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Counting Bites and Recognizing Consumed
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Abstract—Assessing dietary intake in epidemiological
studies are predominantly based on self-reports, which are
subjective, inefficient, and also prone to error. Technologi-
cal approaches are therefore emerging to provide objective
dietary assessments. Using only egocentric dietary intake
videos, this work aims to provide accurate estimation on
individual dietary intake through recognizing consumed
food items and counting the number of bites taken. This is
different from previous studies that rely on inertial sensing
to count bites, and also previous studies that only rec-
ognize visible food items but not consumed ones. As a
subject may not consume all food items visible in a meal,
recognizing those consumed food items is more valuable.
A new dataset that has 1,022 dietary intake video clips was
constructed to validate our concept of bite counting and
consumed food item recognition from egocentric videos.
12 subjects participated and 52 meals were captured. A
total of 66 unique food items, including food ingredients
and drinks, were labelled in the dataset along with a total
of 2,039 labelled bites. Deep neural networks were used
to perform bite counting and food item recognition in an
end-to-end manner. Experiments have shown that counting
bites directly from video clips can reach 74.15% top-1 ac-
curacy (classifying between 0-4 bites in 20-second clips),
and a MSE value of 0.312 (when using regression). Our ex-
periments on video-based food recognition also show that
recognizing consumed food items is indeed harder than
recognizing visible ones, with a drop of 25% in F1 score.

Index Terms—Bite counting, dietary intake monitoring,
food recognition, video understanding.
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I. INTRODUCTION

The 2019 Lancet Series on The Double Burden of Malnu-
trition highlights that nearly 2.3 billion children and adults are
estimated to be overweight globally and more than 150 million
children are affected by stunting [1]. Despite continued efforts
to prevent malnutrition in all its forms, recent estimates reveal
that we are still far from reaching the World Health Assembly
global nutrition targets set for 2025 to improve the nutritional
status of young children [2]. It is clear that reducing the risk
of malnutrition requires effective diet interventions; however,
in current epidemiological studies, dietary assessment methods,
such as 24-hour dietary recall and food frequency questionnaires
(FFQs) are often inaccurate and inefficient as their assessments
are predominantly based on self-reports which depend on re-
spondents’ memories and require intensive efforts to collect,
process, and interpret [3]. To meet the need for objective and
accurate dietary assessments, sensing-based technological ap-
proaches are emerging with the aim to transform these conven-
tional subjective assessments. Current technological approaches
include image-based sensing, sensing with eating action unit
(EAU), and biochemical sensing [4]. EAU-based sensing ap-
proaches are primarily designed for detecting eating actions and
some are able to produce reasonable estimates with the use
of inertial sensors [5]–[13], but one evident limitation of the
EAU-based approaches is that they can hardly recognize food
items. While image-based approaches can recognize or segment
food items more accurately, they still face challenges when
processing images that have hidden, occluded, or deformed food
items. In addition, many image-based approaches tend to only
process few images or a single food image well captured before
eating [14]–[16], which is insufficient to determine the exact
food consumption. It is for this reason that videos are a more
promising and reliable source to estimate food intake, as they can
capture the entire eating episode with much information, such as
eating actions, chewing, and swallowing sound when the camera
is appropriately positioned. As videos contain both spatial and
temporal information, apart from basic food recognition, the
number of bites taken within an eating episode can also be
derived. Pilot study in [5] has shown the potential correlation
between the number of bites and dietary intake. For these rea-
sons, this work investigates a video approach for passive dietary
assessment. Specifically, we focus on two targets, which have
not yet been explored in any prior work on dietary assessments
with egocentric videos. The first target of this work is to count the
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number of bites within a time period from recorded dietary intake
videos. In the domain of video understanding, there has been
growing interest in end-to-end temporal counting [17]–[19],
especially with the adoption of deep learning [20]. Thus, in this
work, deep neural networks have been used to count the number
of bites in an end-to-end fashion. An accurate bite count can be
used to measure a subject’s eating speed and infer the eating
behaviour (e.g., whether the subject always binge-eats). The
second target is to perform fine-grained food recognition from
videos. Unlike prior works that only focus on recognizing a main
category of food (e.g., pasta, or fried rice), this work advances
food recognition to a much fine-grained level. In the case of
having a meal, some hidden or occluded food ingredients may
start to be revealed as eating progresses, and videos can well cap-
ture these hidden ingredients during the process. Hence, in this
work, three sets of fine-grained food recognition are performed:
1) classifying a meal into a fine-grained class (e.g., prawn_pasta
or mixed_seafood_pasta); 2) recognizing all visible food items
(e.g., food ingredients of a meal, and drinks) within a recorded
eating episode; 3) As a subject may not consume all food items
in a meal, we further propose to recognize and identify those
food items consumed by the subject. To achieve these two
targets and evaluate the performance of passive dietary intake
monitoring with videos, a new dataset has been constructed
which contains egocentric videos capturing eating episodes,
and extensive experiments have been conducted with the use of
state-of-the-art video understanding networks. Our key findings
include: 1) bite counting can be treated as both classification and
regression problems. End-to-end bite counting is feasible, and
by using only visual clues, the accuracy on unseen subjects can
reach 74.15% when classifying between 0-4 bites in 20-second
clips, and a low MSE value of 0.312 when using regression;
2) recognizing consumed food items in an end-to-end fashion
is more difficult than recognizing all visible food items (a 25%
accuracy gap was observed between these two cases), which we
conjecture is because recognizing consumed food items needs to
take more information into account, such as eating actions and
hand-food interactions. To the best of our knowledge, this is the
first work that solely uses egocentric videos of eating episodes to
count the number of bites and recognize consumed food with the
aim of providing automatic and objective dietary assessments.

The rest of this paper is organized as follows: Section II
discusses prior technological approaches to dietary intake as-
sessments as well as state-of-the-art video recognition networks.
Section III presents details of collecting and constructing the
dataset. Methods are described in Section IV, followed by the
analysis of experimental results in Section V. We discuss a
few limitations of our work in Section VI and conclude in
Section VII.

II. RELATED WORK

A. Technological Approaches for Dietary Assessment

With the ubiquitous use of wearable technologies and the
advances in associated data analysis algorithms, there has been a
rapid increase in developing automatic and objective dietary as-
sessment systems. EAU-based and image-based sensing systems

are mostly related to our work, and are the two most common
approaches for objective dietary assessments to date. Thus, we
mainly discuss prior works on EAU-based and image-based
systems in this section.

1) EAU-based Systems: Detecting eating action units
(EAUs) [4] such as feeding gestures is a straightforward way
to assist dietary intake monitoring and assessment. EAU-based
systems are mainly based on inertial or acoustic sensing. In
systems with inertial sensors, it is common to use wrist-worn
devices to detect eating episodes, feeding gestures, or to count
the number of bites from accelerometer and gyroscope sig-
nals [5]–[13]. In systems with acoustic sensors, acoustic signals
are used to detect eating episodes [21], swallows [22], [23], or to
distinguish eating from other activities [24], [25]. The effects of
using both inertial and acoustic sensing have also been examined
in [26] and [27]. Other sensing modalities have been explored
in EAU-based systems include piezoelectric signals [28] and
electromyography (EMG) [29] for chewing detection. Despite
reasonable performance in these eating-related detection and
recognition, EAU-based systems face a number of limitations.
One of the limitations is that they can hardly distinguish between
food categories, especially for those inertial sensing-based sys-
tems. To train machine learning models with collected inertial or
acoustic signals, some EAU-based systems require an additional
camera to be set up to record the eating episodes in order to obtain
ground truth labels [5], [7]–[13], [21], [27]. This additional setup
is cumbersome and since a camera is already in use for obtaining
the ground truth, directly using visual information to perform
eating-related tasks may be more efficient.

2) Image-based Systems: Image-based systems usually
consist of a single or sometimes multiple cameras for recording
dietary intake in the form of images or videos, and a set of associ-
ated computer vision algorithms for food recognition [30]–[33],
segmentation [34]–[37], and volume estimation [38], [39]. Sun
et al. [40] designed a chest-worn camera that takes meal pictures
periodically during an eating episode. Liu et al. [41] designed
an ear-worn device which continuously monitors the sound of
chewing, and once it has been detected, a miniaturized camera
inside the device will be triggered to record eating episodes. In
addition to these devices specifically designed for capturing di-
etary intake, smartphones are also commonly used to capture and
process food images [14]–[16], [42], [43]. Using smartphones
also offers an opportunity to utilize restaurant information [42],
[43], such as the menu and recipes through GPS localization,
which could largely narrow down the number of food categories
and potentially provide more accurate nutrient intake estimation.
As using recipes facilitates dietary intake assessments, there
is growing interest in developing cross-modal food image and
recipe retrieval [44]–[49]. Recently, efforts to assess individual
dietary intake in communal eating scenarios have also been
made with the use of a 360 camera [50], [51]. Fine-grained
food ingredient recognition has also been studied to enhance
general food recognition [52], or to perform recipe retrieval [53],
but so far studies have only been carried out in recognizing
ingredients from food images rather than from dietary intake
videos. In [54], clustering images sampled from egocentric
videos into food and non-food classes has been attempted, but
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the types of food were not recognized. For more comprehensive
reviews of image-based approaches, we refer readers to [55]
and [56].

Although bite counting is one of our targets, it is tackled
through vision instead of inertial sensing [5], [9], [12], [13],
and our system essentially is a type of image-based systems.
Furthermore, we seek an end-to-end approach to counting bites
in this work (i.e., given a video clip of eating, the network directly
predicts the number of bites taken in that clip, which is realized
by solving bite counting as a classification or a regression prob-
lem in the context of end-to-end temporal counting [17]–[19]).
This is different from prior works on bite detection with inertial
sensing [12] and intake gesture detection from videos [51], both
relying on sliding windows to localize each bite temporally.
The former detects bites on the basis of predefined wrist micro-
movements during eating, and the latter detects intake gestures
by first estimating the probability of each frame being intake
or non-intake frame and then assigning a local maximum as
an intake event. Temporally localizing each bite is one way to
achieve bite counting, but as shown in this work, end-to-end
prediction of the bite count is also feasible and able to produce
decent results. In a recent work, end-to-end bite detection with
inertial data has been introduced [13]. Although we both adopt
the end-to-end concept, the methodologies we proposed are
completely different, and are targeted for different modalities
(i.e., visual vs. inertial).

B. Deep Networks for Video Recognition

Both 2D convolutional neural networks (2D CNNs) and 3D
CNNs have been used in video recognition. As a 2D CNN itself
does not come with the ability to model temporal evolution
in a video, deep architectures built with 2D CNNs normally
introduce additional temporal modelling scheme to enhance
recognition performance. For example, Two-Stream [57] uses
two separate streams to process a video, a spatial stream for cap-
turing appearance and a temporal stream for motion; TSN [58]
decomposes a video into short time segments and fuses pre-
diction from each segments at the end; TRN [59] proposes a
relational module in order to better capture temporal relations
in videos; CNN+LSTM [60] builds a LSTM [61] on top of
a CNN to integrate temporal information. Despite being less
computationally expensive than using 3D CNNs, their ability
to model along the temporal dimension is limited. However,
although better at learning temporal information, 3D CNNs,
such as C3D [62] and I3D [63] are computationally heavy.
Balancing between accuracy and efficiency is thus an important
factor in the design of deep architectures for video recognition. In
this work, we adopted two state-of-the-art network architectures
from video recognition: TSM [64] and SlowFast [65]. TSM,
short for temporal shift module, is a module that can be inserted
into a 2D CNN that gives the 2D CNN comparable performance
to 3D CNN in video understanding. Thus, TSM has the advan-
tages of being both efficient and accurate for video recognition.
SlowFast uses two pathways operating at different frame rates,
one at low rate to learn spatial semantics (Slow pathway) and
the other at high rate to capture motion (Fast pathway). Despite
the use of 3D CNNs in SlowFast, it is still relatively lightweight

Fig. 1. A subject wears a GoPro Hero 7 Black camera, which records
the entire eating episode in a passive way. The camera is mounted on
the shoulder at the same side as the subject’s dominant hand. This
position provides the camera with a good view that can capture both the
mouth and dominant hand, which facilitates bite counting and consumed
food item recognition from the recorded egocentric video.

as its Fast pathway is designed to have low channel capacity.
We notice that in intake gesture detection [51], SlowFast was
also adopted. Their use of SlowFast was to perform a per-frame
intake and non-intake binary classification, whereas we adopted
SlowFast to directly estimate the bite count of a video clip as
well as to recognize food items.

III. DATASET

In order to validate our concept of bite counting and consumed
food recognition from dietary intake videos, a new egocentric
video dataset was constructed. Egocentric videos record the
visual field of a subject during eating, which offers a better
opportunity to understand the subject’s eating behavior (e.g.,
like or dislike a certain type of ingredients) compared to other
sensing modalities such as inertial sensing. In addition, as they
can be recorded in a passive way, less interruption will be caused
during eating. In practice, people are generally unwilling to wear
cameras in their daily life due to privacy concerns. On the other
hand, patients could often be more compliant in wearing devices
for collecting data for diagnostic purposes. This passive and
egocentric way of dietary intake recording is therefore suitable
to be applied in care homes and hospitals where the need for
dietary monitoring exists and staff can help the user to wear the
device and initiate the recording.

A. Data Collection

Data collection was conducted in a laboratory setting. 12
healthy subjects were recruited and asked to come at their normal
mealtimes to record dietary intake videos. A GoPro Hero 7 Black
camera was mounted on the subject’s shoulder, the one at the
same side as their dominant hand, before they start eating. This
position allows the camera to better capture both the mouth and
dominant hand, which facilitates subsequent bite counting and
consumed food recognition. Figure 1 illustrates the setup for
data collection.
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Fig. 2. One RGB frame is shown for each dietary intake video (top
four rows). The extracted optical flows of the fourth row are shown in the
bottom (x and y directions).

TABLE I
66 UNIQUE FOOD ITEMS LABELLED IN THE DATASET

Invisible ingredients, such as oil and salt, are not labelled.

The resolution of the GoPro camera was set to 1920× 1440
and it recorded videos at 30 fps. Subjects were asked to eat
their meal as they normally do (e.g., they were free to read their
messages, or browse the web on their phones while eating).
There was no restriction on how much the subject should eat,
and they were free to leave some food items uneaten if they
dislike (e.g., a subject may not like pickles in a meal). The only
restriction was no talking. The camera was turned off once the
subject finished eating.

After collecting the data, two labellers were involved in data
annotations. One annotated all bite counts and food items, and
the other double checked the annotation. The dataset will be
made available upon request.

B. Data Statistics

A total of 52 dietary intake videos (i.e., 52 meals) is used in this
study. Figure 2 shows some snapshots of the videos recorded.
Meals consumed by the subjects can be categorized into 8 main
classes (please refer to the inner circle of Figure 3), and some of
them can be further categorized into fine-grained meal classes as
shown in the middle circle. The outer circle of Figure 3 displays
visible food items, including ingredients and drinks, in each
meal class. In total, there are 66 unique and visible food items
labelled in these meals (please refer to Table I for a full list of
labelled food items), with the maximum number of visible food
items a meal class has being 19 (sushi_non-vegetarian) and the
minimum being 4 (sandwich_meal_deal). Eating with a fork

Fig. 3. Meal statistics. The inner circle shows 8 main meal categories.
Some meals can be further categorized as shown in the middle circle,
which results in 18 fine-grained meal categories. The outer circle shows
visible ingredients and drinks identified in each meal. Due to the limita-
tion of font size, not all visible items are displayed in the outer circle.

and knife, a spoon, chopsticks, or hands can all be found in the
recorded videos. The average time the subjects spent finishing a
meal is 9 m 57 s, with the longest time being 27 m 57 s and the
shortest time being 3 m 48 s.

C. Constructing Dataset for Bite Counting

One of our work’s objectives is to count the number of bites
from the video data. In order to feed the video data into a deep
neural network and count bites in an end-to-end manner, each
raw dietary intake video was first split into a set of 20-second
video clips using FFmpeg.1 The reasons for the length of video
clips to be 20 seconds are: 1) most video recognition networks
are designed for processing short video clips (e.g., 10-second
clips from the Kinetics dataset [66]); 2) compared to 10 seconds,
cutting a dietary intake video into 20-second clips is able to
reduce the number of cutting points at which a bite may happen.
Following [5], a bite in this work is defined as food being fully
placed into the mouth. Video clips that may cause ambiguities
were excluded (e.g., a bite cannot be verified because it happens
outside the camera view, but this can be solved by using a wide-
angle camera (or the wide FOV mode of GoPro) in future work).
In total, 1,022 video clips are valid among those extracted from
52 dietary intake videos.2 The number of bites the subjects take
in a 20-second interval ranges from 0 to 9 as shown in Figure 4,
with the average number of bites taken in 20 seconds being
1.995 (the dataset has a total of 2,039 bites recorded). In 987

1https://ffmpeg.org/
2clips that are non-valid and therefore were excluded are: 1) clips in which

a bite happens outside the camera view; 2) an incomplete bite occurs in the
beginning or the end of the clip; 3) the last 1 or 2 clips of a video in which the
subject has stopped eating or the length of that clip is less than 20 s; 4) we also
purposely discarded some clips of long videos (over 20 mins) to balance the
dataset.



QIU et al.: COUNTING BITES AND RECOGNIZING CONSUMED FOOD FROM VIDEOS FOR PASSIVE DIETARY MONITORING 1475

Fig. 4. The number of times each bite count occurs in the dataset. The
number of bites the subjects take in a 20 s interval ranges from 0 to 9.

out of 1,022 video clips, subjects take less than 5 bites, with all
numbers (0 to 4) occurring in more than 50 clips, which provides
sufficient data to validate our bite counting approach. Therefore,
we only used these 987 video clips to construct the dataset for
bite counting. The dataset was then split into training and test
sets, with the training set having 631 clips (from 32 videos) and
the test set 356 clips (from the rest 20 videos). It is worth noting
that the dataset splits strictly avoid overlapping each other, i.e.,
there is no such case that the same subject having the same meal
occurs in the both training and test sets. As bite counting relies
on capturing motion of taking a bite, we also calculated optical
flows using the TV-L1 algorithm [67] as an additional modality
for bite counting. The number of times of drinking was labelled
separately. However, as we observed that subjects rarely drink
in video clips, which results in most of the label being 0 (i.e.,
drinking 0 times), counting drinking times was not studied in
this work. Therefore, this dataset is exclusively a bite counting
dataset.

D. Constructing Dataset for General Food Recognition

Existing food recognition systems are mostly focused on
recognizing food types from images [30]–[33]. Recognizing
food from videos may sound inefficient but has its own merits,
especially in pervasive dietary intake monitoring scenarios. In
certain scenarios, the type of food may not be recognized on the
basis of a single food image, especially when the image does not
contain discriminative parts of the food. Videos also have a better
chance to capture previously hidden and occluded ingredients
and other food items during eating, as they may be revealed as
eating continues. Therefore, we used all 1,022 video clips to
construct a dataset for three different general food recognition
tasks: 1) recognizing 8 main meal classes; 2) recognizing 18
fine-grained meal classes; 3) recognizing all visible food items
in a video clip, which include food ingredients and also drinks.
The dataset was split into 655 clips (from 32 videos) for training
and 367 (from the rest 20 videos) for testing. The green lines in
Figure 5 show the number of occurrences of visible ingredients

Fig. 5. Food item (ingredient and drink) statistics. Two different sets
are shown: 1) visible ingredients and drinks in all video clips; 2) con-
sumed ingredients and drinks in all video clips.

and drinks in these 1,022 video clips, with rice occurring the
most, visible in 564 clips and chili_pepper the least, only visible
in 5 clips.

E. Constructing Dataset for Consumed Food
Recognition

To recognize consumed food items, as one of our main ob-
jectives, all consumed food items in a video clip were manually
labelled. The red bars in Figure 5 show the statistics of consumed
food items. Although chicken is visible in 207 video clips, it is
really consumed by the subjects in only 100 clips. The same
dataset splits as for bite counting were adopted for consumed
food recognition.

IV. METHOD

In this work, we aim to achieve bite counting and food
recognition in an end-to-end manner from egocentric videos. To
this end, deep neural networks were used. Two state-of-the-art
networks from the domain of video recognition were adopted:
TSM [64] and SlowFast [65]. A batch of frames are sampled
from a video clip as the input to both TSM and SlowFast, and
the networks directly predict the number of bites taken in that
clip. Visible and consumed food items are also recognized but
with separately trained networks.

A. Bite Counting: Classification or Regression

Bite counting can be formulated as either a classification
or a regression problem as bite count is both categorical and
numerical. Previous works in video question answering tend to
consider temporal counting as a regression problem [17]–[19].
In this work, we investigate both classification and regression as
the solutions to bite counting. For classification, deep neural
networks were trained with standard cross-entropy loss. For
regression, networks were trained with �2 loss, which measures
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TABLE II
OVERALL RESULTS OF BITE COUNTING. CLS STANDS FOR CLASSIFICATION AND REG STANDS FOR REGRESSION

the mean squared error between the predicted value and the true
bite count.

B. Food Recognition: Multi-Class and Multi-Label

Food recognition in this work includes classifying a meal into
a single category and recognizing all visible or consumed food
items in a video clip. Classifying a meal (i.e., either into 8 main
meal classes or 18 fine-grained classes) is a standard multi-class
classification problem. Therefore, the networks were trained
with cross-entropy loss. Recognizing food items, including in-
gredients and drinks, is a multi-label classification problem.
Therefore, the networks were trained with binary cross-entropy
loss.

C. Evaluation Metrics

For bite counting as a classification problem and the meal clas-
sification, we calculated the top-1 accuracy. For bite counting
as a regression problem, two evaluation metrics were adopted.
The first is mean squared error (MSE) measured between the
predicted values and true labels (i.e., bite count). The second
is to calculate accuracy as in the classification. The predicted
value is first rounded to the closest integer and accuracy is then
calculated by dividing the sum of correctly predicted values after
rounding with the total number. For food item recognition, both
recognizing visible ones and consumed ones, F1 score was used
after binarizing multi-label predictions with a threshold of 0.5.

V. EXPERIMENTS

A. Implementation Details

All network models were fine-tuned on our dietary video
dataset using SGD. For TSM, different pretrained models were
used to initialize, which include pretrained models from Ima-
geNet [68], Kinetics [66], and Something-Something-V2 [69]
datasets. For SlowFast, we used models pretrained on Kinetics
to initialize. TSM models were fine-tuned for 50 epochs with a
learning rate starting at 0.001 and decayed by 10 at epoch 10,
20, and 40. SlowFast models were fine-tuned for 64 epochs with

a base learning rate of 0.1, and 16 warmup epochs with a start
learning rate of 0.01. The inputs to both TSM and SlowFast
in training are 224× 224 crops from sampled frames. TSM
models were tested with 1-crop (center 224× 224 crops of input
frames). SlowFast were tested with both 1-crop and 3-crop (left,
center, and right 256× 256 crops).

B. Results of Bite Counting

The overall results of bite counting are summarized in Table II,
which include the accuracy of both classification and regression.
It can be observed that using more frames of a video clip gener-
ally leads to better results. This is especially true when TSM was
used. As shown in the first 8 rows of Table II, no matter what
modality was used as the input, RGB frames or optical flows,
using 16 frames always produces higher accuracy than just using
8 frames, even if a deeper network (i.e., ResNet-101 [70]) was
used to process 8 frames as the input. In addition, the accuracy
of using optical flows as the single input modality generally is
no better than that of using RGB frames (a 5% decline can be
observed when comparing the 4th and 8th rows). However, in
solving bite counting as a regression problem, the addition of
optical flows is able to improve the accuracy. An ensemble of a
TSM model trained with RGB frames and another one trained
with optical flows produces slight improvements in accuracy,
from 60.67% to 60.96%, and also decreases the MSE value, from
0.427 to 0.364 as shown in the 4th and 9th rows. An ensemble of
three TSM models with one of them trained with optical flows
is also able to improve the accuracy compared to an ensemble
without the optical flow-trained model. Accuracy is increased
from 62.64% to 63.20% and the MSE value is decreased from
0.383 to 0.352 as shown in the 10th and 11th rows. Nevertheless,
in solving bite counting as a classification problem, combining
optical flow with RGB modality results in a decrease in accuracy.
Similar to TSM models, SlowFast models with 8 frames as
the input to the slow pathway produce higher accuracy than 4
frames, when the input to the fast pathway is fixed to 32 frames.
We also used a Slow-only architecture [65], i.e., without the fast
pathway in SlowFast, to count the number of bites. The results of
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TABLE III
RESULTS OF BITE COUNTING ON 4-FOLD INTER-SUBJECT CROSS

VALIDATION

Each subject appears only in either the training or the test set. We used 9 subjects for training
and the rest 3 subjects for testing in each fold.
The configuration of backbone, pretrain, modality, #frame, and #crop for the TSM and
SlowFast models reported in the table is (2D ResNet-50, Something-V2, RGB, 16, 1) and
(3D ResNet-50, Kinetics, RGB, 8+32, 3), respectively.
The number of testing clips of each fold (from left to right): 253, 377, 210, and 147.

Slow-only architecture are not comparable to those of SlowFast,
which indicates that capturing the motion of taking a bite is
important for accurate bite counting. SlowFast and Slow-only
networks were also tested with 3-crop. The use of 3 crops is able
to boost the accuracy in classification, but slightly decreases
the accuracy in regression and has no significant impact on
the measured MSE values. Overall, the highest accuracy of
bite counting we obtained is 64.89% when it is solved as a
classification problem. Solving bite counting as a regression
problem can also produce reasonable accuracy of 63.20% and
achieve a low MSE of 0.352 (each clip in the test set has an
average bite count of 1.885).

We further conducted a 4-fold inter-subject cross validation to
evaluate the performance of the proposed bite counting method
on unseen subjects. The dataset introduced in Section III-C was
re-split, with 9 subjects used for training and the rest 3 subjects
for testing in each fold. The results are summarized in Table III.
Although after averaging across all 4 folds, the results as shown
in the last column are close to the reported results in Table II, it
is impressive to find that on the testing split of subjects #10,
#11, and #12, TSM yields the top-1 accuracy of 74.15% as
a classification model, and the MSE of 0.312 as a regression
model. For SlowFast, it achieves 70.36% regression accuracy
on the split of subjects #1, #2, and #3.

C. Results of General Food Recognition

Table IV shows the overall results of general food recognition,
which include meal classification, and visible food item recog-
nition. Note that models were trained only with RGB modality
in these tasks. In terms of meal classification, a ResNet-50 with
TSM embedded achieves the best accuracy when the input is
set to 8 frames, 97.55% accuracy of classifying a meal into
8 main classes and 54.77% accuracy of classifying it into 18
fine-grained classes. We hypothesize the accuracy of classifying
a meal into 18 fine-grained classes being not satisfactory is
because 1) the meals under the same main category only have a
single or few ingredients that can distinguish between them;
2) and in some clips, these discriminative ingredients have
already been consumed, which confuses the models and results
in the meal being misrecognized as another similar meal under
the same main category. The visualized confusion matrix also

Fig. 6. Confusion matrix of a TSM model (top-1 accuracy of 54.77%
on the test set) classifying meals into 18 classes.

Fig. 7. Confusion matrix of a SlowFast model (top-1 accuracy of
52.04% on the test set) classifying meals into 18 classes.

verifies that most misclassification happens between meals that
belong to a same main category (e.g., meals under the category of
japanese_hot_bowl as shown in both Figures 6 and 7). Note that
due to the limited number of veggie_and_meat_bowl_salmon
samples, this class was only included in the training set, and
that is why the last row of the confusion matrix is all zeros. In
terms of recognizing all visible food items from a clip, SlowFast
produces the best overall F1 score of 65.0% and TSM is also able
to produce a reasonable overall score of 59.5%. In order to better
understand which visible food items are well recognized, we
calculate a F1 score for each food item (i.e., given a food item,
its F1 score is calculated using a set of its true labels and a set of
its predicted labels from all testing clips). The results are shown
in Figure 8. In general, the F1 scores of most food items produced
by SlowFast are also higher than TSM. In all food items that have
a non-zero F1 score, 48 items in total for the SlowFast model,
14 of them have the F1 score over 80%, with scrambled_eggs,
tomato_sauce, and sweet_chilli_sauce having the F1 score of
100%, indicating that the model correctly recognizes these
three items in all clips that contain them, and in clips without
them, the model indeed estimates that they are not present. For
the TSM model, its recognition produces 44 food items that
have a non-zero F1 score, and 9 of them have the F1 score
over 80%.
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TABLE IV
OVERALL RESULTS OF GENERAL FOOD RECOGNITION. MAIN REPRESENTS CLASSIFYING A MEAL INTO A MAIN CATEGORY. FG REPRESENTS FINE-GRAINED

MEAL CLASSIFICATION. V-ITEM REPRESENTS VISIBLE FOOD ITEM RECOGNITION

Fig. 8. F1 scores calculated separately for each food item in order to
better understand which items are well recognized.

D. Results of Recognizing Consumed Food Items

Table V summarizes the results of recognizing consumed food
items. All models were trained with only RGB modality. Same
to the outcomes of bite counting, using more frames generally
leads to higher accuracy, as it carries more spatial and temporal
information. Using 16 frames as the input to a 2D ResNet-50
network with TSM embedded has an 18% increase in F1 score
compared to using 8 frames. We also implemented and trained a
two-head 2D ResNet-50 which also has TSM embedded, one
head is for recognizing all visible food items in a clip and
the other for recognizing the consumed ones. The losses from
these two heads were summed and backpropagated to update
network’s parameters. This was motivated by the fact that the
consumed food items should only be the ones visible in a clip,
so by being aware of visible food items in the clip from one
head, the other head ideally could better recognize consumed
food items. The result shown in the 3 rd row indicates this
design is effective (a 0.8% increase compared to a single head).

TABLE V
OVERALL RESULTS OF RECOGNIZING CONSUMED FOOD ITEMS

The results from the middle 6 rows (Slow-only and SlowFast)
verify that recognizing consumed food items requires a network
capable of capturing both the action of taking a bite and the
appearance of that bite. Therefore, sufficient visual (comparing
the results of SlowFast 8 + 32 and SlowFast 4 + 32) and motion
(comparing the results of SlowFast 8 + 32 and Slow-only) clues
are important, but visual clues seem to play a more important
role in recognizing consumed food items as the Slow-only model
trained with 8 frames shows higher F1 scores than the SlowFast
model trained with 4 (slow) + 32 (fast) frames. We also used
the dataset for general food recognition to train and test TSM,
TSMTwo−Head, and SlowFast. As the dataset is slightly larger,
the resulting testing accuracy is also higher as shown in the
bottom 4 rows. The SlowFast (8 + 32) model, based on 3D
ResNet-50, produces the highest F1 score of 40.5% when tested
with 3 crops, and using a 2D ResNet-50 with TSM, the highest
F1 score is 37.8%. The F1 score of each food item is shown in
Figure 9. Although the overall F1 score of the SlowFast model
is only 2.7% higher than that of the TSM model, the visualized
F1 scores for each individual food item show that the SlowFast
model was able to recognize a wider range of food items that
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Fig. 9. F1 scores calculated separately for each food item in order to
better understand which consumed items are well recognized.

were consumed by the subjects, with 29 food items having a
non-zero F1 score, and 8 of them having the F1 score over 80%.

E. Visualization of Multi-Label Recognition

Figure 11 shows some samples of the results of recognizing
visible and consumed food items on the test set. The top 4 rows
are the samples of recognizing visible food items. The SlowFast
model generally can recognize more true positives than the TSM
model. For example, all ingredients and drinks visible in the clips
shown in the 2nd and 3 rd rows are correctly recognized by the
SlowFast model. In the 4th row, however, while the SlowFast
recognizes 7 out of 8 food items correctly, it misrecognizes the
main ingredient chicken as salmon. This misrecognition of the
main ingredient can also be observed in the results of the TSM
model (please refer to the 1st and 4th rows), which also explains
the results of classifying a meal into 18 fine-grained classes
being not satisfactory, as it is difficult for the models to capture
the main ingredient that distinguishes between similar meals.

In the case of recognizing consumed food items (bottom 4
rows in Figure 11), the SlowFast model also recognizes more
true positives. It is worth noting that in the 5th row, although
the SlowFast model fails to recognize that the subject has eaten
pickled_radish, it still outputs a close ingredient that the subject
is estimated to have eaten (i.e., carrot). In the 6th row, it is
encouraging that the SlowFast model is able to recognize that
the subject has eaten celery and green_bean even though these
two ingredients appear to be so small and close to each other in
the clip.

VI. DISCUSSION

Although this work offers a new insight into using egocentric
videos to count bites and recognize consumed food items for
dietary assessments, there are some areas that this work has not
investigated. First, in this work, counting bites was implemented
as an end-to-end manner (i.e., given a set of sampled frames
from a video clip as the input, the network directly outputs

Fig. 10. Estimation of the number of bites taken in an entire meal for
subjects #10, #11, and #12 (we chose these 3 subjects because they
show the best accuracy in the inter-subject cross validation). Results
are reported using a TSM model (2D ResNet-50, Something-V2, RGB,
16, 1) trained on the other 9 subjects (874 clips out of the whole 1,022
clips) with �2 loss. The entire videos of the reported 3 subjects were
used (i.e., none of their split clips were abandoned.)

the estimated number of bites taken). Another alternative way
of counting bites in a video clip is by explicitly tracking and
analyzing the movements of hands, which is more complicated
but may lead to better results. We also show preliminary results
of counting bites for an entire meal in Figure 10. Our current
solution was first using regression to estimate bite counts in
20-second intervals, and then aggregating the bite counts from
these intervals to produce an overall estimation for the entire
meal. Tested on 3 unseen subjects (the other 9 subjects were
used for training), it yields satisfactory results, with an average
error of 7.76 bites when directly aggregating initial values of
regression from 20-second intervals, and an average error of
7.71 bites when aggregating integer bite counts after rounding
the initial values (the subjects take an actual average of 42.57
bites). It is worth noting that in practice, it is more appropriate
to solve bite counting as a regression problem as the number
of bites people take in fixed intervals becomes uncertain, which
makes classification unlikely. As we cut an dietary intake video
into a set of short intervals, the issue of bites happening at interval
cut points could affect the overall performance. In the current
dataset, bite counts are labelled as integers, and we excluded
clips that have an incomplete bite taking event at the start or end
of the clip that misses the moment of fully placing food into
the mouth. The effect of this issue can be mitigated by labelling
bite counts as decimals (e.g., 3.3 and 2.7 bites for 2 adjacent
clips if a bite happens at the cut point), and we conjecture the
accuracy of estimating the bite count of an entire meal will
further increase. Such labelling will be investigated in our future
work. In addition, the estimated bite counts of video clips may
possibly complement each other when aggregated for an entire
meal. This may have contributed to the high accuracy of entire
meal bite estimation in some cases. However, the bite counting
accuracy of individual clips is still important and needs to be
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Fig. 11. Recognized food items (ingredients and drinks). Top 4 rows are samples of recognizing visible food items and bottom 4 rows are samples
of recognizing consumed food items in a clip. True positives are indicated using green color and false positives are in red color.

further improved in the future in order to make estimation for
entire meals more robust. In addition, in this work, we explicitly
ensured that the number of frames sampled as the input to the
network was more than the number of bites taken so that the
network has sufficient information to estimate bite counts. An
appropriate sampling rate still needs to be investigated, if the
dataset expands and includes more subjects with different eating
speeds. Second, given the fact that all deep network models were
only trained with weak supervision for food recognition (i.e.,
no bounding boxes or masks provided), although the results
so far are reasonable, we conjecture that better results could
be achieved by 1) labelling consumed food or all visible food
items with bounding boxes or masks, or 2) using categorical
labels or visual attention techniques to localize food items [33],
[52]. Third, this work does not investigate bite size estimation.
Estimating bite size is an essential part of automatic dietary
assessments, and this needs to be investigated in future research.
Fourth, in this work, recognizing consumed food items is at a
whole video clip level. Recognizing what subjects take in each
individual bite may provide more fine-grained information, and

benefit bite size estimation. To achieve this, temporally local-
izing each bite and then recognizing what that bite contains is
one way. Another alternative way is, similar to recipe generation
from images [71], to decode consumed food items in chronologi-
cal order from video clips, but this requires consumed food items
in a video clip also be annotated in chronological order (e.g.,
an annotation could be like [rice, [SEP], rice, chicken, [SEP],
celery, [END]] where [SEP] and [END] are special tokens to
separate bites and to indicate the end of prediction, respectively).
Although this alternative way can recognize consumed food
items and associate them with each individual bite (bite count
is also obtained) in an end-to-end manner, its efficacy needs
to be validated in future work. Despite not to the fine-grained
food item level, a very recent work using CTC loss and deep
networks has shown the success in simultaneously detecting
intake events and classifying them as eating or drinking in both
video and inertial data [72]. Fifth, counting the number of times
of drinking has not been investigated in this work, although
drinks have been considered as one of food items and included
in food recognition. To produce a more comprehensive estimate
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of overall food consumption, counting drinking times is also
important. As drinking occurs far less times than taking bites in
the current dataset, a dataset contains sufficient drinking samples
is needed, and we leave this to future work. Sixth, as the data
used in this work were collected from a laboratory setting, which
may be generalized to a hospital setting, assessing dietary intake
in-the-wild with videos still needs further investigation.

As the camera is mounted on the shoulder, its captured videos
also contain audio signals that are useful for dietary assessment,
such as the sound of chewing and swallowing during eating.
Thus, it is also worth investigating the fusion of visual and audio
signals from egocentric videos, which may yield better accuracy
in dietary intake assessments.

VII. CONCLUSION

In this work, we have proposed to count the number of bites
and recognize consumed food items in egocentric videos for
passive dietary intake monitoring. Experimental results show
that an end-to-end manner of bite counting and consumed food
recognition is feasible with the use of deep neural networks.
However, consumed food item recognition is still challenging
compared to conventional visible food item recognition or meal
classification. Using videos as the source for dietary intake as-
sessments is a promising option, but efforts to improve accuracy
are still needed. Building on this work, our future plans are
to expand current dataset, address limitations mentioned in the
discussion section, and also to design new models that produce
more accurate assessments.
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