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Identification of lncRNA Signature Associated
With Pan-Cancer Prognosis
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Abstract—Long noncoding RNAs (lncRNAs) have
emerged as potential prognostic markers in various
human cancers as they participate in many malignant
behaviors. However, the value of lncRNAs as prognostic
markers among diverse human cancers is still under
investigation, and a systematic signature based on
these transcripts that related to pan-cancer prognosis
has yet to be reported. In this study, we proposed a
framework to incorporate statistical power, biological
rationale, and machine learning models for pan-cancer
prognosis analysis. The framework identified a 5-lncRNA
signature (ENSG00000206567, PCAT29, ENSG00000257989,
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LOC388282, and LINC00339) from TCGA training studies
(n = 1,878). The identified lncRNAs are significantly
associated (all P ≤ 1.48E-11) with overall survival (OS) of
the TCGA cohort (n = 4,231). The signature stratified the
cohort into low- and high-risk groups with significantly
distinct survival outcomes (median OS of 9.84 years
versus 4.37 years, log-rank P = 1.48E-38) and achieved a
time-dependent ROC/AUC of 0.66 at 5 years. After routine
clinical factors involved, the signature demonstrated better
performance for long-term prognostic estimation (AUC of
0.72). Moreover, the signature was further evaluated on
two independent external cohorts (TARGET, n = 1,122;
CPTAC, n = 391; National Cancer Institute) which yielded
similar prognostic values (AUC of 0.60 and 0.75; log-rank
P = 8.6E-09 and P = 2.7E-06). An indexing system was
developed to map the 5-lncRNA signature to prognoses of
pan-cancer patients. In silico functional analysis indicated
that the lncRNAs are associated with common biological
processes driving human cancers. The five lncRNAs,
especially ENSG00000206567, ENSG00000257989 and
LOC388282 that never reported before, may serve as viable
molecular targets common among diverse cancers.

Index Terms—lncRNA, pan-cancer, prognosis, machine
learning.

I. INTRODUCTION

IN THE precision medicine era targeted molecular therapy is
the main strategy for the management of cancer patients. Re-

cent basket and umbrella trials demonstrate that actionable muta-
tions are considered as an important predictor of tumor response,
and the same molecular alteration can be effectively controlled
across different cancers [1]. Hence, a deep understanding of the
molecular events which underlie various biological behaviors is
increasingly needed.

LncRNAs are transcripts longer than 200 nucleotides encoded
by the genome without protein translation potential [2]. More
than 75% of transcripts in the genome are noncoding RNAs
[2], [3]. Increasing evidence indicates that lncRNAs function as
critical mediators for many aggressive biological behaviors in
human cancers [4]–[8]. For example, HOX antisense intergenic
RNA (HOTAIR) has been found to be critical in driving mul-
tiple malignant behaviors, such as proliferation, migration and
invasion, suppression of drug response, and genomic instability
[9]. Several studies have also identified the prognostic value
of lncRNAs in human cancers [10], [11]. In particular, the
lncRNA PCA3/DD3 is uniquely expressed in prostate cancer
tissues compared to normal tissues and has already been tested

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0669-6358
https://orcid.org/0000-0001-7160-5929
https://orcid.org/0000-0001-7160-5929
https://orcid.org/0000-0002-0878-0211
https://orcid.org/0000-0001-7160-5929
https://orcid.org/0000-0001-7160-5929
https://orcid.org/0000-0002-0878-0211
mailto:guoqing.bao@sydney.edu.au
mailto:xiu.wang@sydney.edu.au
mailto:xrqssq@126.com
mailto:jijx_sdu@163.com
mailto:402861939@qq.com
mailto:467621765@qq.com
mailto:huangbin_sdu@qq.com
mailto:caj669@qq.com
mailto:dzhang1982@hotmail.com
mailto:wangxinyu@sdu.edu.cn
mailto:lixg@sdu.edu.cn
mailto:wanglinlinatjn@163.com
mailto:kongbeihua@sdu.edu.cn
mailto:qifengy_sdu@163.com
mailto:yuancunzhong@126.com
mailto:jian.wang@uib.no


2318 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 6, JUNE 2021

as a biomarker in clinical settings [12]. Such studies provide
convincing evidence for the identification of a lncRNA-based
signature that associated with the prognosis of multiple can-
cers. However, a single lncRNA is not sufficient to reflect the
complexity of cancer biological behaviors. Therefore, a study
focused on the expression patterns of several lncRNAs could be
more accurate and informative.

The Cancer Genome Atlas (TCGA) consists of original se-
quencing data from various sources, provides the opportunity
to perform integrated studies on the commonalities and differ-
ences between diverse cancers. This multi-cancer (pan-cancer)
approach to the analysis of such datasets has accelerated the
study of the disease and improved treatment efficacy for dif-
ferent types of human cancers [13]–[15]. Through analysis of
large-scale TCGA datasets, multiple lncRNAs have been identi-
fied as critical factors in gene regulatory network perturbations
[16]. Besides, hundreds of lncRNAs have been proposed to
be involved in oncogenic genes and pathways in each tumor
context [17] and mounting evidence from the study of individual
cancers has also established lncRNAs as cancer-specific prog-
nosis predictors [18]–[20]. Although lncRNAs are commonly
seen as dysregulated in a tumor-specific manner, a recent study
demonstrated that some of the lncRNAs involved in multiple
tumor contexts [21]. Studies of the lncRNA-disease association
also suggested that similar diseases tend to be associated with
functionally similar lncRNAs [22], [23]. Recent studies provide
further justification for the importance of cancer prognosis in
the field of pan-cancer research [24]–[26]. Meanwhile, another
research group established a seven-gene signature for the predic-
tion of patient prognosis in 13 cancer types [27]. However, the
potential lncRNAs as pan-cancer prognostic markers have not
yet been rigorously tested. Such results might provide insight
into the biological processes involved in cancer initiation and
development shared by many different human cancers.

Therefore, the main objective of this study is to identify
pan-cancer prognostic lncRNAs that related to common and
critical biological processes driven diverse human cancers. To
do that, we propose a pan-cancer prognosis analysis framework
by incorporating statistical power, biological rationale, and ma-
chine learning model as a whole biomarker identifier. As a result,
the framework identified five prognostic lncRNAs associated
with overall survival (OS) of pan-cancer studies. An indexing
system was developed to map lncRNA signature to the OS of
different types of cancer studies. A 5-lncRNA risk score model
was established which stratified patient studies into high- and
low-risk groups with significantly distinct survival outcomes.
The prognostic power of the five lncRNAs and the risk score
model was further validated in the testing dataset and another
two independent cohorts. Functional analysis revealed potential
underlying functions of these lncRNAs associated with common
and critical cellular processes that drive human cancers. Gene
enrichment and qPCR analyses identified ENSG00000206567
associated with gynecologic cancers.

II. MATERIALS AND METHODS

An overview of our pan-cancer prognosis analysis framework
is illustrated in Fig. 1.

A. Data Acquisition and Study Design

There is a total of 731 lncRNAs reported by TCGA for
pan-cancer analysis (4,266 cancer studies covered). The cor-
responding RNA-seq data (normalized by the FPKM method
[28]) and clinical information were downloaded from the TCGA
data portal (https://portal.gdc.cancer.gov/). After the exclusion
of 35 cases without complete survival information, a total of
4,231 patients with a broad range of cancer types (n = 33) were
enrolled in our study (TCGA cohort), Supplementary Table S1.
To identify the prognostic lncRNAs related to multiple cancers,
a study cohort (n = 2,210), which stratified into 85% cases
for training/cross-validation (n = 1,878) and 15% for testing
(n = 332), was identified from the TCGA cohort based on
prognosis distribution (cutoff of 3.5 y to stratify the better
and poor prognosis patients, Supplementary Table S2). The
training data was used for the identification of prognosis-related
lncRNAs, the test data was utilized to estimate the prognos-
tic effectiveness, and the overall TCGA cohort was served as
internal validation. Besides, another two independent cohorts,
i.e. Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) and Clinical Proteomic Tumor Analy-
sis Consortium (CPTAC), which provided by National Cancer
Institute (NCI), contain 23 different types of cancer studies
were further collected. Similarly, patient data without survival
information were excluded and the remaining patient studies,
i.e. TARGET (n = 1,122) and CPTAC (n = 391) cohorts, were
used for external validation. In addition, three routine clinical
parameters, including age at diagnosis, gender, and tumor stage,
were included as co-variables.

B. Screening of Prognostic LncRNAs Associated With
Pan-Cancer Prognosis

As shown in Fig. 1(a), statistical power is incorporated with
machine learning models for identification and evaluation of
independent prognostic lncRNAs, which contains three major
steps:

1) Machine learning-Driven Stepwise Feature Selection
(MLSFS): A stepwise feature selection method, namely Recur-
sive feature elimination with cross-validation (RFECV) [29],
[30], was used to identify the candidate lncRNAs for prognosis
prediction. RFECV is a self-contained algorithm equipped with
cross-validation and can work independently without human
intervention once configurated properly, thus reduce the inter-
observer variability and improve reproducibility and stability.
The method is composed of two layers with Recursive Fea-
ture Elimination (RFE) as an inner layer being embedded in
Cross-Validation (CV) as an outer layer. The outer CV layer
consists of n folds of cross-validations. In each fold, the input
data is first stratified into train/validation pairs, and then for
each iteration in the inner RFE layer, Random Forest (RF)
[31] assigns importance for lncRNAs (features) according to its
internal decision trees. The least important feature is eliminated
based on the feature importance. The trained RF is estimated
on the validation data to calculate the performance score of
the remaining features. Based on the performance scores of
CV folds, the feature combination that achieves the maximum
average accuracy score is chosen as optimal features. Finally,

https://portal.gdc.cancer.gov/
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Fig. 1. Flowchart of the pan-cancer prognosis analysis framework. (A) Independent prognostic lncRNAs were identified through statistical and
machine learning (ML) combined analysis (SMLCA) from TCGA training data. MLSFS: ML-based stepwise feature selection. (B) Prognostic value
of lncRNAs was evaluated on the test dataset and overall TCGA cohort. (C) 5-lncRNA risk score model was developed and prognostic power
of lncRNA signature was further validated on another two independent external cohorts. (D) Functional analysis identified the lncRNA signature
associated with common and critical cellular processes that drive human cancers; gene enrichment analysis found one of the lncRNAs associated
with gynecologic cancers, and qPCR analysis suggested that it was differentially expressed in pan-gynecologic tumor and normal tissue pairs.

the previous output served as the data source for the next-round
of RFECV until the number of features was invariant, which
yielded the candidate lncRNAs for further analysis.

2) Selection of Independent Prognostic LncRNAs With Sta-
tistical Analyses: We used coxph, a function in R survival pack-
age, to compute the Cox proportional hazards regression mod-
els, which measures the association between the survival time
of cancer studies and one (Univariate) or more (Multivariate)
predictor lncRNAs. Univariate Cox regression analyses were
first performed for each of the candidate lncRNAs. Statistically
significant lncRNAs (P < 0.05) in Univariate analyses were
further evaluated with Multivariate Cox regression analyses
where gender, age at diagnosis, and tumor stage were included
as covariables. Prognostic lncRNAs identified by significant
Hazard Ratio (HR) (|HR− 1| ≥ 0.1) were finally subjected to
Kaplan-Meier survival analyses to compute the survival proba-
bility over time, from which patient studies were separated into
high and low expression groups based on their median values.
The lncRNAs that exhibited significant survival difference (log-
rank test P< 0.001) for the two expression groups were selected.
In this work, HR measures the relative risk ratio of candidate
lncRNAs. HR > 1: risk factor, HR < 1: protective factor, and
HR = 1: not a valuable factor.

3) Evaluation With the Machine Learning Model: RF was
introduced as the prognostic performance estimator. The su-
pervised machine learning model leveraged multiple decision
trees for ensemble voting and reduced the classification variance

through training on different parts of the training data [32]. A fea-
ture bagging technique was integrated to generate higher model
performance by selecting a random subset of the features in each
iteration [33]. The classifier was implemented using the scikit-
learn library (https://scikit-learn.org/) in the present study. To
tune the optimal hyperparameters, 5-fold nested cross-validation
was adopted which partitioned the training/cross-validation data
(n = 1,878) into 4:1 held-out dataset pairs. In the inner loop,
each iteration (fold) further used additional cross-validation
to search hyperparameters and fit the model. The following
hyperparameters were tuned due to their superior performance
under the nested cross-validation: a total of 1000 trees in the
forest, with the maximum depth of the tree = 8, where samples
to split an internal node are ≥ 25 and samples at a leaf node are
≥ 4.

The predictive performances of identified lncRNAs, three
clinical factors, or their combination were further evaluated
and compared on the test set (n = 332) after the model was
trained on full training/cross-validation data using the identified
hyperparameters.

C. Mapping of LncRNA Signature To Patient Prognosis

The study cohort was stratified into high- (H) and low-
expression (L) groups based on the median expression val-
ues of the corresponding lncRNAs (Supplementary Table S3).
There are 2n possible expression permutations for the signature
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(which composed of n lncRNAs). The relationship among the
pan-cancer studies, permutations of the lncRNA signature, and
corresponding patient survival outcomes were visualized in a
Sankey diagram. The diagram was constructed using the Python
plotly library.1

D. Construction of Prognostic Signatures and
Performance Validation

The overall TCGA cohort was stratified into low- and high-
expression subgroups based on the median expression value of
each identified lncRNA. The prognostic value of each lncRNA
was first evaluated by conducting Kaplan-Meier analysis and
log-rank tests on different subgroups.

Two risk score systems were then derived to estimate patient
mortalities based on identified lncRNA signature and hybrid sig-
nature (composed of lncRNA and clinical factors) respectively,
as follow:

RiskScore =

n∑

k=1

Coef(factork) ∗ V al(factork) (1)

where Coef is the coefficient of risk factor k (lncRNA or clinical
factor) measured by multivariate Cox regression analyses; Val
is the value of the risk factor k; n is the number of factors.

To evaluate the prognostic significance of the signature, the
overall TCGA cohort was stratified into low- and high-risk
subgroups based on the median risk score. The prognostic values
of the signature were measured by Kaplan-Meier analysis and
the log-rank test. Time-dependent ROC/AUCs at three, five, and
ten years were then calculated. Similar measurements were also
conducted on another two external datasets to further validate
the effectiveness of identified signature on different platforms.

E. Analysis of LncRNA Functions and Their Correlation
With Clinical Factors

Spearman correlation coefficients were computed to measure
the correlation between each identified lncRNA and genome-
wide RNA-Seq profiles (the other 60,482 genes). Genes that
correlated with at least one of the lncRNAs in the TCGA cohort
(Spearman correlation coefficients> 0.40 or< -0.30) were iden-
tified as co-expressed genes and enrolled in the functional en-
richment analyses. The coefficient thresholds were determined
under consideration of numbers reported in the literature as well
as the characteristics of the datasets [34], [35]. The analyses
were performed using an online gene annotation and analysis
platform, named Metascape.2

The correlation between lncRNA and other clinical factors,
including gender, cancer tissue of origin, age at diagnosis and
tumor stage, was evaluated using annotated heatmaps based on
RNA-Seq data of the TCGA cohort, Fig. 1(d). The co-expressed
genes included in this analysis were selected using the same
standard as in the functional analysis mentioned above. Patient
molecular data and their corresponding clinical parameters were

1[Online]. Available: https://plot.ly/
2[Online]. Available: http://metascape.org

accordingly sorted, and thereby, the correlation between the
target lncRNA and the clinical factors can be observed.

Differential lncRNA(s) was evaluated by quantitative real-
time polymerase chain reaction (qRT-PCR) using additional
tissue sections (provided and approved by the Medical Ethics
Committee of Qilu Hospital, Shandong University; consent was
received from all involved subjects).

F. Statistical Analysis

Univariate and multivariate Cox proportional hazard regres-
sion analyses were performed to measure the association be-
tween lncRNAs (and/or clinical parameters) and patient overall
survival. HR was calculated to measure the prognostic impact
of various factors and a 95% confidence interval (CI) was used
to indicate the precision of the estimated HR. Kaplan-Meier
survival analyses were conducted to measure the overall survival
difference between risk groups. The log-rank test was performed
to evaluate the statistical significance. Time-dependent ROC
analysis [36], which is used to assess the predictive power of
diagnostic markers for time-dependent disease outcomes, was
used to measure the predictive performance of the identified
lncRNAs.

III. RESULTS

A. Screening of Independent Prognostic LncRNAs

The MLSFS method yielded 26 candidate lncRNAs that as-
sociated with OS in TCGA training studies under no clinical
variables considered. After subjected to statistical analyses,
ZNF883, ENSG00000277476, and PVT1 were first filtered as
they were not significantly associated with OS in univariate
Cox regression analyses (light gray, Table I). Next, clinical
covariables were enrolled and 11 lncRNAs were further re-
moved based on HR (|HR − 1| < 0.1) calculated in multivariate
Cox regression analysis (dark gray, Table II). Kaplan-Meier
survival analysis identified ENSG00000226380, FOXM1, and
LINC02637 as insignificant factors to stratify different risk
groups (light gray, Table II). In the second-round MLSFS,
MEG8, MIR3142HG, and MIR4435-2HG were excluded be-
cause they did not emerge as significant factors in ML models
once clinical features were involved. Although MEG3 exhibited
prognostic significance, the lncRNA was not considered since it
was a known prognostic biomarker in multiple cancers reported
in the public literature (public domain knowledge). Thus, the
signature associated with pan-cancer prognosis identified in this
study is composed of five lncRNAs, i.e. ENSG00000206567,
PCAT29, ENSG00000257989, LOC388282, and LOC388282.

B. Mapping of 5-lncRNA Signature to Patient Prognosis

The signature composed of five distinct lncRNAs and thus has
25 possible permutations if each lncRNA was stratified into high
(H) and low (L) expression levels using the median value as cut-
off (Supplementary Table S3). A Sankey diagram was developed
to visualize the relationship between lncRNA signature (repre-
sented as 32 expression permutations or 5-lncRNA phenotypes)
and patient prognosis in the study cohort, as shown in Fig. 2.

https://plot.ly/
http://metascape.org
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Fig. 2. Map 5-lncRNA signature to patient prognosis. The left half diagram maps cancer studies to their lncRNA signatures (5-lncRNA pheno-
types). The right half diagram maps lncRNA signatures to survival outcomes. H, high expression. L, low expression. Each permutation of the
signature represents the expression levels of ENSG00000206567, PCAT29, ENSG00000257989, LOC388282, and LINC003393 (from the left to
the right), middle panel.

TABLE I
RESULTS OF UNIVARIATE COX REGRESSION ANALYSIS

Gray color: lncRNAs filtered.

The right part of the diagram can be consulted independently,
for example, the majority of patients with lncRNA phenotypes
HHHLH, HHHLL, HHLLH (favorable phenotypes) related to
better prognosis, whereas, patients with LLHHL and LLLHL

TABLE II
RESULTS OF MULTIVARIATE COX REGRESSION AND KAPLAN-MEIER

SURVIVAL ANALYSIS

Dark gray: lncRNAs filtered by Multivariate Cox regression; Light gray: lncRNAs filtered
by Kaplan-Meier analyses

have poorer prognosis. The most valuable phenotypes located
at the outer edges of the diagram. Observed from the left part of
the diagram, there is more percentage of patients with BRCA,
UCEC or SKCM mapped to favorable lncRNA phenotypes
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compared to patients with HNSC, which represents patients
with the first three cancer types tended to have better overall
prognosis than patients with HNSC. This result is consistent
with the literature [37]–[39], i.e. BRCA, UCEC, and SKCM
patients have a much higher five-year survival rate (>90%, 90%,
and 92% respectively) compared to HNSC (50%). Besides, we
found patients with LUSC and LUAD, which unlike BRCA,
UCEC, SKCM, and HNSC, etc., are not densely mapped to any
specific lncRNA phenotypes, which indicates the prognoses of
LUSC and LUAD patients are more heterogeneous, this finding
is supported by recent research studies [40], [41]. The prognos-
tic value gradually declined with the phenotype arrangements
approaching the center of the diagram.

C. Prognostic Performance of The 5 LncRNAs on Test
Data

The RF model with the 5-lncRNA signature demonstrated a
prognostic AUC performance of 0.714 on the test data, which
is significantly superior to the predictive performance of routine
clinical factors (AUC of 0.656), Fig. 3(a). After the combination
of the 5-lncRNA signature with clinical parameters, the model
yielded a classification AUC of 0.758 for differentiation of
better vs. poor prognosis in test studies, Fig. 3(a). These results
indicated that the signature exhibited good discrimination and
calibration.

D. Construction of 5-lncRNA Risk Score Model and
Validation on Overall TCGA Cohort

The five lncRNAs were found all significantly associated
with OS (log-rank test P ≤ 1.48E-11) of the TCGA co-
hort (n = 4,231), Fig. 3 B-F. ENSG00000206567, PCAT29,
ENSG00000257989, and LINC00339 tended to be the protec-
tive factors since their high expressions were related to longer
survival (Fig. 3 B-D and F), whereas LOC388282 might be a
risk factor because its high expression was associated with poor
prognosis (Fig. 3(e)).

The relative contributions (coefficients) of the five prognostic
lncRNAs to OS were derived from multivariate Cox regression
measured in the study cohort. A 5-lncRNA risk score model
was established and applied on entire TCGA cohort through
integrating the obtained coefficients and gene expression values,
as follow: Risk score= exp(ENSG00000206567) ∗ −0.141 +
exp(PCAT29) ∗ −0.761 + exp(ENSG00000257989) ∗
−0.124 + exp(LOC388282) ∗ 0.111 + exp(LINC00339) ∗
−0.030. As a continuous variable, 5-lncRNA risk score was
found significantly associated with OS of TCGA patients
(HR = 2.732, 95% CI = 2.332-3.202, P = 1.63E-35). The
overall TCGA studies were stratified into two risk groups using
the median risk score as cutoff and Kaplan-Meier analysis
demonstrated patients’ OS in the low-risk group is significantly
better than the high-risk group (median OS of 9.84 versus 4.37
years, log-rank test P = 1.48E-38), Fig. 4(a). Time-dependent
ROC analysis showed that the score model achieved AUC of
0.66 at five years (95% CI: 0.632-0.684), which is relatively
higher than three (AUC of 0.64) and ten years (AUC of 0.63),

Fig. 3. Prognostic performance of 5 lncRNAs on TCGA cohort. (A)
ROC/AUC performance of RF model for differentiation of better and poor
prognosis on TCGA test data. (B-F) Kaplan-Meier analysis on overall
TCGA studies (n = 4,231) based on expression of ENSG00000206567
(B), PCAT29 (C), ENSG00000257989 (D), LOC388282 (E), and
LINC00339 (F). The high- and low-expression were assigned based
on their median expression values (Supplementary Table S3). P values
were calculated by two-sided log-rank tests.

Fig. 4. Predictive performance of 5-lncRNA risk score model on TCGA
cohort. (A) Kaplan-Meier analysis for patient OS with high- and low-risk
groups. (B) Time-dependent ROC analysis based on 5-lncRNA signa-
ture (red line) and 5-lncRNA + 3 clinical factors (blue line).
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Fig. 5. Predictive performance of 5-lncRNA risk score model on external cohorts. (A) Time-dependent ROC analysis on TARGET and CPTAC
cohorts based on 5-lncRNA signature. (B, C) Kaplan-meier analysis for patient OS with high- and low-risk groups in TARGET (B) and CPTAC (C)
cohort studies.

Fig. 4(b). The signature also demonstrated good prognostic
performance on individual cancers (Supplementary Table S4).

Combined with gender, age at diagnosis and optional tumor
stage, the hybrid risk score model achieved a higher time-
dependent ROC/AUC of 0.718 (95% CI: 0.677-0.760) for long-
term (ten years) risk estimation but no significant boost in three
(AUC of 0.68) and five years (AUC of 0.67), Fig. 4(b). Similarly,
the hybrid model stratified patient studies into two risk groups
with distinct survival outcomes (median OS of 11.86 years in
the low-risk group compared with 4.22 years in the high-risk
group, log-rank test P = 4.86E-51).

E. Validation of 5-lncRNA Risk Score Model on Another
Two Independent External Cohorts

The risk score model was further applied on TARGET (n
= 1,122) and CPTAC (n = 391) cohorts using the coefficients
derived from the TCGA study cohort. The lncRNA risk score
achieved HR of 2.393 (95% CI: 1.611-3.553, P = 1.53E-05)
on TARGET and 1.922 (95% CI: 1.436-2.572, P = 1.121E-05)
on CPTAC. The two external cohorts were stratified into high-
and low-risk groups respectively. Time-dependent ROC analysis
showed that the lncRNA model achieved AUC of 0.60 at three
years and 0.59 at five years respectively on TARGET, and
AUC of 0.75 at three years on CPTAC cohort (5-year AUC
could not be calculated due to uneven survival distribution),
Fig. 5(a). Kaplan-Meier analyses showed the two risk groups
in CPTAC and TARGET demonstrated significantly different
survival outcomes respectively (log-rank test P = 8.61E-09 and
P= 2.68E-06), Fig. 5 B-C. The performance of the hybrid model
(lncRNA with clinical factors) was not presented here since no
sufficient clinical parameters, especially age at diagnosis and
tumor stage, provided in the two datasets.

F. Identification of Biological Processes Associated With
the Lncrna Signature

By computing Spearman correlation coefficients between
lncRNA signature and genome-wide RNA-Seq data in the
TCGA cohort, a total of 1,299 positively or negatively genes
were found correlated with at least one of the five lncRNAs in

our signature. Functional and pathway analyses showed those
co-expressed genes with prognostic lncRNAs were significantly
enriched in 215 GO terms and 18 KEGG pathways (Log10(P)
< -2 or P < 0.01), which mainly involved in cilium move-
ment and organization, cell projection, lymphocyte activation,
T cell activation and differentiation, cellular response, primary
immunodeficiency, and metabolic processes of xenobiotic, drug,
flavonoid, hormone, retinoic acid and so on (Table III).

Next, we thoroughly investigated each top enriched GO term
or KEGG pathway in relation to cancer from public literature.
We found some of the functions including cilium movement and
organization [42]–[45], lymphocyte activation and differentia-
tion [46]–[50], T-cell activation and differentiation [51]–[55],
flavone metabolic process [56], [57], cytokine production [58]–
[61], terpenoid metabolic process [62], [63], and regulation of
leukocyte cell-cell adhesion [64], [65] are fundamental to cancer
initialization and progression and related to pan-cancer, whereas
others like microtubule formation and movement [66]–[68], in-
ner dynein arm assembly [69], xenobiotic glucuronidation [70],
[71], regulation of cell-cell adhesion [72]–[75], mammary gland
branching [76], hormone metabolic process [77]–[79], leukocyte
differentiation [80], [81] and retinoic acid metabolic process
[82]–[84] are associated with specific cancer types (Table III). In
contrast, functions like xenobiotic metabolic process [85], [86]
and positive T-cell selection [87] are suspected to be related to
cancer whereas cell projection assembly, flavonoid glucuronida-
tion, and metabolic process, cellular glucuronidation and cellular
response to lipid are yet to be explored in-depth.

Top enriched pathways are also related to diverse human
cancers and are critical in cancer progression and treatment,
for example, drug metabolism affects multidrug resistance and
chemotherapy in cancer [88], chemical carcinogenesis is a major
reagent in the etiology of cancer [89], [90], ECM-receptor
interaction is involved in six critical cancer hallmarks [91], [92]
and patients with primary immunodeficiency are at increased
risk to develop certain cancers [93], [94]; ascorbate and aldarate
metabolism and cytokine-cytokine receptor interaction are re-
lated to clinical outcomes of colorectal cancer and recurrence
of childhood acute lymphoblastic leukemia [95]–[97]; steroid
hormone biosynthesis was identified as critical targets for breast
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TOP ENRICHED GO TERMS AND KEGG PATHWAYS RELATED TO LNCRNA SIGNATURE

and prostate cancer therapy [98], [99]; hematopoietic stem cell
approach was recently used in cancer immunotherapy [100],
[101]. More interestingly, the co-expressed genes are also en-
riched in Malaria and Chagas disease pathways (Table III).

G. Association Between ENSG00000206567 and
Gynecologic Cancers

Expression patterns of the five lncRNAs were investi-
gated through the identification of co-expressed genes of each
lncRNA from the entire TCGA cohort and ranking the studies
according to corresponding lncRNA expression value. Such

gene enrichment analysis was used to determine whether gene
expression patterns plotted according to specific lncRNA were
associated with any clinical factors, including age at diagnosis,
gender, cancer type, and so on. Genes positively correlated with
ENSG00000206567 displayed relatively higher expression in
gynecologic cancers (also known as female reproductive system
cancers), including ovarian (OV), uterine corpus endometrial
cancer (UCEC), cervical squamous cell carcinoma (CESC),
and breast cancer (BRCA), rather than in other human cancers
(heatmap in Fig. 6A). However, no such significant correlation
was observed for the other four lncRNAs (data not shown
here).



BAO et al.: IDENTIFICATION OF LncRNA SIGNATURE ASSOCIATED WITH PAN-CANCER PROGNOSIS 2325

Fig. 6. ENSG00000206567 is associated with gynecologic cancers.
(A) Correlation between the co-expressed genes of ENSG00000206567
and clinical factors. Rows represent co-expressed genes of
ENSG00000206567, which include 560 positively correlated genes
(upper half) and 130 negatively correlated genes (lower half); whereas
columns denote 4,231 tumor studies covered 33 cancer types in overall
TCGA cohort. Patient cases are ranked according to their expression
of ENSG00000206567 (from low to high or from left to right). The
upper second to fifth rows of the heatmap are corresponding to clinical
factors. FRC, female reproductive cancers (or gynecologic cancers).
(B-C) ENSG00000206567 is deferentially expressed in breast (B) and
cervical (C) cancer and normal tissue pairs.

To further validate this finding, qRT-PCR was conducted
using RNAs isolated from breast and cervical tumors and nor-
mal tissue pairs. Total RNA was isolated with TRIzol Reagent
(Thermo Fisher Scientific; Waltham, MA, USA) following the
manufacturer’s instructions. cDNA was synthesized from total
RNA (2 µg) using a reverse transcription kit (Toyobo Life
Science; Osaka, Japan). qPCR was performed in triplicate
using 1 µL of cDNA in a standard SYBR Premix Ex Taq
(Roche; Pleasanton, CA, USA) on a Real-Time PCR Detection
System (480II, Roche). As a result, ENSG00000206567 was
found deferentially expressed in tumor and normal tissue pairs
(Fig. 6(B)–C)).

IV. DISCUSSION AND CONCLUSION

Along with the improvement of sequencing techniques,
more meaningful noncoding transcripts have been identified as

underlying drivers in human cancers [102]–[104]. LncRNAs,
the “dark matter” of the non-coding family, have been gradually
identified as cancer prognostic predictors and proposed to be
therapeutic targets in recent years [11], [105]. In our present
work, statistical and machine learning combined analysis en-
abled us to identify and validate lncRNA biomarkers from
pan-cancer studies. The 5-lncRNA risk score model stratified
cancer studies into high- and low-risk groups with significantly
distinct survival outcomes. An indexing system was developed
to illustrate the relationship between 5-lncRNA signature and
OS of different types of cancer patients. The lncRNA signature
demonstrated superior predictive performance than clinical fac-
tors and achieved more accurate longer-term (10 years) mortality
prediction after combined with gender, age at diagnosis and
tumor stage.

The signature was found associated with characteristics and
processes fundamental to human cancers. To a large extent, this
relationship supports the signature as a pan-cancer prognostic
biomarker. For example, extracellular matrix (ECM) receptor
interaction [106], cilium organization [107] and T cell activation
[108] were related to positively co-expressed genes of our signa-
ture, whereas xenobiotic metabolism [109], [110], inflammatory
response [111], and cell adhesion regulation [112] correlated
to negatively co-expressed genes. ECM and its receptors have
been demonstrated to be involved in all six hallmarks of human
cancers [91], including resistance to cell death, induction of
angiogenesis, replicative immortality, invasion and metastasis,
loss of growth suppression and dysregulated proliferation [113].
The 5-lncRNA signature might, therefore, be a molecular refer-
ence for understanding the interplay between ECM, and cancer
and stromal cells which might be critical for cancer prevention
[91]. The correlation with primary immunodeficiency, T cell
activation, inflammatory response, and drug metabolism also
implicates a role in the immune response to cancer [114]. The
prognosis of cancer patients has been linked to the activation
status of innate T cells which is the front line of host defense
against cancer [115]. Malaria and Chagas disease were found
associated with cancer [116]–[119]. The relation to Malaria
and Chagas disease pathways indicates the lncRNA signature
identified from the pan-cancer scenario captures shared charac-
teristics that drive diverse human diseases. This may facilitate
drug repurposes, for example, Weyerhäuser et al. repurposed
antimalarial chloroquine for treatment of glioblastoma [119] and
Kraus et al. used anti-cancer drugs to treat Chagas disease [118].
Functional and tissue studies are needed, however, to determine
their exact role in these cellular processes.

There are considerable difficulties for the identification of
prognostic biomarkers in the pan-cancer scenario due to cancer-
specific context and cancer subtype in the clinic, however, the
interdisciplinary research collaborations among computer scien-
tists, biologists, and clinicians empower the capacities and op-
portunities in searching prognostic predictors common effective
among multiple cancers. With the help of artificial intelligence,
bioinformatics analysis, and multi-center genomic databases,
recent achievements in this field further ascertain the signifi-
cance and viability of research on lncRNAs with pan-cancer
prognostic significance. For instance, a recent study investigated
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the unique molecular features common to pan-gynecologic can-
cers and related them with the prognosis of 2,579 patient stud-
ies [120]. Another research investigated lncRNAs with cancer
patient prognosis by identification of survival-related lncRNAs
in multiple-cancer context [121]. This study demonstrates the
great value of pan-cancer research for capturing shared charac-
teristics among cancer-specific prognostic markers. Rather than
conflicting with cancer-specific prognosis, the investigation of
the pan-cancer prognosis opens up a new perspective for a better
and more complete understanding of the cancer mechanisms.

In conclusion, we identified prognostic lncRNAs that signif-
icantly associated with the OS of pan-cancer studies by inno-
vatively combining the machine learning model and traditional
statistical analysis as a whole biomarker identifier. Although it
requires intensive computing power, the proposed framework is
a new, streamlined, and intuitive pan-cancer analysis approach,
which can be easily understood and implemented. Besides,
the lncRNA signature identified with the framework is robust,
independent of clinical factors, and demonstrated significant
prognostic value on different pan-cancer cohorts and cancer
types. With the framework, as far as we know, it is the first time
to map lncRNA expression profiles to patient prognosis across
multiple cancer types. The lncRNA indexing system and the risk
score model may provide insights to develop a “cancer prognosis
screening” tool. Meanwhile, the identified lncRNAs are found
associated with common biological processes fundamental for
cancer initialization and progression, and the majority of them
have never reported before which may serve as novel molecular
targets for therapy and show efficacy across a broad spectrum
of human cancers.

V. DATA AVAILABILITY AND EXPERIMENT REPRODUCIBILITY

All the data used in our study can be downloaded from
the TCGA data portal3 using the official GDC Data Transfer
Tool. The computer code used in this study and supplementary
material have been released at: https://github.com/guoqingbao/
PanCancerLncRNA.
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