ ResUNet++

+ CRF

ResUNet++ ResUNet++
+ TTA

CRF + TTA

Qualitative results comparison of the proposed models with UNet, ResUNet, and ResUNet++. The figure shows the example of polyps

that are usually missed-out during colonoscopy examination. We see that there is a high similarity between ground truth and predicted mask for the

proposed models.

TABLE IlI
RESULTS COMPARISON ON CVC-CLINICDB

Method DSC mloU Recall Precision
MultiResUNet” [31] - 0.8497

cGANT [24] 0.8848 0.8127 -

SegNet [20] - - 0.8824 -
FCN*® [54] - 0.7732 0.8999
CNN [55] (0.62-0.87) - -
MSPBY CNN [56] 0.8130 - 0.7860 0.8090
UNet [35] 0.6419 0.4711 0.6756 0.6868
ResUNet [34] 0.4510 0.4570 0.5775 0.5614
PraNet [57] 0.8980 0.8400 - -
ResUNet-mod [34] 0.7788 0.4545 0.6683 0.8877
ResUNet++ [1] 0.9199 0.8892 0.9391 0.8445
ResUNet++ + CRF 0.9203 0.8898 0.9393 0.8459
ResUNet++ + TTA 0.9020 0.8826 0.9065 0.8539
ResUNet++ + TTA + CRF 0.9017 0.8828 0.9060 0.8549

fConditional generative adversarial network “Data augmentation
*Fully convolutional network ¥ multi-scale patch-based

in DSC and 4.98% improvement in mloU, respectively, and the
proposed methods show the SOTA result on CVC-ClinicDB.

The ROC curve measures the performance for the classi-
fication problem provided a set threshold. We have set the
probability threshold of 0.5. The combination of ResUNet++
and TTA has the maximum Area Under Curve - Receiver Oper-
ating Characteristic (AUC-ROC) of 0.9814, as shown in Fig. 8.
Therefore, the results in Table III and Fig. 8 show that applying
TTA gives an improvement on CVC-ClinicDB.

C. Results Comparison on CVC-ColonDB Dataset

Our results using the CVC-ColonDB dataset are presented
in Table IV. The table shows that the proposed method of
combining ResUNet++ and TTA achieved the highest DSC of
0.8474, which is 3.74% higher than SOTA [19], and mloU
of 0.8466 which is 20.66% higher than [57]. The recall and

TABLE IV
RESULTS COMPARISON ON CVC-CoOLONDB

Method DSC mloU Recall Precision
FCN-8S + Otsu [19] 0.8100 0.7480
FCN-8s + Texton [58] 0.7014 0.7566
SA-DOVA Descriptor [12] 0.5533 - 0.6191
PraNet [57] 0.7090  0.6400 - -
ResUNet++ [1] 0.8469  0.8456  0.8511 0.8003
ResUNet++ + CRF 0.8458  0.8456  0.8497 0.7767
ResUNet++ + TTA 0.8474  0.8466  0.8434 0.8118
ResUNet++ + TTA + CRF  0.8452  0.8459  0.8411 0.8125
TABLE V

RESULTS ON ETIS-LARIB PoLyr DB
Method DSC mloU Recall Precision
PraNet [57] 0.6280  0.5670 - -
ResUNet++ [1] 0.6364  0.7534  0.6346 0.6467
ResUNet++ + CRF 0.6228  0.7520  0.6242 0.5648
ResUNet++ + TTA 0.6136  0.7458  0.5996 0.6565
ResUNet++ + TTA + CRF  0.6018  0.7426  0.5914 0.5755

precision of all three proposed methods are quite acceptable.
When compared with ResUNet++, there is an improvement of
1.22% in precision. There are negligible differences in recall,
with ResUNet++ slightly outperforming the others.

D. Results Comparison on ETIS-Larib Polyp DB

Table V shows the results of the proposed models on the
ETIS-Larib Polyp DB. In this case, we do not compare the
results with UNet and ResUNet, but compare the models di-
rectly with ResUNet++ as it already showed superior perfor-
mance on Kvasir-SEG and CVC-ClinicDB [1]. Here, there are
only marginal differences in the results of ResUNet++, “Re-
sUNet++ + CRE” “ResUNet++ + TTA,” and “ResUNet++ +
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TABLE VI
RESULTS ON KVASIR-SESSILE

Method DSC mloU Recall Precision

ResUNet++ [1] 0.4600  0.64086  0.4382 0.5838

ResUNet++ + CRF 0.4522 0.6394 0.4326 0.5708

ResUNet++ + TTA 0.5042 0.6606 0.4851 0.6796

ResUNet++ + TTA + CRF  0.4901 0.6565 0.4766 0.6277
TABLE VI

RESuULTS COMPARISON ON CVC-VIDEOCLINICDB

Method DSC mloU Recall Precision
ResUNet++ [1] 0.8798  0.8730  0.7749 0.6702
ResUNet++ + CRF 0.8811  0.8739  0.7743 0.6706
ResUNet++ + TTA 0.8125 0.8467  0.6896 0.6421
ResUNet++ + TTA + CRF  0.8130  0.8477  0.6875 0.6276

CRF + TTA”. However, ResUNet++ achieves maximum DSC
of 0.6364, which is 0.84% improvement over SOTA [57] and
mloU of 0.7534 which is 18.64% improvement over [57]. The
recall of ResUNet++ is 0.6346, which is slightly higher than
the proposed methods. However, the precision of combining
ResUNet++ and TTA is higher as compared to ResUNet++.
From the results, we can conclude that performance of archi-
tecture is data specific. Our proposed methods outperformed
SOTA over five independent datasets, however, ResUNet++
shows better results than the combinational approaches on
the ETIS-Larib dataset. Still, the precision of combining Re-
sUNet++ and TTA is slightly higher than ResUNet++. It is
to be noted that ETIS-Larib contains only 196 images, out of
which only 156 images are used for training. Even with the
small training dataset, the models are performing satisfactorily
as compared to the SOTA [57] with significant margin in mIoU,
which can be considered as the strength of the algorithm.

E. Results on Kvasir-Sessile

As this is the first work on Kvasir-Sessile, we have compared
the proposed methods with ResUNet++. Table VI shows that
combining ResUNet++ and TTA gives the DSC of 0.5042, and
mloU of 0.6606, which can be considered a decent score on a
smaller size dataset. The dataset contains small, diverse images,
which are difficult to generalize with very few training samples.

F. Results Comparison on CVC-VideoClinicDB

Table VII shows the results of the proposed models on the
CVC-VideoClinicDB. From the results, we can observe that
all models perform well on the dataset despite the fact that
masks are not pixel perfect. One of the reasons for high per-
formance is the presence of 11,954 polyps and normal video
frames that was used in training and testing. The combination
of ResUNet++ and CRF obtained a DSC of 0.8811, mloU of
0.8739, recall of 0.7743, and precision of 0.6706 which is quite
acceptable for the segmentation task with this type of dataset. In
CVC-VideoClinicDB, the ground-truth is marked with an oval
or circle shape. However, it is understandable that pixel-precise
annotations of this dataset will need great manual effort from
expert endoscopists and engineers.

TABLE VI
RESULTS COMPARISON ON ASU-MAYO CLINIC COLONOSCOPY
VIDEO DATABASE

Method DSC mloU Recall Precision
ResUNet++ [1] 0.8743  0.8569  0.6534 0.4896
ResUNet++ + CRF 0.8850  0.8635  0.6504 0.4858
ResUNet++ + TTA 0.8553  0.8535  0.6162 0.4912
ResUNet++ + TTA + CRF  0.8550  0.8551 0.6107 0.4743
TABLE IX
RESULTS COMPARISON USING (KVASIR-SEG + CVC-CLINICDB) AS THE
TRAINING SET
Test set Method DSC mloU Recall Precision
@ ResUNet++ [1] 0.4974  0.6800  0.4787 0.6019
) % ResUNet++ + CRF 0.4920  0.6788  0.4744 0.5636
g % ResUNet++ + TTA 0.5084  0.6859  0.4795 0.5973
0O ResUNet++ + TTA + CRF  0.5061 0.6852  0.4775 0.5770
o  ResUNet++ [1] 0.3460  0.6348  0.2272 0.3383
L 2 ResUNet++ + CRF 0.3552  0.6412  0.2228 0.3065
g S E  ResUNet++ + TTA 0.3573  0.6440  0.2104 0.3338
O3 U  ResUNet++ + TTA + CRF  0.3603  0.6468  0.2068 0.3038

G. Results Comparison on AUS-Mayo ClinicDB

Table VIII shows the results of the proposed models on the
ASU-Mayo ClinicDB. ASU-Mayo contains 18,781 frames, both
polyp and non-polyp images. The combination of ResUNet++
and CRF obtained a DSC of 0.8850 and mloU of 0.8635. As
in the real clinical settings, the models trained on this type of
dataset are more meaningful (as it contains both polyp and non-
polyp frames). The capability to achieve good performance for
these more challenging datasets is one of the strengths of the
proposed method. This is supported by the fact that this dataset
also contains a sufficient amount of images to enable sufficient
training.

H. Results Comparison on Mixed Dataset

To check the performance of the proposed approaches on
the images captured using different devices, we have mixed the
Kvasir-SEG and CVC-ClinicDB and used them for training. The
model were tested on CVC-ColonDB and CVC-VideoClinicDB.
Table IX shows the result of the mixed dataset on both datasets.
The combination of ResUNet++ and TTA obtains a DSC of
0.5084 and mloU of 0.6859 with CVC-ColonDB. The combi-
nation of ResUNet++, CRF, and TTA obtained a DSC of 0.3603
and mloU of 0.6468 with CVC-VideoClinicDB.

From the table, we can see that the combination of Re-
sUNet++, CRF, and TTA performs better or very competitive
with both still images and video frames. Here, it is also evi-
dent that the model trained on the smaller dataset (Kvasir-SEG
and CVC-ClinicDB) which do not include non-polyp images,
is not performing well on larger and diverse datasets (CVC-
VideoClinicDB) that contain both polyp and non-polyp frames.
Additionally, for the CVC-VideoClinicDB datasets, the pro-
vided ground truth is not perfect (oval/circle) shaped. As the
model trained on Kvasir-SEG and CVC-ClinicDB have perfect
annotations, the model is good at predicting a perfectly shaped
mask. When we make predictions on the CVC-VideoClinicDB
with imperfect masks, even if the predictions are good, the scores
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TABLE X TABLE XI
CROSS-DATASET RESULTS USING KVASIR-SEG AS THE TRAINING SET CROSS-DATASET RESULTS ON CVC-CLINICDB AS THE TRAINING SET

Test set Method DSC mloU Recall Precision Test set Method DSC mloU Recall Precision

o ResUNet++ [1] 0.6468 07311  0.6984  0.6510 ResUNet++ [1] 0.6876 07374 07027  0.7354

.8 ResUNet++ + CRF 0.6458 07321  0.6955  0.6425 & ResUNet++ + CRF 0.6877 07389 07004  0.7371

9Oz ResUNet++ + TTA 0.6737 07507  0.7108  0.6833 £ ResUNetr+ + TTA 07218 07616  0.7225  0.7855

OO0  ResUNet++ + TTA + CRF  0.6712  0.7506  0.7078  0.6680 2%  ResUNet++ + TTA + CRF 0.7208 07621  0.7204  0.7831

m  ResUNet++ [1] 04017  0.6415 04412 03925 m  ResUNet++ [1] 0.5489  0.6942 05577  0.5816

.2 ResUNet++ + CRF 04012  0.6427 04379 03755 .2 ResUNet++ + CRF 0.5470  0.6949 05546  0.5727

7 § £ ResUNet++ + TTA 04014  0.6468  0.4294 0.4014 g 2 ResUNet++ + TTA 0.5686  0.7080  0.5702 0.5935

3L  ResUNet+++ TTA + CRE 03997  0.6466 04267 03710 © 3 ResUNet++ + + TTA + CRF 05667 07081  0.5687  0.5773

o ResUNet++ [1] 05135 0.6742 05398  0.5461 FCN-VGG [59] 07023 0.5420 - -

= ResUNet++ + CRF 05122 0.6748  0.5367 0.5285 @ ResUNet++ [1] 04012 0.6398  0.4232 0.4013
OF  ResUNetr+ + TTA 0.5593 07030 05626  0.5944 , 2 ResUNett+ + CRF 03990  0.6403 04191 03974
©8  ResUNet+++ TTA + CRF  0.5563 07024 05595  0.5811 £z ResUNetr++ TTA 04027 06522 03969 04235

@ 3 &  ResUNet++ + TTA + CRF 03973  0.6514 03906  0.4078
@ ResUNet++ [1] 03175 0.6082 02915  0.3299 :

. 5 ResUNet++ + CRF 03334 06185 02862 03141 @ ResUNet++[1] 03666 06422 02568  0.3632
O8E  ResUNetr++ TTA 03505 06337 02601 03488 o o3 ResUNetr++ CRF 0.3788  0.6500 02530 03399
© 50  ResUNet++ + TTA + CRF 03601  0.6402 02555  0.3252 55 E ResUNet++ + TTA 03941 0.6582 02516 0.3829

05T ResUNet++ + TTA + CRF 0.3988  0.6616 02481  0.3542
ResUNet++ [1] 03482 0.6346 02196 0.2021

., ResUNetr+ + CRF 0.3747 06516 02136  0.1797 ResUNet++ [1] 0.2797° 0.6113 0.1627  0.1443

2 2 ResUNet+ + TTA 03823 06583 01962  0.2165 ng  ResUNett o CRE T el o
ResUNet TTA + CRF  0.3950  0.6681  0.1890 0.1781 3 esune -2 : - -
<= TN r AT 25 ResUNet+++TTA + CRE 03233  0.6426  0.1225  0.1270

may not be high because of the difference in the provided ground
truth and the predicted masks.

|. Cross-Dataset Result Evaluation on Kvasir-SEG

For the cross-dataset evaluation, we trained the models on the
Kvasir-SEG dataset and tested it on the other five independent
datasets. Table X shows the results of cross-data generalizability
of ResUNet++ alone, and with the CRF and TTA techniques.
The results of the models trained on Kvasir-SEG produces an
average best mIoU of 0.6817 and an average best DSC of 0.4779
for both image and video datasets. From the above table, we
can observe that the proposed combinational approaches are
performing competitive. For the image datasets, the combination
of ResUNet++ and TTA is performing better, and for the video
datasets, the combination of ResUNet++, CRF, and TTA is
performing best. Itis to be noted that we are training a model with
1000 Kvasir-SEG pixel segmented polyps and testing on (for
example, 11,954 frames) oval-shaped polyp ground truth. Here,
even if the predictions are correct, the evaluation scores will not
be good because of the oval/circle shaped ground truth. More-
over, the datasets such as ASU-Mayo and CVC-VideoClinicDB
are heavily imbalanced, but the model trained on Kvasir-SEG
contains at least one polyp. This may also have caused the poor
performance.

J. Cross-Dataset Evaluation on CVC-ClinicDB

To further test generalizability, we trained the models on
CVC-CliniDB and tested it across five independent, diverse
image and video datasets. Tables XI shows the results of cross-
data generalizability. Like the previous test on Kvasir-SEG, the
results follow the same pattern with the combination of Re-
sUNet++ and TTA outperforming others on the image datasets
and the combination of ResUNet++, CRF, and TTA outperform-
ing its competitors on video datasets. ResUNet++ and TTA still
remain competitive. Moreover, the values of DSC and mloU
of the best model are similar for both the CVC-VideoClinicDB

and the ASU-Mayo Clinic Colonoscopy Video Database. We
have compared the results with the existing work that used
CVC-CliniDB for training and ETIS-Larib for testing. Our
model achieves highest mloU of 0.6522.

K. Result Summary

In summary, from all obtained results (i.e., qualitative, quan-
titative, and ROC curve), the following main observations can
be drawn: (i) the proposed ResUNet++ is capable of segmenting
the smaller, larger, and regular polyps; (ii) the combination of
ResUNet++ with CRF achieves the best performance in terms
of DSC, mloU, recall, and precision when trained and tested
on the same dataset (see Table III, Table VII, and Table VIII)
whereas it remains competitive when tested on other datasets;
(iii) the combination of ResUNet++ and TTA and the com-
bination of ResUNet++, CRF, and TTA performs similar for
the mixed datasets; (iv) the combination of ResUNet++ and
TTA outperforms others on still images; (v) the combination of
ResUNet++, CRF and TTA shows improvement on all the video
datasets compared to ResUNet++; (vi) all the models perform
better when the images have higher contrast; (vii) ResUNet++
is particularly good at segmenting smaller and flat or sessile
polyps, which is a prerequisite for developing an ideal CADx
polyp detection system [1]; (viii) ResUNet++ fails especially on
the images that contains over-exposed regions termed as satu-
ration or contrast (see Fig. 6); (ix) ResUNet and ResUNet-mod
particularly showed over-segmented or under-segmented results
(see Fig. 4).

VI. DISCUSSION
A. General Performance

The tables and figures suggest that applying CRF and TTA
improved the performance of ResUNet++ on the same datasets,
mixed dataset, and cross-datasets. Specifically, the combination
of ResUNet++ and TTA, and the combination of ResUNet++,
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TABLE XII
TOTAL NUMBER OF TRAINABLE PARAMETERS

Model Trainable parameters
U-Net 5,400,289
ResUNet 8,221,121
ResUNet-mod 2,058,465
ResUNet++ 16,228,001

CREF, and TTA are more generalizable for all the datasets, where
TTA with ResUNet++ performs best on the still images, and the
combinations of ResUNet++, CRF, and TTA are outperforming
others on video datasets. For all of the proposed models, the
value of AUC is greater than 0.93. This indicates that our models
are good at distinguishing between the polyp and non-polyps. It
also suggests that the model produces sufficient sensitivity.

The total number of trainable parameters increases by increas-
ing the number of blocks in the networks (see Table XII). How-
ever, in ResUNet++, there is significant performance gain that
compensates for the training time, and our model requires fewer
parameters if we compare with the models that use pre-trained
encoders.

B. Cross Dataset Performance

The cross-data test is an excellent technique to determine the
generalizing capability of a model. The presented work is an
initiative towards improving the generalizability of segmenta-
tion methods. Our contribution towards generalizability is to
train on one dataset and test on several other public datasets
that may come from different centers and use different scope
manufacturers. Thus, we conjecture that to tackle this issue,
out-of-sample multicenter data must be used to test the built
methods. The work is a step forward in raising an issue regard-
ing method interpretability, and we also raise questions about
generalizability and domain adaptation of supervised methods
in general.

From the results analyses, we can see that different proposed
algorithms perform well with different types of datasets. For
instance, CRF outperformed others on tables III, VII, and VIII.
TTA showed improvement on tables IV, IX, X, and XI. CRF
performs better than TTA while trained and tested on video
datasets (see tables VII and VIII). CRF also outperformed TTA
on most of the images dataset. However, TTA still remains
competitive. On the mixed dataset and the cross-dataset test,
TTA performs better than CRF on all the datasets. On the mixed
datasets and on the cross-dataset test on videos, the combination
of ResUNet++, CRF, and TTA remains the best choice (see
tables IX, X, and XI). There is a performance improvement over
ResUNet++ while combining CRF, TTA, and the combination
of CRF and TTA.

However, there is no significant performance improvement of
any methods over the others. From the results, we can observe
that the results are typically data-dependent. However, as the
proposed methods perform well on video frames, it may work
better in the clinic, as the output from a colonoscope is a video
stream. Thus, it becomes critical to show the results with all three
approaches on each dataset. Therefore, we provide extensive

Ground Truth ResUNet++ ResUNet++
+ CRF

ResUNet++ ResUNet++
+TTA CRF + TTA

Image
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Fig.5. Result of model trained on CVC-ClinicDB and tested on Kvasir-
SEG.
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Example images where the proposed models fails on Kvasir-

experiments showing both success (Fig. 4, Fig. 5) and failure
cases (Fig. 6) and present the overall analysis.

C. Challenges

There are several challenges associated with segmenting
polyps, such as bowel-quality preparation during colonoscopy,
angle of the cameras, superfluous information, and varying
morphology, which can affect the overall performance of a DL
model. For some of the images, there even exists variation in the
decision between endoscopists. While ResUNet++ with CRF
and TTA also struggle with producing satisfactory segmentation
maps for these images, it performs considerably better than our
previous model and also outperforms another SOTA algorithm.

The quality of a colonoscopy examination is largely deter-
mined by the experience and skill of the endoscopist [23]. Our
proposed model can help in two ways: (i) it can be used to
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Fig. 7. ROC curve of proposed models on the Kvasir-SEG.
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Fig. 8. ROC curve for all the models trained and tested on CVC-

ClinicDB.

segment a detected polyp, providing an extra pair of eyes to
the endoscopist; and (ii) it performs well on both flat and small
polyps, which are often missed during endoscopic examinations.
The qualitative analysis (see Fig. 4) and the quantitative analyses
from the above tables and figures support this argument. This is
amajor strength of our work and makes it a candidate for clinical
testing.

D. Possible Limitations

The retrospective design is a possible limitation of this study
and prospective studies are essential because less prone to bias.
Prospective clinical evaluation is essential because data analyzed
with the retrospective study is different prospective study (for
example, the case of missing data that should be considered on
the basis of best-case and worse case scenarios) [60]. Also, all
data in these experiments are curated, while a prospective clini-
cal trial would mean testing on full colonoscopy videos. During
model training, we have resized all the images to 256 x 256
to reduce the complexity, which costs in loss of information,
and can affect the overall performance. We have worked on
optimizing the code, but further optimization may exist, that
can potentially improve the performance of the model.

VIl. CONCLUSION

In this paper, we have presented the ResUNet++ architec-
ture for semantic polyp segmentation. We were inspired from
the residual block, ASPP, and attention block to design the
novel ResUNet++ architecture. Furthermore, we applied CRF
and TTA to improve the results even more. We have trained
and validated the combination of ResUNet++ with CRF and
TTA using six publicly available datasets, and analyzed and
compared the results with the SOTA algorithm on specific
datasets. Moreover, we analyzed the cross-data generalizability
of the proposed model towards developing generalizable seman-
tic segmentation models for automatic polyp segmentation. A
comprehensive evaluation of the proposed model trained and
tested on six different datasets showed good performance of
the (ResUNet++ and CRF) on image datasets and (ResUNet++
and TTA), (ResUNet++, CRF, and TTA) model for the mixed
datasets and cross-datasets. Further, a detailed study on cross-
dataset generalizability of the models trained on Kvasir-SEG
and CVC-ClinicDB and tested on five independent datasets,
confirmed the robustness of the proposed ResUNet++ + TTA
method for cross-dataset evaluation.

The strength of our method is that we successfully detected
smaller and flat polyps, which are frequently missed during
colonoscopy examination [20], [61]. Our model can also detect
the polyps that would be difficult for the endoscopists to identify
without careful investigations. Therefore, we conjecture that the
ResUNet++ architecture, along with the additional CRF and
TTA steps, could be one of the potential areas to investigate
further, especially for the overlooked polyps. We also point out
that the lack of generalization issues of the models, which is ev-
idenced by the unsatisfactory result for cross-dataset evaluation
in most of the cases. In the future, our CADx system should
also be investigated on other bowel conditions. Moreover, a
prospective clinical trial needs to be conducted to demonstrate
the usefulness of the proposed system.
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