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Multiscale Attention Guided Network for
COVID-19 Diagnosis Using Chest X-Ray Images

Jingxiong Li , Yaqi Wang , Shuai Wang , Jun Wang, Jun Liu , Qun Jin , and Lingling Sun

Abstract—Coronavirus disease 2019 (COVID-19) is one
of the most destructive pandemic after millennium, forcing
the world to tackle a health crisis. Automated lung infec-
tions classification using chest X-ray (CXR) images could
strengthen diagnostic capability when handling COVID-19.
However, classifying COVID-19 from pneumonia cases us-
ing CXR image is a difficult task because of shared spatial
characteristics, high feature variation and contrast diver-
sity between cases. Moreover, massive data collection is
impractical for a newly emerged disease, which limited the
performance of data thirsty deep learning models. To ad-
dress these challenges, Multiscale Attention Guided deep
network with Soft Distance regularization (MAG-SD) is pro-
posed to automatically classify COVID-19 from pneumonia
CXR images. In MAG-SD, MA-Net is used to produce pre-
diction vector and attention from multiscale feature maps.
To improve the robustness of trained model and relieve
the shortage of training data, attention guided augmenta-
tions along with a soft distance regularization are posed,
which aims at generating meaningful augmentations and
reduce noise. Our multiscale attention model achieves bet-
ter classification performance on our pneumonia CXR im-
age dataset. Plentiful experiments are proposed for MAG-
SD which demonstrates its unique advantage in pneumonia
classification over cutting-edge models. The code is avail-
able at https://github.com/JasonLeeGHub/MAG-SD.

Index Terms—COVID-19, x-ray radiology, multiscale
attention, convolutional neural network.
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I. INTRODUCTION

THE coronavirus disease 2019 (COVID-19) caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is one of the most devastating infectious diseases after
millennium [1]. This new type of coronavirus is announced
in late December, 2019, then spread globally in 2020. It has
been declared as a pandemic by World Health Organization
(WHO) according to its high contagiosity and unprecedented
pressure bought to public healthcare system [2]. The current
gold-standard for screening COVID-19 is polymerase chain
reaction (PCR) laboratory test, however, the test capacity is
extremely limited and requires professional equipment [3]. [4]
also reports that PCR tests suffers from high false negative rate.

Radiological images collected by X-ray and computed to-
mography (CT) are important complements to PCR tests. The
virus leads to pneumonia, which is an inflammatory condition
of the lung’s air sacs [5]. Radiological signs show ground-glass
opacity, airspace opacities and later consolidation with bilateral,
peripheral, and lower zone predominant distributions [6]. Com-
paring with CT imaging, CXR diagnosis provides a low-cost
and time-saving diagnosis method [7]. Besides, underdeveloped
regions can hardly have sufficient CT scanners, making CT
based COVID-19 screening impossible. X-rays are the most
common diagnostic imaging equipment available even in rural
regions, which means X-ray diagnosis can cover larger suscep-
tible population [8].

Diagnosis accuracy of COVID-19 and radiography based
infection localization are critical for treatment planning and
follow-up evaluations [9]. However, pressure of pandemic forces
physicians to evaluate in limited time, which raises misdiagnosis
rate implicitly [10]. As a result, accurate and robust classification
methods are required. This is challenging as COVID-19 is a
new type of disease which has low amount of data comparing
with available datasets, such as image data published by [11]
or [12]. In addition, the COVID-19 shares characteristic with
other types of pneumonia, which requires the method focus on
both global and local features [13]. Moreover, varied parameter
settings causes imparities when collecting X-ray image from
different devices.

Massive radiological data and rapid developing computa-
tional power give artificial intelligence (AI) a chance to assist
clinical diagnosis. Recently, classification of COVID-19 from
radiological images have been explored. Wang and Wong [14]
present a COVID-Net operated on CXR images to classify
COVID-19 from pneumonia and normal cases. COVID-19 cases
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are extracted from online COVID-19 datasets published by [15]
and [16]. Non-COVID-19 image includes 1591 pneumonia im-
ages and 1203 normal images released by National Institutes of
Health Clinical Center [17]. The experimental results showed
that classification method with residual projection-expansion-
projection-extension (PEPX) design pattern achieves 93.3%
accuracy, which is better than general deep models such as
VGG-19 (83.0% Accuracy) and ResNet-50 (90.6% Accuracy).
The authors illustrate the locations focused by their model to
visualize its decision making process.

Ghoshal and Tucker [18] present a Bayesian CNN to make
diagnosis through model uncertainty. It is trained on 68 COVID-
19 cases from [15] and Non-COVID-19 cases from Kaggle’s
Chest X-ray Images (Pneumonia) [19], which improve the
classification accuracy of a standard ResNet50V2 model from
86.0% to 89.8%. The authors further discuss the effectiveness
of uncertainty-aware classification by decision visualization.

Zhang et al. [20] design a screening method based on ResNet
to detect COVID-19 and find abnormalities from CXR images.
Images are evaluated by an abnormity detecting module produc-
ing reference score to optimize classification loss. The model
is trained on 70 COVID-19 images and 1008 non-COVID-19
images, which reaches 96.0%, 70.7%, 95.2% in Sensitivity,
Specificity and AUC respectively.

Generally, current studies operated on CXR images mostly
depends on online datasets with limited COVID-19 cases. In-
sufficient data can hardly evaluate the robustness of the models
and restricted their generalizability. Models trained on extremely
imbalanced dataset also lead to long-tail distribution problems.
Although plenty of works have discussed diagnosing COVID-19
by AI, few works address the problem of imbalanced data and
limited size of dataset because of several issues: 1) Models
trained by imbalanced data tend to classify all the targets to
the dominant class which has overwhelmingly more labels than
other classes. 2) Unique labels on X-ray image, such as L/R
position labels, easily attract model’s attention then mislead
the predictions. 3) COVID-19 cases share features with non-
COVID cases, which requires a sensitive and robust model to
do classification.

These challenges inspired us to treat pneumonia classifica-
tion as a Fine-Grained Visual Classification (FGVC) problem,
which aims at classifying sub-level categories under a basic-level
category. FGVC cases are similar apart from some minor differ-
ences and also has the problem of lacking training data. Classic
Convolutional Neural Networks (CNNs), including VGG [21],
ResNet [22] and Inception [23], has difficulties handling this
problem. We propose a novel Multiscale Attention Guided
deep network with Soft Distance regularization (MAG-SD) for
COVID-19 CXR image classification. To balance the quantity
of different data, a weakly-supervised method is presented,
which requires a few labeled data to do effective augmentations.
Multiscale strategy is applied to attention generator, producing
detailed scalar matrix for prediction. Our classification model
is motivated from the fact that clinical diagnosis of COVID-19
follows a procedure which firstly evaluates the regional appear-
ance, then makes diagnosis exclusively. Thus, we propose a
multiscale attention module which estimates both shallow and

deep layers. Comparing with using feature maps from only
highest level features, the utilization of lower features could
increase its ability of finding fine-grained features. Moreover,
a soft distance regularization method is integrated to refine
classification result by adaptively adjusting classification loss.
In a nutshell, contribution of this paper is threefold:

1) We design a novel deep network, MA-Net, to treat COVID-
19 diagnosis as a FGVC problem. Multiscale attention is intro-
duced to assess attention maps on multi level features. Composed
attention maps are used as guidance for training steps. Attention
pooling is proposed to utilize attention maps for classification.

2) We address data shortage by proposing attention guided
data augmentation and multi-shot training phase. It includes
attention mix-up, attention patching and attention dimming that
could enhance and search local feature then generating data.
Models are trained on imbalanced COVID-19 datasets and
achieve the state-of-the-art.

3) Without introducing other modules or parameters, we for-
mulate a new regularization term utilizing soft distance between
predictions, which works as a constraint to limit classifiers from
producing contradicted output for one target.

This paper is organized as follows. In Section II, we introduce
insightful works which have high relevance with our contribu-
tion. Section III presents the proposed method. In Section IV,
database and experimental setup are reported in detail, then
results are presented and discussed individually. The last section
concludes this study and highlights the future work.

II. RELATED WORKS

Related works are introduced in this section, including X-ray
appearance for typical pneumonia, fine-grained visual classifi-
cation, attention mechanism for CNNs and multiscale feature
fusion utilized in computer vision.

A. Pneumonia X-Ray Imagery

Chest X-ray is a widely used imaging modality providing
high-resolution pictures to visualize the pathological changes
of thoracic diseases. Diagnosis could be made according to
the visual patterns demonstrated on CXR images [19]. Clinical
research from Katz and Leung [24] demonstrated that typical
image pattern for bacterial pneumonia includes opacity of single
lobe and pleural effusion. Viral pneumonia also has radiological
appearance such as pulmonary edema, small area of effusions,
consolidation or lobe mass. Reports from [25], [26], demon-
strated that the most common pattern on CXR in COVID-19
was consolidation or ground-glass opacity. It is notable that
COVID-19 shares some visual feature with viral pneumonia
while viral and bacterial pneumonia can hardly be differentiated
because of similar spatial appearance.

B. Fine-Grained Visual Classification

Mass application of CNNs revealed its advantage in solving
large scale image classification problem [27] and illuminated
a promising way to settle FGVC tasks by using CNN models
to explore inconspicuous local features. Some models relied on
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local annotations to train part-based detectors, localizing certain
parts before prediction [28], [29]. However, local feature annota-
tion requires expensive human labor, limiting its reproducibility
in reality. Recently, approaches only require global labels also
emerged whose motivation was to first localize the correspond-
ing parts and then compare their local features [30]. Fu et al. [31]
introduced WS-DAN, which was a weakly supervised deep
network handling FGVC by posing attention to enhance local
feature and guide augmentation. FGVC was also a common
problem in medical image because of spatial similarity between
infections. Qin et al. [32] proposed a fine-grained classification
CNN for different types of lung cancer in PET and CT Images.

C. Attention for CNNs

For visual task, attention usually indicates a scalar matrix
representing the relative importance and inner relevance of local
feature [33]. This nonuniform representation was produced by
special designed modules [34]. Works reported that applying
attention on classification oriented CNN could provide an intu-
itional way to localize target object, helping to identify visual
properties through local representation. An attention guided
method demonstrated by Gondal et al. [35] reported that atten-
tion mechanism is helpful in Diabetic Retinopathy (DR) local-
ization and recognition. Zhang et al. [36] regulated the attention
of deep model by training self-attention blocks for skin lesion
classification and surpassed the baselines. Generally, attention
mechanism guide the models to analyze global and local features
simultaneously then generate believable classification results.

D. Multiscale Feature Fusion

Extracting hybrid feature maps from multi-resolution input
image is a common strategy in computer vision since the the era
of hand-engineered features. CNNs have an inherent multiscale
feature in pyramidal shape, which is advantageous in producing
semantically strong representations if effective feature fusion
is operated. Models such as U-Net [37] and V-Net [38] ex-
ploited skip connections to associate feature maps across res-
olutions. FPN [39] leveraged the prediction of multiscale hier-
archy by generating multiple prediction. For CXR image, Huang
et al. [40] presented weight concatenation method to cooperate
global and local feature. Thriving of spatial attention gave
inspiration to extract attention from multi-resolution feature
map. Sedai et al. [41] proposed A-CNN for chest pathologies
localization, which utilized multiscale attention by calculating
convex combination from weighted average of the feature maps.

III. METHOD

In this episode, we propose our approach that explore multi-
scale fine-grain feature adaptively. We first produce an overview
for our MAG-SD. Then MA-Net is presented in terms of network
architecture with attention modules. A weakly supervised data
augmentation module, Attention Guided Augmentation, is intro-
duced to address the shortage of COVID-19 cases. At last, Soft
Distance Regularization is proposed to erase noise imported by
augmentations.

A. Overview

COVID-19 CXR images are less distinctive comparing with
other pneumonia cases, which requires a model to extract fea-
tures for fine-grained feature of input image. WS-DAN [31],
which is competitive in fine-grained image classification has
been adopted for this topic. The architecture includes a feature
extractor (i.e. ResNet50), an attention generator operated on
feature map and an augmentation generator producing local-
enhanced and noise-blended image. An overview of our MAG-
SD is shown in Fig. 1. In primary training route, preprocessed
CXR image I ′0 is fed into MA-Net for prediction vector P and
attention map A. Attention Guided Augmentation is operated on
I ′0, using A to produce augmented data I1, I2, I3. In Auxiliary
training routes, I1, I2, I3 are pushed into MA-Net for prediction
vectors p1, p2, p3. All the vectors (i.e. P, p1, p2, p3) are utilized
by Soft Distance Regularization for a proper loss.

B. Multiscale Attention Guided Network (MA-Net)

1) Network Architecture: Fig. 2 presents a demonstration of
our proposed MA-Net. As observed, a CNN based encoder is
operated on augmented images. Encoder utilizes ResNet50 as
backbone, extracting size-different feature maps f1, f2, f3 from
image I . Multiscale attention generator is used to extract atten-
tion map a1, a2, a3 and estimate scale-wised interests. Attention
maps are resized for a single output A from features. Then,
the output of encoder f3 and attention map A are assessed by
Attention Pooling to generate prediction vector P .

2) Multiscale Attention Generator: Attention mechanism has
been used in natural image topics to guide feedforward pro-
cess [42], [43]. Recently, tentative efforts have been made on
deep models such as image classification [44], person percep-
tion [45] and sequential decision tasks [46]. Most of the attention
models aim at gathering top level information to decide where
to attend for the next learning steps. The proposed attention
generating model is operated on multiscale feature maps, aiming
at extracting attention from different scale. Layers before down-
sampling are selected as feature map in order to squeeze infor-
mation out of single resolution feature. For ResNet50 we used,
feature maps with 512 ∗ 28 ∗ 28, 1024 ∗ 14 ∗ 14, 2048 ∗ 7 ∗ 7
sizes are chosen. The number of attention map is 32.

The architecture of multiscale attention generator is shown
in Fig. 3. f1, f2 and f3 are feature maps selected from feature
extractor. Each of them are processed by 1 ∗ 1 convolution to
generate corresponding attention. All the attention maps are
downsampled to 7 ∗ 7 and connected residually. The effect of
using different number of feature maps is discussed in experi-
ments.

3) Attention Pooling: Attention pooling module mimics the
structure proposed by [31], which associates attention output and
feature map. Fig. 4 shows the pipeline of the pooling method.
Feature map f3 (2048 ∗ 7 ∗ 7) is extracted from the output of
CNN encoder. Multiscale attention mapApresented by attention
generator is 32 ∗ 7 ∗ 7. Each attention map focuses on diverse
location that may contain valuable fine-grained feature. Atten-
tion biased features (i.e. part feature map (PF )) are presented
by multiplying all the attention maps A, each by each, with
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Fig. 1. The architecture of MAG-SD. The key components are illustrated in colour-wised blocks. (a): MA-Net, which is a CNN model (e.g.
ResNet50) extracting prediction vectors P, p1, p2, p3 and attention map A; (b): Soft Distance Regularization using P, p1, p2, p3 to calculate overall
loss; (c): Attention Guided Augmentation, which augments preprocessed data I ′0 according to A.

Fig. 2. MA-Net illustrated in colour-wised blocks. (a): Convolutional
Feature Extractor, which is a pretrained CNN model (e.g. ResNet50)
extracting features f1, f2, f3; (b): Attention Pooling (demonstrated in
Fig. 4) takes f3 and attention map A for prediction vector P ); (c):
Multiscale Attention Generator (demonstrated in Fig. 3) uses f1, f2, f3
to produce A as output.

feature map. There are 32 PF s which size equals 2048 ∗ 7 ∗ 7.
Global average pooling (GAP) is operated to shrink each PF
to 2048 ∗ 1 ∗ 1 in order to describe the activation intensity of
attention on feature map. Feature matrix M is produced by
concatenating GAP results, producing a vector of 65 536 ∗ 1 ∗ 1.
Eq. (1) describes the calculation of PF .

PFj = Aj � f3 (j = 1, 2, . . ., N) (1)

where � stands for multiplication of elements between two
tensors. f3 is feature map extracted by CNN. N represents the
number of attention maps, which is 32 in our work.
PFj has to go through a downsampling method such as GAP

to get description with compressed size, which is 2048 ∗ 1 ∗ 1.
Feature matrixM is represented by concatenating all condensed
PFj presented in Fig. 4.

Fig. 3. Demonstration of multiscale attention generator. f1, f2, f3 are
three scales of feature maps. The model choose 1, 2 or 3 feature maps
for attention. Attention map is generated by operating 1 ∗ 1 convolutional
layer on each feature map then downsample it to 7 ∗ 7. Global attention
map A is produced by operating residual connection between resized
feature maps. ⊕ represents residual connection.

C. Attention Guided Augmentation

As mentioned above, attention mechanism emphasizes local
feature which affects the classification result. Following the
idea, the performance of classification network could be en-
hanced if attention guided training cases are considered. Weakly
supervised methods demonstrated in Fig. 5 present effective
augmentations for original image. One normalized attention
map (A∗) is randomly chosen for each instance to do individual
augmentation.

1) Attention Mixup: Mixup is an augmentation strategy which
generates data by mixing overall image and regional feature
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Fig. 4. Attention pooling architecture proposed for feature selecting.
Feature map f3 is extracted from input image and A is generated by
the module displayed in Fig. 3. Each individual attention map selected
from A multiplies (�) with f3 to produce the features with attention bias,
known as part feature Maps (PF ). After global average pooling (GAP)
process, feature matrix M is produced.

Fig. 5. Demonstration of Attention Guided Augmentation. Multiple at-
tention maps are generated by attention generator, which concentrate
on different part of original image. One attention map is chosen ran-
domly for each augmentation method, including: (a) Attention mix-up,
(b) Attention Patching and (c) Attention Dimming.

together. As we have a attention map A∗
j , a detailed region Dj

could be extracted by doing threshold.

D(l,m) =

{
1, if A∗(l,m) > θm

0, otherwise
(2)

For elements in A∗
j(l,m), Eq. (2) sets Dj(l,m) to 1 if it is

greater than threshold θm ∈ [0, 1]. If not, it will be set to 0. A
bounding box surrounding the extracted region is proposed from
the raw region. Region coved by the box is enlarged to the same
size as input image then merged together with original input I0
to get augmented input I1, which is defined in Eq. (3).

I1(p, q) = γI0(p, q) + (1− γ)B(p, q) (3)

where γ is a parameter range in [0,1] and B stands for the
enlarged bounding box. Model could see target precisely by
learning local and global feature together.

2) Attention Patching: Encoder could be sensitive to limited
part of reception field as valuable spatial features usually dis-
tribute in similar position. To encourage the encoder to explore
feature from varied part, attention patching is proposed. D
mentioned in 1) is patched onto the original image I0 to propose
patched data I2, which is demonstrated in Fig. 5. Attention
patching enlarges the model’s interest region by duplicating the
interested area, promoting model to global evaluate its input.

3) Attention Dimming: When training attention generating
module for feature map, multiple attention maps may be sen-
sitive to similar region. A responsible fine-grain classification
model have to focus on different local features of one target.
Attention dimming is proposed to stimulate the attention model
searching the whole reception field for valuable information. We
obtain a Dimming Mask (DM ) from A∗, applying threshold
θd ∈ [0, 1], as represented in Eq. (4).

DM(l,m) =

{
00.1, if A∗(l,m) > θd

1, otherwise
(4)

Augmented image I3 is generated by applying the mask onto
the input, which is illustrated in Fig. 5(c).

D. Soft Distance Regularization

Disturbances are introduced into the original image by using
augmentation. (e.g. infection area reduced by attention dim-
ming). To address this problem, we formulate the uncertainty
of predictions via the distance between prediction vectors. Intu-
itively, the distance d could be modeled as Eq. (5).

d(x) = |P (I)− p(x)| (5)

where x denotes the augmented image, P (I), p(x) represent
primary and auxiliary prediction vector respectively. However,
the distance between P (I) and p(x) is unstable before the the
model well-fitted. Ground truth labels are referenced to stabilize
gradients. In Algorithm 1, P (I) is replaced by soft label P ′(I),
filtering out low confidence inferences. Soft distance d′(x) can
be represented in Eq. (6). The value of θ in Algorithm. 1 is 0.7.

d′(x) = |P ′(I)− p(x)| (6)

At last, overall loss is modeled by a combination of cross
entropy loss and average soft distance, which is demonstrated
in Eq. (7).

Lreg = Lprim
ce + d̄′ (7)

where Lprim
ce operates between labels and primary prediction.

If two vectors have different prediction for one target, Lreg

will generate a large value, which reflects the uncertainty of the
model on one target. It is also notable that Lreg punishes soft
distance d̄′, leading the model to generate similar predictions.

IV. EXPERIMENTS

In this section, extensive experiments were conducted to com-
prehensively assess MAG-SD. Models were trained on datasets
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TABLE I
DATASETS DETAILS

with different types of pneumonia and the performance of each
proposed method was evaluated. Then the models were com-
pared between other baseline methods using several metrics.

A. Dataset and Experimental Settings

The proposed model was trained and tested on several datasets
to evaluate its classification performance and ability of fine-
grained pneumonia localization. Details of each dataset was
shown in Table I. Dataset A was a mutated dataset with 90
COVID-19 from [15] and 168 other pneumonia cases from [17],
which directly assessed model’s fine-grained classification abil-
ity. Dataset B was selected from [47] and [17], aiming at eval-
uating the model’s performance on larger scale. Dataset C was
the largest dataset we operated on, which included COVID-19
detection and fine-grained pneumonia classification. Quality of
pneumonia localization was evaluated by Localization dataset,
which had 13 COVID-19 cases with pixel-wise masks from [48]
and 118 non-COVID pneumonia cases with bounding boxes

TABLE II
AUGMENTATIONS USED AND FACTOR SETTING

annotations from [17]. In experiments, classic ResNet50 has
been adopted as feature extractor. Its layer4 output was chosen as
feature map. Attention was extracted from the output of layer2,
layer3 and layer4 to ensure multiscale attention. Size of the
attention maps were28 ∗ 28, 14 ∗ 14 and7 ∗ 7. Both training and
testing sets were divided roughly in the same class proportions.
5-fold cross validation was applied to get reliable results.

Models were implemented using Pytorch and trained on two
NVIDIA RTX 2080TI GPUs. The optimizer was Stochastic
Gradient Descent (SGD) with the momentum of 0.9. For each
training, 100 training epochs were deployed, with 10−6 weight
decay, 32 cases per minibatch and 10−3 learning rate at be-
ginning. Images were resized to 224 ∗ 224 when training and
testing.

B. Pre-Processing and Data Augmentation

X-ray images have different appearance according to var-
ied imaging equipment configurations, resolving that the same
tissue can be radiologically different. To ensure the intensity
distribution of one tissue is similar over the dataset, Z-score
normalization was employed when training and testing. Large
contrast distribution also introduced extra noise to the dataset,
impacting the performance of trained model. Contrast limited
adaptive histogram equalization (CLAHE) was proposed to
enhance contrast between tissues and restrain noise signal [49].

In image classification, data augmentation has been proved
as an effective method to improve robustness and evaluate
performance [50]. Augmented data provides more varieties for
classification target and remitting the impact of overfitting. Ran-
dom number of transformations were chosen from a sequence
of linear transformation for each training sequence. The list is
shown in Table II.

C. Evaluation Metrics

Experiments were evaluated by several metrics. For Classi-
fication, Accuracy (ACC), Sensitivity (SEN), Specificity (SPC)
and F1 score were employed. For multi-class datasets, mean
value between classes were calculated to represent the final
performance score of each model. Plots of receiver operating
characteristic (ROC) curve and area under the curve (AUC) value
were used to compare model functionality. Localization quality
was quantified by intersection over union (IOU) which has been
widely used in target detect and semantic segmentation task [41].
Accuracy describes the proportion of correctly classified targets,



1342 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 5, MAY 2021

TABLE III
EVALUATION OF MODELS

TABLE IV
EVALUATION OF CLAHE

which is expressed in Eq. (8).

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP, TN, FP and FN stand for the number of true posi-
tive, true negative, false positive and false negative predictions.
Sensitivity, also known as true positive rate (TPR), is useful
to measure the proportion of true positive predictions over all
positive targets, which is defined in Eq. (9).

Sensitivity =
TP

TP + FN
(9)

Specificity, or true negative rate (TNR), is a ratio between the
amount of true negative (TN) and false positive (FP) predictions,
defined in Eq. (10).

Specificity =
TN

TN + FP
(10)

F1 Score considers the performance from both precision and
recall, defined in Eq. (11).

F1 =
2TP

2TP + FP + FN
(11)

IoU represents a value calculated by dividing the overlap of
prediction and ground truth by their union. It could be defined
straightforward in Eq. (12), where Ao and Au denote area of
overlap and area of union respectively.

IoU =
Ao

Au
(12)

D. Components Validation and Discussion

The methods composed could be concluded into attention
modules, attention guided data augmentation and soft distance
regularization. Each component was studied by evaluating its
improvement in classification performance, which has been
quantified by metrics mentioned above. Performance gain was
obtained by the following method: the proposed model was first
trained on specific dataset with metrics, then, single component
was changed or removed and reevaluate on the same dataset.

For all the tested models, Mean value and standard deviation
of ACC, SEN, SPC, F1 were recorded. Components validations
were reported in Tables IV, V, VI, VII and VIII. Inter-model
comparisons could be found in Table III and Fig. 6. Regions
interested the attention module were presented in Fig. 7. Pa-
rameters in all the experiments were maintained unchanged as
possible for condition control. The model were trained on the
same size of training set then evaluated on the same size of
testing set.

1) Architecture Comparing: Advantages of architecture de-
sign has been deeply explored. It has been performed by evalu-
ating classic coarse-grained deep neural networks (i.e. VGG16,
ResNet18, ResNet50 and InceptionV3), COVID-19 oriented ar-
chitectures (i.e. [51] (ResNet), [51] (InceptionV3), COVID-
Net-Large), high performance fine-grained image classification
structure (i.e. BCNN, BCNN(Attention)) and multiscale feature
fusion models (i.e. FPN, U-Net). Statistics analysis between
these deep structures helped to explain our advantages in fine-
grained feature extraction. It can be observed in Table III and
Fig. 6 that proposed model had noticeably better performance
over others. For our model, accuracy on dataset A, B and C
reached 96.94% ± 1.10%, 95.85% ± 1.27%, 87.12% ± 1.55%
respectively and performance assessed by AUC are 99.94%,
98.72%, and 95.11%.

Comparing with classic models, our model was specialized
for COVID-19 image classification and attention guided training
phase had advantage in fine-grained visual classification task.
Most of the other COVID-19 oriented models presented better
performance than classic models, however, none of them applied
attention mechanism or considered fine-grained features, which
impacted their accuracy on large scale, multi-class dataset such
as Dataset B and C. Comparison between FPN, U-Net and
classic models demonstrated that FPN presented results over
InceptionV3 in Dataset A and B. In Dataset C, U-Net had higher
accuracy than FPN, which exceeded ResNet50. Results indi-
cated that multiscale feature fusion models reached competitive
results using relatively simple structures comparing with classic
deep models, which left us a hint that multiscale attention might
be a possible route to improve.
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TABLE V
EVALUATION OF MULTISIZE ATTENTION MAPS

TABLE VI
COMPARISON OF POOLING METHODS

TABLE VII
CONTRIBUTION OF ATTENTION GUIDED AUGMENTATION

*AM : Attention Mix-up; **AD : Attention Dimming; **AP : Attention Patching.

TABLE VIII
COMPARISON OF L2 AND SOFT DISTANCE REGULARIZATION

Fig. 6. Demonstration of ROC curves and AUC values. Three charts, from left to right, show the performance of all the trained models operating
using datasets A,B and C respectively. Top-3 highest AUC values and their ROC curves are emphasized. Results demonstrate that comparing with
baselines, results generated by our model has advantage in AUC value, which is over 0.5% in dataset A, B and C. Architecture differences of our
proposed method also influence the performance over datasets. Generally, MAG-SD(proposed) is the most stable model which stays in top-3 in all
the datasets, which is a method given consideration to both generalizability and robustness.
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Fig. 7. Demonstration of pneumonia localization. Images were selected from Localization dataset. COVID-19 cases has pixel-wise mask while
bounding boxes were provided for other pneumonia. IoU was calculated for each prediction. Localization result was provided by apply threshold
onto the attention map of each case. Results illustrated that attention focus on different area when detecting various classes.

BCNN was a FGVC model with stable performance on mul-
tiple datasets. In order to evaluate the generalization ability of
our attention module, multiscale attention and attention pool-
ing were transported to BCNN to train BCNN(Attention). Sta-
tistically, BCNN reached 96.00%± 1.52%, 94.41%± 1.37%,
84.36%± 1.84% in Accuracy, which was competitive in all
the evaluated models. Attention modules remarkably boosted
the performance of BCNN, exceeded our proposed method in
Dataset A (SPC) and Dataset B (SEN), which were 96.16%±
1.74%, 96.61%± 2.00% respectively.

2) CLAHE Preprocessing: Images collected by different de-
vices were probably distinct in contrast due to configuration
variety. CLAHE was employed to relieve the noise brought by
contrast distribution. Table IV showed the result that CLAHE
obviously improved the performance of proposed model and
raised over 1.5% Accuracy on average. Model trained without
CLAHE had notable higher standard deviation value. Larger
datasets such as Dataset B and C were reported to have more
performance gain.

3) Multiscale Attention Generator and Attention Pooling:
Normally, state-of-the-art coarse-grained CNN models suffer
from similar global features when dealing FGVC. Under this cir-
cumstance, models have to depend on local features, which could
be effectively localized by our multiscale attention module.
Models trained with attention module (i.e. MAG-SD(0AUG))
and baseline model (i.e. ResNet50) were compared in Table III,
and Fig. 6. Results revealed that proposed model surpasses the
baseline on dataset A, B and C using most of the benchmarks.
In dataset B (SPC), ResNet50 has slight advantage. Comparing
with AUC, MAG-SD(0AUG) was 2% over ResNet50. Fur-
thermore, two parts of attention module, attention generating
and attention pooling has been investigated separately. Firstly,

models were compiled to assess multiscale attention, with 1,2 or
3 size of attention maps considered. Results presented in Table V
and Fig. 6 showed the model considering two feature maps
achieved the best performance in all three datasets. Possible ex-
planation was that the proposed attention module was too simple
to locate valuable fine grained feature on low-level feature maps.
Instead of importing meaningful location information, noise was
brought into the proposed model. Secondly, we evaluated atten-
tion pooling module with models trained with other commonly
used pooling methods such as global average pooling (GAP) or
global max pooling (GMP). Results on pooling methods were
presented in Table VI and Fig. 6, demonstrating that attention
pooling surpassed GAP and GMP in all three datasets.

4) Attention Guided Augmentation: The generated attention
maps emphasized local feature that interested the model, which
could be used to effectively guide data augmentation in Fig. 5.
Models trained with 0, 1, 2 or 3 augmentation were discussed
in experiment. In the case of 1 augmentation, attention mixup
was selected. 2 augmentations model included attention mixup
and attention patching. The results were presented in Table VII
and Fig. 6. The table reflects that model with all three augmen-
tations had better performance, however, AUC value showed
that in dataset A and B, two augmentations was advantageous.
The proposed augmentations emphasized data according to
attention map, minimizing negative effect caused by random
augmentations.

5) Soft Distance Regularization: Soft distance regularization
was presented to relieve augmentation variance. Experiments
have been composed to compare it with L2 distance regulariza-
tion. Table VIII and Fig. 6 illustrated that it surpassedL2 in mean
value, but, inferior in standard deviation. Constraint between
auxiliary vector and primary vector screen the false prediction
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Fig. 8. Three charts of confusion matrices generated by proposed MAG-SD, demonstrating the distribution of predictions. The color of confusion
matrices depend on the normalized values of predictions for a better visualization, which are placed at the top of each grid. The number of predictions
are placed below the normalized values. Symbols used in figure are denoted as: P: Non-COVID19 Pneumonia, VP: Viral Pneumonia, BP: Bacterial
Pneumonia, C-19: COVID-19, and H: Healthy.

introduced by attention guided augmentations. Regularization
was calculated between ground truth and auxiliary vector when
primary vector cannot provide reliable prediction, keeping the
final result away from local minima. L2 compared all predic-
tions directly with ground truth, which has higher stability and
sidestepped the disturbances introduced by primary prediction.

6) Attention Based Infection Localization: Technically, at-
tention improved the models by roughly localize the part with
high activation intensity. This characteristic of attention inspired
us to try MAG-SD on localization topics. The models were
trained on the Dataset B we proposed, then test on Local-
ization dataset demonstrated in Fig. 7. It included COVID-19
cases with pixel-wise segmentation and non-COVID-19 cases
with bounding box for pneumonia infection. Attention maps A
were upsampled from 7 ∗ 7 to 224 ∗ 224. Localization masks
for COVID-19 cases were extracted by applying threshold to
the attention maps. Bounding boxes for other pneumonia were
produced by simply enclosing the localization masks with rect-
angles. IoU was calculated to evaluate the quality of localization.
Image showed that the attention module we proposed could
roughly indicate the position of different type of pneumonia with
over 0.25 IoU score. Attention map emphasized the influential
part from the input image effectively.

E. Distribution Analysis

As we imported multiple fine-grained classes into this topic,
it was necessary to report the distribution of our prediction
result, which has been shown using confusion matrix in Fig. 8.
MAG-SD has been selected to generate the charts to represent the
classification result of deep learning models. It could be inferred
that the model was suitable for searching definitive features from
cases showed in dataset A and B as most of the cases were located
on the diagonal line of matrices. In dataset C, classification
result between viral pneumonia and bacterial pneumonia was
significantly inferior than others, which impacted the global
performance of the classification model. These results proved
the arguments reviewed in Section II-A, indicated that the CXR

visual appearance between viral and bacterial pneumonia was
insufficient to make accurate diagnosis.

V. CONCLUSION

We have presented MAG-SD for automatic COVID-19 CXR
image classification that reached the state-of-the-art on our
dataset. The proposed novel method treated this topic as a
fine-grained image classification task, utilizing local features
efficiently under the guidance of attention mechanism. Attention
maps were generated using multiscale features then used as a
reference to data augmentation, helping the model to overcome
the lack of COVID-19 cases. The proposed network learned to
weight the predictions from both primary and auxiliary training
pathways by calculating soft distances between vectors, gaining
improvements by screening noise generated by augmentations.

Findings of our exploration were demonstrated and discussed
in Section IV. The results indicated the great potential of apply-
ing advanced pattern recognition model to clinical diagnosis and
epidemic screening. Trained on the clinical knowledge acquired
by physicians, our model was capable to extract fine-grained
spatial features for COVID-19. Attention was applied in both
feature extraction and augmentation stage, which helped to
localize pneumonia infection and accrete the data effectively as
part of weakly supervised method. Attention module also shows
its capability in different models. It could be interesting to design
more auxiliary training strategies to guide the model to an op-
timal solution. Positive feedback on soft distance regularization
proved that our method considered auxiliary predictions and
eliminated label noise simultaneously, however, hard threshold
may limit its adaptability in complicated data.

Although deep learning methods seem promising in clinical
diagnosis and pandemic screening, lacking of prior knowledge is
always the Achilles’ Heel. Supervised learning method, such as
MAG-SD we proposed, have to be trained on expensive labeled
data. Newly occurred or rare diseases without available data may
not be classified properly. Abnormal detecting and clustering
model could be proposed as a guidance for supervised models
to alleviate the limitations, which is part of our future work.



1346 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 5, MAY 2021

ACKNOWLEDGMENT

The authors would like to thank the institutes who generously
open-sourced image database.

REFERENCES

[1] C. Wang, P. W. Horby, F. G. Hayden, and G. F. Gao, “A novel coron-
avirus outbreak of global health concern,” Lancet, vol. 395, no. 10223,
pp. 470–473, 2020.

[2] W. H. Organization et al., “Coronavirus disease 2019 (COVID-19): Situ-
ation report, 72,” Apr. 1, 2020. [Online]. Available: https://apps.who.int/
iris/handle/10665/331685

[3] I. Apostolopoulos, S. Aznaouridis, and M. Tzani, “Extracting possibly
representative COVID-19 biomarkers from X-ray images with deep learn-
ing approach and image data related to pulmonary diseases,” J. Med. Bio.
Eng., vol. 40, pp. 462–469, 2020.

[4] T. Ai et al., “Correlation of chest CT and RT-PCR testing for coronavirus
disease 2019 (COVID-19) in China: A report of 1014 cases,” Radiology,
vol. 296, no. 2, 2020, Art. no. 200642.

[5] C. Huang et al., “Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China,” Lancet, vol. 395, no. 10223, pp. 497–506,
2020.

[6] F. Shi et al., “Review of artificial intelligence techniques in imaging
data acquisition, segmentation and diagnosis for COVID-19,” IEEE Rev.
Biomed. Eng., vol. 14, pp. 4–15, 2021.

[7] Y. Wang, L. L. Sun, and Q. Jin, “Enhanced diagnosis of pneumothorax
with an improved real-time augmentation for imbalanced chest X-rays
data based on DCNN,” IEEE/ACM Trans. Comput. Biol. Bioinf., to be
published, doi: 10.1109/TCBB.2019.2911947.

[8] T. Franquet, “Imaging of pneumonia: Trends and algorithms,” Eur. Respir.
J., vol. 18, no. 1, pp. 196–208, 2001.

[9] A. Torres and C. Cillóniz, Clinical Management of Bacterial Pneumonia.
Berlin, Germany: Springer, 2015.

[10] T. P. Velavan and C. G. Meyer, “The COVID-19 epidemic,” Trop. Med.
Int. Health, vol. 25, no. 3, pp. 278–280, 2020.

[11] A. Bustos, A. Pertusa, J.-M. Salinas, and M. de la Iglesia-Vayá, “Padchest:
A large chest X-ray image dataset with multi-label annotated reports,” Med.
image Anal., vol. 66, p. 101797, 2020.

[12] J. Irvin et al., “CheXpert: A large chest radiograph dataset with uncertainty
labels and expert comparison,” in Proc. AAAI Conf. Artif. Intell., vol. 33,
2019, pp. 590–597.

[13] N. Chen et al., “Epidemiological and clinical characteristics of 99 cases of
2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study,”
Lancet, vol. 395, no. 10223, pp. 507–513, 2020.

[14] L. Wang, Z. Q. Lin and A. Wong, “Covid-net: a tailored deep convolutional
neural network design for detection of covid-19 cases from chest x-ray
images,” Scientific Rep., vol. 10, no. 1, 2020, Art. no. 19549.

[15] J. P. Cohen et al., “Covid-19 image data collection: Prospective predictions
are the future,” 2020, arXiv:2006.11988.

[16] L. Wang, “Figure 1 covid-19 chest x-ray dataset initiative,” Accessed:
May 9, 2020. [Online]. Available: https://github.com/agchung/Figure1-
COVID-chestxray-dataset

[17] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-
ray8: Hospital-scale chest X-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 2097–2106.

[18] B. Ghoshal and A. Tucker, “Estimating uncertainty and interpretabil-
ity in deep learning for coronavirus (covid-19) detection,” 2020,
arXiv:2003.10769.

[19] D. S. Kermany et al., “Identifying medical diagnoses and treatable diseases
by image-based deep learning,” Cell, vol. 172, no. 5, pp. 1122–1131, 2018.

[20] J. Zhang, Y. Xie, Y. Li, C. Shen, and Y. Xia, “COVID-19 screening on
chest X-ray images using deep learning based anomaly detection,” 2020,
arXiv:2003.12338.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[24] D. S. Katz and A. N. Leung, “Radiology of pneumonia,” Clin. Chest Med.,
vol. 20, no. 3, pp. 549–562, 1999.

[25] A. J. Rodriguez-Morales et al., “Clinical, laboratory and imaging features
of COVID-19: A systematic review and meta-analysis,” Travel Med. Infect.
Dis., vol. 34, 2020, Art. no. 101623.

[26] S. Rajaraman and S. Antani, “Weakly labeled data augmentation for deep
learning: A study on COVID-19 detection in chest X-rays,” Diagnostics
(Basel, Switzerland), vol. 10, no. 6, 2020, Art. no. 358.

[27] X.-S. Wei, J. Wu, and Q. Cui, “Deep learning for fine-grained image
analysis: A survey,” 2019, arXiv:1907.03069.

[28] N. Zhang, J. Donahue, R. B. Girshick, and T. Darrell, “Part-based R-CNNs
for fine-grained category detection,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 834–849.

[29] X.-S. Wei, C.-W. Xie, J. Wu, and C. Shen, “Mask-CNN: Localizing parts
and selecting descriptors for fine-grained bird species categorization,”
Pattern Recognit., vol. 76, pp. 704–714, 2018.

[30] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN models for
fine-grained visual recognition,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1449–1457.

[31] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent attention
convolutional neural network for fine-grained image recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4438–4446.

[32] R. Qin et al., “Fine-grained lung cancer classification from PET and CT
images based on multidimensional attention mechanism,” Complexity,
vol. 2020, pp. 1–12, 2020.

[33] S. Jetley, N. A. Lord, N. Lee, and P. H. Torr, “Learn to pay attention,”
2018, arXiv:1804.02391.

[34] J. Wang et al., “Prior-attention residual learning for more discriminative
COVID-19 screening in CT images,” IEEE Trans. Med. Imag., vol. 39,
no. 8, pp. 2572–2583, Aug. 2020.

[35] W. M. Gondal, J. M. Kohler, R. Grzeszick, G. A. Fink, and M. Hirsch,
“Weakly-supervised localization of diabetic retinopathy lesions in retinal
fundus images,” in Proc. IEEE Int. Conf. Image Process., 2017, pp. 2069–
2073.

[36] J. Zhang, Y. Xie, Y. Xia, and C. Shen, “Attention residual learning
for skin lesion classification,” IEEE Trans. Med. Imag., vol. 38, no. 9,
pp. 2092–2103, Sep. 2019.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervention. Springer, 2015, pp. 234–241.

[38] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Proc.
IEEE 4th Int. Conf. 3D Vis., 2016, pp. 565–571.

[39] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2117–2125.

[40] Z. Huang et al., “Fusion high-resolution network for diagnosing chestx-ray
images,” Electronics, vol. 9, no. 1, 2020, Art. no. 190.

[41] S. Sedai, D. Mahapatra, Z. Ge, R. Chakravorty, and R. Garnavi, “Deep
multiscale convolutional feature learning for weakly supervised localiza-
tion of chest pathologies in X-ray images,” in Proc. Int. Workshop Mach.
Learn. Med. Imag.. 2018, pp. 267–275.

[42] M. Jaderberg et al., “Spatial transformer networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2015, pp. 2017–2025.

[43] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale:
Scale-aware semantic image segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 3640–3649.

[44] F. Wang et al., “Residual attention network for image classification,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3156–3164.

[45] C. Song, Y. Huang, W. Ouyang, and L. Wang, “Mask-guided contrastive
attention model for person re-identification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 1179–1188.

[46] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1520–1528.

[47] S. Edwardsson, “COVID-19 X-ray dataset,” Accessed: Sep. 23, 2020.
[Online]. Available: https://github.com/v7labs/covid-19-xray-dataset

[48] M. d. l. et al., “BIMCV COVID-19: A large annotated dataset of RX and
CT images from COVID-19 patients,” 2020, arXiv:2006.01174.

[49] E. D. Pisano et al., “Contrast limited adaptive histogram equalization
image processing to improve the detection of simulated spiculations in
dense mammograms,” J. Digit. Imag., vol. 11, no. 4, pp. 193–200, 1998.

[50] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” Convolutional Neural Networks Vis.
Recognit, vol. 11, 2017.

[51] A. Narin, C. Kaya, and Z. Pamuk, “Automatic detection of coronavirus
disease (COVID-19) using X-ray images and deep convolutional neural
networks,” 2020, arXiv:2003.10849.

https://apps.who.int/iris/handle/10665/331685
https://dx.doi.org/10.1109/TCBB.2019.2911947
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/v7labs/covid-19-xray-dataset


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


