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1D Convolutional Neural Networks for
Detecting Nystagmus
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Abstract—Vertigo is a type of dizziness characterised by
the subjective feeling of movement despite being station-
ary. One in four individuals in the community experience
symptoms of dizziness at any given time, and it can be
challenging for clinicians to diagnose the underlying cause.
When dizziness is the result of a malfunction in the inner-
ear, the eyes flicker and this is called nystagmus. In this
article we describe the first use of Deep Neural Network ar-
chitectures applied to detecting nystagmus. The data used
in these experiments was gathered during a clinical investi-
gation of a novel medical device for recording head and eye
movements. We describe methods for training networks
using very limited amounts of training data, with an average
of 11 mins of nystagmus across four subjects, and less than
24 hours of data in total, per subject. Our methods work
by replicating and modifying existing samples to generate
new data. In a cross-fold validation experiment, we achieve
an average F1 score of 0.59 (SD = 0.24) across all four
folds, showing that the methods employed are capable of
identifying periods of nystagmus with a modest degree of
accuracy. Notably, we were also able to identify periods of
pathological nystagmus produced by a patient during an
acute attack of Ménière’s Disease, despite training the net-
work on nystagmus that was induced by different means.

Index Terms—1D convolutional neural networks,
biomedical signal processing, dizziness,
electronystagmography, nystagmus, time series
classification, vertigo, vestibular diseases.

I. INTRODUCTION

V ERTIGO is a specific type of dizziness in which an individ-
ual perceives that they or their environment are moving,

even though they are not [1]. Patients with vertigo can experience
unpredictable attacks of severe spinning, and this can last for
several hours at a time [2], during which they may be completely
incapacitated. Dizziness and vertigo can impact significantly on
many areas of a patient’s life, so quick access to a diagnosis
and treatment is desirable. There are a range of clinical tests
available for assessing balance disorders, such as dizziness and
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Fig. 1. The CAVA device consists of five electrode pads contained
within two, detachable mounts, and an electronic logging unit which sits
behind the left ear. Two electrodes placed near the temples on either
side of the face capture horizontal eye movement. Two electrodes above
and below the left eye record vertical eye movement. A fifth electrode
beneath the right ear provides a reference voltage. The device also
contains a push button for patients to log events of interest, such as
the onset of an attack of dizziness.

vertigo [3], but they are all performed in clinical environments
and it is rare for them to take place whilst a dizzy or vertigo
attack is in progress. Dizziness is usually episodic and is often
unpredictable [4], and some forms of dizziness can be induced
by movement of the head. There are many possible causes of
dizziness and vertigo [3], this means that forming a diagnosis
is made even more challenging [5]. As such, patients often
consult a number of clinicians from different specialities before
receiving a definitive diagnosis or treatment [6], [7].

The Continuous Ambulatory Vestibular Assessment (CAVA)
system has been developed to overcome the limitations of con-
ventional balance assessments which only take a snapshot of
a patients symptoms and in a clinical setting where it is rather
unlikely that a dizziness or vertigo attack will take place. CAVA
provides a continuous record of a patient’s vestibular function
and is intended to be worn for thirty days, for twenty-three
hours a day [8]. Hence it is highly likely to record any attacks
of dizziness or vertigo that the patient experiences during this
period. The data provided by the CAVA device is intended
to be analysed by computer algorithms before presenting the
outcome to a clinician to confirm and assess the results in the
context of the patient’s other signs and test results, as it would be
infeasible for clinicians to inspect many days of data manually.
The development of these algorithms is the focus of the work
presented here.

Vertigo is accompanied by a flickering eye-movement called
nystagmus and therefore, observation of eye movement is crucial
to clinicians for confirming whether a patient is experiencing
true symptoms of vertigo. The CAVA device (Fig. 1) records
horizontal and vertical eye-movements by way of the corneo-
retinal potential produced by the eyeballs. Nystagmus is visible
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in eye-movement traces as a saw-tooth like signal, made up of
a slow phase (a waveform with a shallow gradient) and a fast
phase (a waveform with a steeper gradient). The polarity of the
gradient of the fast phase defines the direction of the nystagmus:
a positive gradient corresponds to right-beating nystagmus, a
negative gradient left-beating. The slow phase is clinically rele-
vant because it corresponds to involuntarily drifting of the eyes
because of a vestibular malfunction.

Previously, we undertook a clinical investigation involving
healthy volunteers who wore the CAVA device continuously
for up to thirty days [8], [9]. On eight days of their trial, each
participant watched a nystagmus-inducing video on a VR head-
set. The data captured during this investigation was randomised
prior to an automated computer analysis, the purpose of which
was to identify the days on which nystagmus had been induced.
The algorithms we developed for that study achieved a high
level of diagnostic accuracy (sensitivity of 99.1% and specificity
of 98.6%), demonstrating that very short periods of clinically
useful information could be confidently identified from within
days of normal eye-movement data.

Following this work, we continued to evaluate our device
and algorithms on pathological nystagmus that was provided by
patients experiencing vertigo as a symptom of specific inner-ear
diseases, or was induced as a result of a routine balance test
known as caloric testing. This data has provided some novel
challenges in classification because of a number of differences
between it and our artificially induced nystagmus data. The
induced data was characterised by high-amplitude, highly reg-
ular sawtooth-like waves, that were always thirty seconds in
duration. By contrast, pathological nystagmus has a much lower
and much more variable amplitude, the signal-to-noise ratio is
therefore lower, the fundamental frequency of the signal changes
with time, and the total duration of the episodes is also highly
variable. Furthermore, in our previous work, we were able to
train models to detect nystagmus using a relatively small dataset
of artificially induced data, which contained only a few minutes
of nystagmus data. In order to train robust models capable of
detecting a broad range of pathological nystagmus, much more
data is required. Capturing adequate amounts of representative
data is costly, time-consuming and generally challenging to
obtain, as even symptomatic patients may only capture a few
minutes of dizziness over the course of a month.

Our specific method of data capture also makes the task of
identifying nystagmus more challenging. CAVA collects data
in real-world environments, where patients are expected to
apply the device to themselves, without expert supervision.
Thus, user-error could negatively impact upon the quality of
data collection, as could motion artefacts, or interference from
household sources of electromagnetic radiation. The long-term
duration of data capture also increases the chance of capturing
unseen or rare examples of eye movement data, making classi-
fiers more susceptible to making false positive detections. The
large quantity of data could also make the classification process
computationally slow. Thus, the variability of physiological
nystagmus, the availability of representative training data, and
the issues surrounding real-world data capture are the three
main challenges posed by this task. The objectives of the work
presented here are to overcome these limitations by developing

algorithms that can outperform traditional machine learning
techniques, as a step towards an automated nystagmus detection
system. To this end, we will soon undertake a blinded recognition
task in which our algorithms will be presented with hundreds of
data files, each representing a day’s worth of eye movement
data. The algorithms will then automatically determine which
of those files contains a period of nystagmus. Our ultimate aim
is for the system to be able to provide automatic diagnosis as
well as detection of nystagmus.

Apart from our previous work in [9], there are no previous
studies that specifically focus on detecting nystagmus within
long-term electrooculography data. However, several algorithms
have been developed to identify nystagmus within short-term
data [10]–[15]. Many of these systems adopt a heuristic approach
to nystagmus detection, usually involving the identification of
peaks in signal velocity, which can indicate the presence of a
fast phase. For example, [15] used a peak detector followed
by a clustering approach in order to identify fast phases within
short duration, bedside recordings made from subjects with po-
sitional vertigo. Such approaches, while effective when applied
to short-term data that are known to contain nystagmus, can
be slow to process large quantities of data and may produce
many false positive detections when applied to highly variable
long-term data. 1D Convolutional Neural Networks (CNNs)
have also been used to classify diseased versus healthy induced
nystagmus signals captured using video goggles in clinical
settings [16]. Despite this technique not being used to identify
or confirm the presence of nystagmus, it is reassuring that it
achieved a classification accuracy of 96.36% for discriminating
signals from healthy people with those from patients suffering
from Vestibular Neuritis and Ménière’s disease. Deep Neural
Networks (DNNs) have also been applied to event detection in
Encephalography (EEG) and Electrocardiography (ECG). Net-
works incorporating convolutional layers [17]–[19] and Long
Short-Term Memory (LSTM) [20]–[22] layers have been shown
to provide good results when tasked with detecting abnormal
events from long-term EEG and ECG data.

In this article, we develop our algorithm’s capability to detect
pathological nystagmus and present details of approaches taken
to overcome the limited availability and imbalance of repre-
sentative nystagmus data. We evaluate a Deep Neural Network
(DNN) designed to detect periods of pathological nystagmus
from within horizontal eye-movement data. Firstly, in Section II,
we describe more details of the CAVA device (II-A), followed by
details of an ongoing clinical investigation (II-B), which is the
source of the dataset described in Section II-C. In Section II-D,
the experimental setup is explained, followed in Section II-E by
a detailed description of our approaches to overcoming limited
training data and the DNN developed for this task. The results
of our experiments are provided in Section III, with a discussion
in Section IV. The manuscript concludes in Section V.

II. METHODS

A. The CAVA Device

The CAVA device contains five ECG electrode pads that are
strategically placed on the face to record the corneo-retinal
potentials produced by the eyes (Fig. 1). The corneo-retinal
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potential is conventionally used as a proxy for eye-movement
when use of cameras is deemed infeasible. Using this technique,
also known as electrooculography or electronystagmography,
the device records horizontal and vertical eye movement. The
device also contains an accelerometer for recording 3-axis accel-
eration of the head. Vertical and horizontal eye movement data
are sampled at approximately 42 Hz and 3-axis acceleration of
the head at approximately 20 Hz. The device has been designed
to require minimal intervention from the patient or the study
team while deployed on trial, and so patients are not required
to charge, download data or otherwise maintain their device.
Patients are taught to apply and remove the device by themselves,
to activate the devices event marker and to interpret the device’s
status LED. For more information about the CAVA device,
please see [8].

B. Clinical Investigation

We are currently undertaking a clinical investigation involving
patients suffering from pathological dizziness, such as individ-
uals with Ménière’s disease, Vestibular Migraine and Benign
Paroxysmal Positional Vertigo. We are in the first training phase
of this investigation, in which patients are recruited to provide
training and development data for our computer algorithms. This
will be followed by a second phase in which patient data will
be used as part of a blinded analysis. During the trial, patients
are required to wear the CAVA device in the community, for
twenty-three hours a day, for thirty days. Thus, patients wear the
device during their normal daily activities and crucially during
any dizzy attacks they experience. Typically, data captured in
this way is 24 hours in duration and contains tens of minutes of
nystagmus. The beat direction of the nystagmus can be left or
right beating, depending on the patient’s specific condition and
which ear(s) are affected.

At the end of each patient’s thirty day trial, they undergo
caloric testing in a clinical setting. In practice, a patient may
undergo many additional tests before receiving a firm clinical
diagnosis, but only caloric testing is undertaken here, as it used
as source of data collection rather than to facilitate a diagnosis.
During this procedure, which lasts about twenty minutes, warm
and then cool water are introduced into the inner ear canal,
causing momentary dizziness, usually for a couple of minutes.
In healthy people, warm water is expected to produce nystagmus
beating towards the irrigated ear, whilst cool water produces nys-
tagmus which beats in the opposite direction. For patients with
vestibular malfunction, the nystagmus response may be weaker
when the diseased ear is irrigated. Thus, the beat direction of
nystagmus induced through caloric testing is controlled through
the test itself. The experiments described in this article use a
combination of data captured during caloric testing (3 out of 4
patients) and data captured during an attack of vertigo in the
community (1 patient).

C. Dataset

The dataset used in the following experiments consists of
data captured from four individuals (Table I). Here, we only
use the data corresponding to horizontal eye-movement, as the
nystagmus we are aiming to detect occurs almost entirely in the

TABLE I
A SUMMARY OF THE DATASET USED IN THE NYSTAGMUS DETECTION
EXPERIMENTS DESCRIBED IN THIS MANUSCRIPT. THE DURATIONS

PRESENTED ARE THE TOTAL DURATIONS OF NYSTAGMUS AND
NON-NYSTAGMUS DATA FOR EACH SUBJECT

TABLE II
SHOWS THE NUMBER AND PROPORTION OF TRAINING FRAMES FOR EACH
SUBJECT’S TESTING FOLD, BEFORE AND AFTER DATA AUGMENTATION AND

SMOTE CLASS BALANCING. THIS DATA RELATES TO EXPERIMENTS
CONDUCTED USING A FRAME SIZE OF 400 FRAMES, BUT THE

PROPORTIONS ARE VALID FOR OTHER FRAME DURATIONS

horizontal plane. The data was sampled with 12-bit precision and
at a rate of approximately 42 Hz. The data from three of these
individuals was captured during a caloric testing procedure,
during which four separate periods of nystagmus are expected,
each lasting up to three minutes. The difference in total data
duration for each patient is mainly due to the duration that each
patient wore their device. Patients 1 and 2 donned the CAVA
device shortly before the caloric test started, whereas patient 3
was wearing their device for several hours before the test. The
data from patient 4 represents a full day of data, during which
the patient reported experiencing an acute Ménières attack, over
a period of about three hours. All data was hand-labelled at
the sample level with either a 0 (normal eye movement) or a 1
(nystagmus), based on a clinical expert’s interpretation on the
presence of nystagmus in each signal.

D. Experimental Setup

The main classification task was to automatically classify
each frame (where a frame is the data extracted from a moving
window) as either a positive example of nystagmus, or not.
The best frame duration was determined by experimentation
and the results are presented in Section III. To evaluate our
system, we employed per-subject cross-fold-validation. Using
this approach, the data is divided into a number of testing and
training “folds”. Each testing fold contains data from a single
subject and the data from the remaining subjects is used to train
the neural network: this means that the system is always tested
on data from a patient it has never “seen” before. In addition, we
also withhold 20% of data from each training fold to provide
development data which was used to determine the optimal
network configuration for this task. Table II shows the quantity
of data within each of the four folds, including the proportion
of nystagmus data both before and after data augmentation and
class balancing steps were applied (see Section II-E2 for more
details).
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Fig. 2. The top panel shows a 200 sample frame corresponding to an
example of left-beating nystagmus. The bottom panel shows the velocity
signal extracted from the example shown in the top panel. The signal
has been normalised by transformation to a unit vector, such that the
magnitude of the vector is equal to 1. The fast phases of the nystagmus
are visible as prominent peaks of negative velocities.

E. Nystagmus Detection System

The nystagmus detection system is described in the following
sections. The feature extraction process applied to the training
and testing data is described in Section II-E1. The methods by
which we address the imbalance in class data are described
in Section II-E2. In Section II-E3, we provide details of the
DNN architecture we use. The machine learning elements of
the system were developed in Python, using the Keras software
package [23]. Post-processing and data visualisation was per-
formed using MATLAB. Lastly, in Section II-E4 we discuss the
classification process, including a smoothing step applied to the
DNN output.

1) Feature Extraction: A non-overlapping sliding window
is used to segment the time-series data (Fig. 2). No filtering
or pre-processing is applied to the data. We estimate the first
order derivative (velocity) of the signal by simple differencing,
producing vectors which we term frames. Using the velocity
signal negates the need to remove any DC drift in the signal,
which is common in electrooculography recordings. In the ve-
locity signal, periods of nystagmus are visible as periodic spikes,
whose sign depends on the direction of the nystagmus. Each
frame of data is normalised to be a unit vector. The original data
is labelled at the sample-level, and the class label (nystagmus
present or nystagmus not present) of each frame is determined
by majority vote of the samples from which it was derived. For
example, for a frame duration of 400 samples, a frame containing
100 nystagmus samples and 300 non-nystagmus samples would
be assigned a “nystagmus not present” label. In the case of a tie,
frames are labelled as “nystagmus not present”.

2) Balancing Class Data: The small amount of nystagmus
eye movement data available is a significant challenge when
training machine learning algorithms for this task. Although
some patients report episodes of dizziness lasting up to several

Fig. 3. The methods of data manipulation used to generate new
examples of nystagmus from existing ones. (A) A 200-sample frame
displaying an original timeseries waveform. The waveform is a positive
example of nystagmus. (B) Nystagmus examples are duplicated and
flipped in the x-axis, and (C) also duplicated and flipped vertically. These
steps produce four times the original volume of nystagmus training data.

hours, our data shows that when they do occur, periods of
nystagmus are sporadic and last for a few minutes at most.
Even if patients were to experience daily attacks, this would
still correspond to less than 1% of the total eye-movement data
collected. Training with such a small set of nystagmus data
leads to overfitted models that do not generalise well to unseen
examples of nystagmus [24]. Large class imbalances can prevent
models from learning discriminative features, as the optimal
model becomes close to one that simply classifies everything
as the majority class.

There are two predominant techniques for overcoming class
imbalances: oversampling and undersampling. Oversampling
aims to create new examples of the underrepresented class,
whilst undersampling reduces the number of examples in the
majority class. Experimentally, oversampling has been shown to
outperform undersampling [25], [26], especially when applied
to large class imbalances and when training neural networks.
A number of oversampling techniques have previously been de-
scribed for rebalancing class data, including random duplication
of examples from the minority class [27], Synthetic Minority
Oversampling Technique (SMOTE, [28]), which generates new
examples by interpolating the feature space between neighbour-
ing data points, or by exploiting an understanding of the data,
such as by mirroring or translating signals [29].

To address these issues, we have employed a number of tech-
niques designed to create new training examples of nystagmus
from the limited number of examples available in each training
fold (Fig. 3). Our approach combines conventional oversampling
techniques with data replication methods based on our intuition
about nystagmus. The techniques are applied separately for
each fold of the cross-validation. First, each nystagmus frame is
duplicated and reversed in time. This step results in nystagmus
that beats in the opposite direction to the original example. Next,
all examples are duplicated and multiplied by −1, which again
reverses the direction of the nystagmus but by reversing in the
y-axis (e.g. a velocity of 1 becomes a velocity of−1). Three new
examples of nystagmus are produced for each original frame
of nystagmus. These data augmentation steps do not require
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Fig. 4. Deep Neural Network architecture containing 11 layers, inclu-
sive of input and output layers. ‘X’ denotes a sample / frame.

knowledge of the beat direction for the original nystagmus
signal, as we are not currently concerned with balancing the
quantities of left and right-beating nystagmus. Finally, we use
SMOTE to balance the number of examples in the nystagmus
and non-nystagmus classes.

3) Neural Network: Fig. 4 shows the Deep Neural Network
(DNN) architecture developed for use in these experiments. One
network was trained for each fold of the cross-validation using
an Nvidia GeForce GTX 1080 Ti GPU-enabled graphics card,
taking approximately thirty-seconds per epoch (an epoch is a
single pass of the training data through the network, during
training). Our DNNs use 1D Convolutional layers, hence they
are Convolutional Neural Networks (CNN). In a 1D-CNN, it
is generally accepted that the first layers of the network are
concerned with detecting lower level features of the target signal,
such as signal velocity and acceleration, whereas later layers
may learn more subtle, higher level features. We opted to use
CNNs because they have shown to work well for event detec-
tion in other types of 1D signal, such as arrhythmia detection
in Electrocardiography (ECG) data [17], [18]. 1D CNNs are
particularly well suited to detection tasks in the time domain,
specifically where target signals can occur at any time during
the full signal. The arrangement of our CNN architecture was
adapted from examples of networks successfully applied to ECG
event detection. The parameters used in our networks, such as

the kernel size and number of filters per layer, were determined
by way of preliminary parameter searches. The values selected
provided a good balance between classification accuracy and
time taken to train the networks.

The network consists of 11 layers in total. The input layer
has 199 dimensions, corresponding to the dimensionality of
the velocity features in the data frames. This is followed by
two 1D convolutional layers, with a kernel size of 3, which are
intended to learn the basic features of the data. A 20% dropout
layer is used to improve the generalisability of the network,
followed by two more 1D convolutional layers. A 1D pooling
layer reduces the network dimensionality to 128. A dropout layer
precedes two Dense layers, followed by the final output layer.
The total number of trainable parameters was 72, 953. To train
the network, the Adams optimiser and a learning rate of 0.001
was used, with a batch size of 20. All networks were trained
using 30 epochs, which was found to be the optimal duration
for classification of the development data. Binary cross-entropy
was selected as the loss function and accuracy was the chosen
performance metric.

4) Classification: Unseen test data was treated using the
same feature extraction process as applied to the training data
(Section II-E1). Testing data was classified on a frame-by-frame
basis by a fold-specific Deep Neural Network (DNN), as de-
scribed in Section II-E3. After this classification stage, each
frame was represented by a binary classification, indicating
whether that frame contained nystagmus or not.

A sequence of classified frames typically has some frames
labelled nystagmus and some non-nystagmus. A single frame
classified as nystagmus, surrounded by non-nystagmus frames,
is not likely to be a genuine episode, as episodes of nystagmus are
typically much longer than the duration represented by a single
frame (14 sec is the longest frame duration tested here). Simi-
larly, a frame classified as non-nystagmus that is found within
a number of positively classified frames is likely to be a false
negative detection. Therefore, we used a sieve filter to smooth
the output from the classification. For a full description of the
operation of a sieve filter, please see [30], but to summarise, the
sieve essentially operates by removing very short durations of
negative or positive classifications.

In addition to the DNN classifier described here, we also
performed baseline experiments using a Support Vector Ma-
chine (SVM) classifier and neural networks containing only
non-convolutional layers. The SVM classifier and one of the
non-convolutional networks used the same velocity features
as the DNN classifier. We did not normalise the recognition
features for the SVM classifier, as this classifier is not capable
of extracting temporal patterns, and normalisation could destroy
some potentially discriminative aspects of the data. Parameter
optimisation was used to select the best configuration of SVM
classifier for each training fold. A further non-convolutional neu-
ral network baseline used frequency domain recognition features
(Fast Fourier Transform) instead of velocity features, and was
configured in a similar manner to [9]. All experiments were
evaluated using the same cross-fold validation approach, and the
same training data was used for comparable experiments. These
baseline experiments were performed using all class balancing
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TABLE III
EXPERIMENTAL RESULTS SHOWING THE EFFECT OF VARYING FRAME SIZE
(IN SAMPLES) ON THE FRAME-LEVEL CLASSIFICATION PERFORMANCE OF

OUR DEEP NEURAL NETWORK SYSTEM. THE RESULTS FOR EACH SUBJECT
WERE OBTAINED USING HOLD-ONE-OUT CROSS-VALIDATION, IN WHICH

EACH SUBJECT WAS HELD-OUT FOR TESTING AND THE REMAINING
SUBJECTS WERE USED FOR TRAINING. EACH CLASSIFIER USED ALL CLASS

BALANCING TECHNIQUES (AUGMENTATION AND SMOTE),
BUT NO SIEVE POST-PROCESSING

techniques (augmentation and SMOTE), but we did not apply
the sieve filter, as the results are generally too poor to benefit
from post-processing.

III. RESULTS

The first experiment sought to find the optimal frame duration
for the subsequent experiments. Table III shows the results
of varying the frame duration from 100 samples (2.3 s) to
600 samples (14.1 s). These results were obtained using both
data augmentation and SMOTE simultaneously. The average F1
score was lowest for a frame duration of 100 samples, suggesting
that this duration is not long enough to capture a sufficient
number of nystagmus beats in order to train a reliable network.
A frame duration of 400-samples produced the highest average
performance across all metrics except for sensitivity, which
was only marginally lower than the highest value obtained.

TABLE IV
RESULTS OF A FRAME-LEVEL CLASSIFICATION TASK. THE FIRST THREE

ROWS SHOW THE RESULTS OF THREE BASELINE EXPERIMENTS OBTAINED
USING AN SVM CLASSIFIER AND TWO NON-CONVOLUTIONAL NEURAL

NETWORKS. EACH BASELINE USED ALL CLASS BALANCING TECHNIQUES
BUT NO SIEVE POST-PROCESSING. THE FOURTH RESULT WAS OBTAINED

USING A DEEP NEURAL NETWORK (DNN), WITHOUT CLASS BALANCING OR
A SIEVE FILTER. ALL SUBSEQUENT RESULTS RELATE TO EXPERIMENTS

USING DNNS AND VARIOUS COMBINATIONS OF CLASS BALANCING

Therefore, all subsequent experiments are performed using a
400-sample frame duration.

Table IV shows the results of the nystagmus detection task
across eight different experiments: First, three baseline exper-
iments using an SVM and two non-convolutional neural net-
works, followed by five different system configurations of Deep
Neural Network (DNN). For the five DNN systems, the first uses
networks trained without using any class balancing techniques.
The second is a system where the class data is replicated by the
augmentation methods described in Section II-E2, but not using
the SMOTE method or any post-processing of the classification.
The third a system uses SMOTE without the other data replica-
tion techniques. The networks in the fourth system are trained
using all class balancing techniques, including data replication
and SMOTE, but no sieve filter. In the final system, all data
replication approaches were used, including the sieve filter. We
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mostly consider the F1 scores when comparing results from the
different classifiers, as this metric is commonly used in Com-
puter Science to summarise the results of binary classification
tasks. More detail regarding the F1 score can be found in [31],
but in summary it provides the harmonic mean of precision and
recall.

The results for all baseline experiments showed poor per-
formance compared to the DNN approaches. The results from
the SVM classifier were the lowest of the three baselines, with
poor results across all metrics, except for accuracy. However, the
values shown for classification accuracy are misleadingly high
for all experiments, which is a common issue when evaluating
classification performance on a vastly imbalanced dataset, where
high accuracies can be achieved simply by classifying all exam-
ples as belonging to the majority class. The non-convolutional
networks offered improved results over the SVM, with the
network trained using velocity features outperforming the net-
work trained using frequency domain recognition features. The
average F1 score for each baseline experiment was worse than
for all configurations of DNN. A McNemar’s test confirmed
that the difference in performance was statistically significant
for all configurations of DNN compared to all other systems
(p < 0.0001). We achieved qualitatively similar results to the
SVM using Random Forest, K-Nearest Neighbour and XGBoost
classifiers.

For the different combinations of DNN system, the results
from each combination of class balancing and sieve filtering are
better than the baseline DNN, in terms of classification sensi-
tivity and average F1 score. The differences are all statistically
significant, according to a McNemar’s test. A combination of
all techniques, including the sieve filter, provides the highest F1
scores across three out of four subjects. For the best set of results,
the sensitivity ranges from 25% for patient 4 to 81% for patient
2, and specificity near to 100% for all patients. Examination of
the columns labelled tp, tn, fp and fn in Table IV shows that the
number of false positive detections is extremely low compared
to the number of true negative detections, producing a high level
of specificity. Some systems showed a decrease in F1 score for
patient 3 compared to the baseline. This was due to an increase
in the number of false positive detections. However, inclusion of
the sieve filter was sufficient to reduce these short and isolated
misclassifications.

In Fig. 5 we present the Receiver Operator Curves (ROCs) for
each fold of the cross-validation experiment using all balancing
techniques. These curves were generated using the classification
probabilities produced each fold-specific neural network. All
plots show that the networks perform well across a range of
classification thresholds. The Area Under Curve (AUC) statistic
for each plot ranges from 0.85 to 0.93, demonstrating consistent
discriminative capabilities across all testing folds.

IV. DISCUSSION

The results presented in the previous section have highlighted
the problem of classifying events that are rather variable and
occur as less than 1% of the available data. It is encouraging
that we were able to use nystagmus data from patients under-
going caloric testing to train a network to detect pathological

Fig. 5. These Receiver Operator Curves (ROCs) correspond to the
classification outputs from each of the four cross-validation folds. They
were generated using the direct outputs from the neural networks trained
using all balancing techniques, but prior to the smoothing stage. A
shows the ROC for subject 1 and has an Area Under Curve (AUC) of
0.81. B is for subject 2 and has an AUC of 0.93. C is for subject 3 and
has an AUC of 0.93. D is for subject 4 and has an AUC of 0.87.

nystagmus. This is promising for future research as until there
is widespread wearing of the CAVA device, caloric testing is the
only reliable way to obtain vestibular-induced nystagmus data
for analysis and diagnosis.

We have shown that 1D Convolutional Neural Networks
(CNNs) are well-suited to this task and vastly outperform other
machine learning approaches, such as Support Vector Machines
(SVMs) and simpler non-convolutional neural network architec-
tures. It is well known that 1D CNNs work well when applied to
pattern recognition problems involving time-series signals such
as Electrocardiography data [17], [32], particularly where the
features of interest can occur at any point in time in a given
signal. By contrast, conventional distance metrics and machine
learning techniques do not perform well when the position of
the target signal is highly variable, as confirmed by the results
presented here. Therefore, it is far more common to apply
traditional machine learning techniques to derived features that
are independent of time, such as frequency domain recognition
features. However, by using a similar technique to our previous
work [8], [9], we have also shown that a combination of Fast
Fourier Transform (FFT) features and non-convolutional neural
networks are still outperformed by networks using simpler ve-
locity features. This disparity in performance is likely due to the
increased variability of pathological nystagmus obscuring infor-
mative frequency components. This explanation is supported by
previous work [33], where it was also suggested that common
sources of signal noise can mask or imitate the presence the
nystagmus.

Although neural networks have previously been applied to
several tasks involving eye-movement signals, such as classify-
ing normal versus abnormal nystagmus during caloric tests [16]
and detecting saccades [34], this study is the first example of
1D CNNs applied to the task of detecting entire nystagmus
waveforms from within hours of normal eye-movement data.
While heuristic approaches to detecting optokinetic nystagmus
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have been shown to yield high levels of classification accuracy
(89.13% sensitivity and 98.54% specificity in [10], and 93%
accuracy in [12]), these results are not comparable with our
study as the data was captured during optokinetic tests and are
extremely short in duration (8 seconds each in [10], compared
to up to 24 hours in our longest example and almost an hour
in the shortest). While it is impressive that [10] were able to
extract and analyse eye-movement signals from young children
in a laboratory setting, the constrained detection task described
is very different to identifying nystagmus within many hours of
eye-movement data.

Another factor separating our study from others is that over
half of the data used was captured in the community, rather than a
clinical setting. Capturing data in ‘real world’ conditions may be
affected by motion artefacts, incorrect donning of the monitoring
device, by measurable differences between spontaneous and
induced nystagmus, or by the increased variability of continuous,
long-term eye movements. By contrast, nystagmus captured
during caloric testing is usually uninterrupted, the data capture
process is monitored by a professional, and is not subject to
the same sources of real-world ‘interference’. Therefore, our
results are a first step towards reliable detection of nystagmus in
long-term eye-movement data, although there is evidently much
room for improvement.

The performance we demonstrate for subject 4, the subject
who wore the device for 24 hours, is the lowest of all test subjects
presented. For the experiments giving the highest average F1
score overall, we were able to identify nearly a third of subject
4’s nystagmus (44 frames), but at the expense of nearly four
times the number of false positive detections (167 frames). At
first glance, this might seem like a disappointing result, however,
a further 8647 true negative detections were made. Thus, we
were able to identify a significant proportion of pathological
nystagmus buried within vast and highly variable eye movement
data, with only a small proportion of true positive detections. It
should also be noted that even an apparently low F1 score of
0.24 actually represents performance that could not be obtained
through guessing.

The two lowest F1 scores were produced by the two longest
data files, suggesting that performance, specifically the number
of false positive detections, is correlated with the total duration
of eye-movement. To explore this further, we visualised the false
positive and false negative detections (Fig. 6). False negatives,
such as the example shown in the bottom panel of Fig. 6,
were subtle, containing low amplitude nystagmus concealed by
relatively high levels of background noise. Analysis of one of
the false positive detections for subject 4 (top panel of Fig. 6),
revealed a period of reading that was misidentified as nystagmus
and which is redolent of some examples genuine nystagmus,
such as that shown in Fig. 2. This signal is very similar to that of
nystagmus, except that the slow phase is characterised by short
saccadic motions, moving from left-to-right, corresponding to
the eyes reading each word on a line of text. We expect that
correctly identifying examples such as these may be possible
by training the network with more representative training data.
These results highlight the challenges posed by real world data
compared to data obtained in a laboratory setting, and suggest a
sensible focus for future work.

Fig. 6. The top panel shows a false positive detection, in which the
signal appears nystagmus-like, but with noisy and ‘stepped’ slow phases
that are likely to have been produced by the subject reading. The
bottom panel shows an example of a false negative classification of
right-beating nystagmus. The signal contains two short periods of low
amplitude nystagmus, the first ending at about 11:46:00 and the next
starting approximately nine seconds later.

Our experimental framework was designed around a blinded
recognition experiment that we will undertake at the end of an
ongoing clinical investigation. In this experiment, our algorithm
will be presented with around 400 separate data files, each
file containing a days worth of eye movement data, and will
determine which of these files contain positive examples of
nystagmus. Each day will be classified as containing a positive
example of nystagmus if any frames within that day are posi-
tively classified as nystagmus. Therefore, for this task, higher
specificity for frame-level classification is preferred, since any
number of false positive frames would lead to a false positive
‘day’. The ROCs for each testing fold (Fig. 5) showed that
all classifiers performed well across a range of classification
thresholds, showing that the system could be configured to
favour sensitivity or specificity, depending on the requirements
of a given task. For example, initial screening tests usually favour
sensitivity, while increased specificity is more appropriate for
invasive follow-up procedures.

V. CONCLUSION

In this article we have demonstrated techniques for overcom-
ing the limited availability of data for training neural networks
to detect nystagmus. This is the first reported application of
the use of deep neural networks for this task. The results have
shown that despite very limited amounts of training data, it is
possible to overcome large class imbalances by generating new
examples of training data from existing examples. Although
we only achieved moderate frame-level accuracy, tuning our
system to provide higher levels of sensitivity is likely to provide
adequate results for a potential screening application.

Although these techniques have proven capable of achieving
moderate levels of accuracy for detecting nystagmus, our next
goal is to evaluate them on a much larger dataset, and also to
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compare the current results to those obtained when training
networks using larger quantities of genuine data. Over the
remainder of our current clinical investigation, we will cap-
ture a wealth of data from patients suffering from dizziness
and vertigo. That data will be subject to a blinded analysis,
where the task will be to automatically detect the days on
which patients reported experiencing episodes of dizziness or
vertigo. The models used for that analysis will be similar to
those described here, thus providing a challenging and thorough
evaluation of these techniques. An additional challenge posed
by this task is the inclusion of patients with Benign Paroxysmal
Positional Vertigo (BPPV), whose nystagmus may contain a
large component of vertical eye movement. Although in our
previous clinical investigation we established that CAVA was
capable of capturing vertical eye movements, it has been shown
that the voltage resolution of vertical electrooculography data
is lower than for the horizontal channel [35]. Therefore, it will
be interesting to evaluate how this impacts upon our algorithm’s
capabilities to detect nystagmus in the vertical plane.

In parallel to our clinical investigation, we intend to explore
and evaluate a range of other contemporary machine learning
approaches for this classification task. For example, we wonder
whether Generative Adversarial Networks (GANs) could be
used to augment our limited volumes of training data, perhaps
in place of SMOTE. GANs essentially work by pitching two
neural networks against each other; one to generate artificial
examples of the positive class (the “generator”), and one to learn
to distinguish genuine examples from those produced by the
generator (the “discriminator”). In doing so, GANs could learn
to produce new yet realistic examples of nystagmus with which
to train our DNNs. There are also a number of variations to neural
networks which we would like to evaluate and which have shown
to provide incremental improvements when applied to other
classification problems. For example, ResNet and DenseNet
are approaches to neural networks which seek to overcome
the vanishing gradient problem, whereby network weights can
become so small that all or part of a network will stop training.
2D convolutional neural networks have also been used in cardiac
arrhythmia detection with good results.

Following the completion of our clinical investigation, we will
have a large dataset of patient data available to us with which
we can further evaluate and develop the methods described here.
A longer term aim is to apply this system to vertigo resulting
from a variety of defined inner-ear conditions, and to quantify
the characteristics of nystagmus from them, with a view to
determining whether different pathologies can be discriminated
on the basis of the nystagmus signals they produce. Our ultimate
aim is to develop a complete medical system to allow clinicians
to assess dizzy patients purely on the data provided by the CAVA
system. In this regard, we also intend to extend our system to
provide a more detailed analysis of a patient’s nystagmus, by
automatically extracting parameters such as slow and fast phase
velocity. This innovation has the potential to improve the speed
and accuracy of diagnosis for patients reporting dizziness and
vertigo, by providing an objective record of a patients dizzy
episodes over the course of a month.
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