
838 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 3, MARCH 2021

Smartphone- and Smartwatch-Based Remote
Characterisation of Ambulation in Multiple
Sclerosis During the Two-Minute Walk Test

Andrew P. Creagh , Cedric Simillion , Alan K. Bourke , Alf Scotland , Florian Lipsmeier ,
Corrado Bernasconi , Johan van Beek , Mike Baker , Christian Gossens ,

Michael Lindemann , and Maarten De Vos

Abstract—Leveraging consumer technology such as
smartphone and smartwatch devices to objectively assess
people with multiple sclerosis (PwMS) remotely could cap-
ture unique aspects of disease progression. This study
explores the feasibility of assessing PwMS and Healthy
Control’s (HC) physical function by characterising gait-
related features, which can be modelled using machine
learning (ML) techniques to correctly distinguish sub-
groups of PwMS from healthy controls. A total of 97 sub-
jects (24 HC subjects, 52 mildly disabled (PwMSmild, EDSS
[0–3]) and 21 moderately disabled (PwMSmod, EDSS [3.5–
5.5]) contributed data which was recorded from a Two-
Minute Walk Test (2MWT) performed out-of-clinic and daily
over a 24-week period. Signal-based features relating to
movement were extracted from sensors in smartphone and
smartwatch devices. A large number of features (n = 156)
showed fair-to-strong (R > 0.3) correlations with clinical
outcomes. LASSO feature selection was applied to select
and rank subsets of features used for dichotomous clas-
sification between subject groups, which were compared
using Logistic Regression (LR), Support Vector Machines
(SVM) and Random Forest (RF) models. Classifications of
subject types were compared using data obtained from
smartphone, smartwatch and the fusion of features from
both devices. Models built on smartphone features alone
achieved the highest classification performance, indicating
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that accurate and remote measurement of the ambulatory
characteristics of HC and PwMS can be achieved with only
one device. It was observed however that smartphone-
based performance was affected by inconsistent placement
location (running belt versus pocket). Results show that
PwMSmod could be distinguished from HC subjects (Acc.
82.2 ± 2.9%, Sen. 80.1 ± 3.9%, Spec. 87.2 ± 4.2%, F1

84.3 ± 3.8), and PwMSmild (Acc. 82.3 ± 1.9%, Sen. 71.6
± 4.2%, Spec. 87.0 ± 3.2%, F1 75.1 ± 2.2) using an SVM
classifier with a Radial Basis Function (RBF). PwMSmild
were shown to exhibit HC-like behaviour and were thus less
distinguishable from HC (Acc. 66.4 ± 4.5%, Sen. 67.5 ±
5.7%, Spec. 60.3 ± 6.7%, F1 58.6 ± 5.8). Finally, it was ob-
served that subjects in this study demonstrated low intra-
and high inter-subject variability which was representative
of subject-specific gait characteristics.

Index Terms—Gait, machine learning, multiple sclerosis,
sensor-based measure, smartphone, smartwatch.

I. INTRODUCTION

MULTIPLE Sclerosis (MS) is a progressive neurodegener-
ative disease that is typically diagnosed in young adults,

causing varied and unpredictable physical and mental disabil-
ity and neurological deterioration over time [1]. Ambulatory
function have been perceived as the most prominent physical
impairments in people with multiple sclerosis (PwMS) [2], who
often have postural instability [3], gait abnormalities [4] and
pronounced gait variability [5] that can manifest at different
stages of diseases progression. Many studies hint at the strong
predictive nature in alterations during ambulation (gait) due to
MS [4], [6], [7]. Some commonly used measures for assessing
the disease state of PwMS are a combination of clinician-
administered rating scales, such as the Expanded Disability
Status Scale (EDSS) [8] and patient-reported outcomes such as
the Multiple Sclerosis Impact Scale-29 (MSIS-29) and Multiple
Sclerosis Walking Scale-12 (MSWS-12) [9]. The Timed 25-Foot
Walk (T25FW), developed as part of the Multiple Sclerosis
Functional Composite score [10], [11], and the Two-Minute
Walk Test (2MWT) are used to assess physical gait function
and fatigue in PwMS. The 2MWT outcome is typically reported
as distance travelled [12], [13]. These clinically administered
measures however have a number of limitations, such as: low
intra- and inter-rater reliability [14], in addition to an infrequent
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TABLE I
POPULATION DEMOGRAPHICS

Clinical scores taken as the average per subject over the entire study, where the mean ± standard deviation across population are reported; EDSS, Expanded
Disability Status Scale; T25FW, the Timed 25-Foot Walk; EDSS (amb.) refers to the ambulation sub-score as part of the EDSS; [s], indicates measurement in
seconds;
aPwMS with average EDSS [0–3]; bPwMS with average EDSS [3.5–5.5];
*HC (n = 15), PwMSmild (n = 41), PwMSmod (n = 14);
1Mann-Whitney U Test; 2Chi-squared (χ2) test.

administration, which can miss episodic manifestations of dis-
ease. In recent years there has been a shift towards the adoption
of body worn inertial sensors to more objectively evaluate gait
performance [7], [15]–[18]. Upper and lower body character-
istics related to dynamic balance during ambulation have been
captured from inertial sensors affixed to the wrists, shank and
trunk, which were found to significantly differentiate PwMS
and HCs (p< 0.05) compared to standard stop-watch timed tests
such as the T25FW and Timed-Up-and-Go (TUG) test [7]. It has
also been shown that PwMS have higher gait feature variability
than HC [6], [18]. Greene et al. have demonstrated that PwMS
can be distinguished from HC by modelling gait features from
shank mounted inertial sensors using a cross-sectional analysis
of the TUG test [17]. Many of these studies however asses
ambulatory ability using multiple inertial sensors during fixed
lengths of controlled walking, in-clinic. Consumer wearable
sensors (such as smartphone and smartwatches embedded with
inertial sensors) offer a unique opportunity to monitor physical
function ubiquitously, more subtly and remotely in PwMS [19].
Furthermore, high-frequency monitoring assessments may be
more accurate than conventional outcomes recorded at peri-
odic visits in detecting subtle progressive sub-clinical changes
that may predict disease activity or long-term disability in
PwMS [20]. Earlier identification of changes in PwMS impair-
ment are important to identify and provide better therapeutic
strategies [21]. The “Monitoring of Multiple Sclerosis (MS)
Participants With the Use of Digital Technology (Smartphones
and Smartwatches) - A Feasibility Study” (NCT02952911) was
a study to assess the feasibility of remote patient monitoring
using smartphones and smartwatch devices applying a range
of testing modalities in PwMS and HC [22], [23]. This paper
applies feature-based approaches to characterise gait function
in PwMS using remotely captured sensor-data from the 2MWT.
Machine learning (ML) techniques are then used to distinguish
subgroups of PwMS and HC as dichotomous classification
tasks.

II. METHODS

A. Dataset

PwMS and HC enrolled in this study were requested to per-
form the 2MWT daily over a 24-week period. Subjects were as-
sessed clinically during site-visits at baseline, week 12 and week
24. Further information on NCT02952911, including 2MWT
instructions1, adherence results and more detailed demographics
can be found at [22]. Each subject was also provided with a
waist-worn running belt and instructed to attach the smartphone
to the anterior of their waist. The smartwatch can be worn on
either wrist. Subjects with both smartphone and smartwatch data
available (n= 97) are presented in Table I. To allow comparisons
between smartphone and smartwatch devices, only test instances
where subjects have used both devices during their 2MWT were
included in this study. MS is a heterogeneous disease, and in
order to differentiate subjects with presumed gait symptoms,
subjects were divided into subgroups (mild and moderate) based
on their mean EDSS: PwMSmild (n = 52, EDSS [0–3]), and
PwMSmod (n = 21, EDSS [3.5–5.5]), using a similar threshold
to other MS gait studies [18]. EDSS is considered a primary
outcome for assessing the disease state of PwMS [8], [24].
By definition, gait disorders begin to become prominent in
subjects with EDSS ≥ 3.5 and subjects with EDSS < 3.5 are
mildly impaired [8]. Note: the entire range of subjects’ pooled
EDSS scores in this study was [0–7]. Differences in clinical
characteristics were analysed using the Mann-Whitney U Test,
except categorical differences in sex which were investigated
using a Chi-squared (χ2) test.

B. Feature Extraction

1) Pre-Processing: Subjects were provided with a Samsung
Galaxy S7 smartphone and Motorola 360 Sport smartwatch.

1While the instructions given were analogous to those of a 2MWT, this was
not a controlled and clinically assessed 2MWT during site-visits and therefore
the outcome of walking distance was not measured.
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Both smartphone and smartwatch devices contain 3-axis ac-
celerometer (ax,ay,az) and gyroscope (gx,gy,gz) sensors
which were sampled at 50 Hz. Signals were filtered with a 4th or-
der butterworth filter with a cut-off frequency at 17 Hz [17], [25].
Orientation of the smartphone can be determined by assessing
through which axis the mean component of gravity is incident
upon during the 2MWT. Prior to windowing, the sensor coordi-
nate frame was aligned with the global reference frame using the
technique described in [26] and thus the anterior-posterior axis
(x–) was aligned with the direction of motion, which was orthog-
onal to the vertical (y–) and medial-lateral (z–) axis. Features
were computed on all sensor axes and also on the orientation in-
variant signal magnitude, for example ‖a‖ = (x2 + y2 + z2)

1
2 ,

where x = (ax1
, ax2

, . . ., axT
) and so forth. Subjects’ whole

2MWT tests were then windowed into non-overlapping 30 sec-
ond epochs to help minimise potential signal artefacts, including
subject turns during the test. Bouts of non-gait were filtered using
methods described in [25]. Features were extracted on each
epoch and the mean value and standard deviation per 2MWT
were taken. The 2MWT was not clinically assessed in this
study during site-visits and as such the outcome of walking dis-
tance [12], [13] is unavailable. Step counts have been proposed
to approximate the distance travelled [27], and smartphone step
count has also been shown to estimate the walking distance in HC
over a fixed length during the six-minute walk test (6MWT) [28].
Subsequently, this study implemented a step count, using meth-
ods described by Lee et al. [29], to roughly approximate the
2MWT walking distance for comparative purposes.

2) Energy Features: The continuous wavelet transform
(CWT) can measure the similarity between a discrete signal
and an analysing function, providing a precise time-frequency
representation of a signal [30]. It has been shown that the
Morlet wavelet effectively captures gait-related spatio-temporal
characteristics from acceleration signals obtained from differ-
ent body locations [31]. A sparse representation of gait sig-
nals was also obtained using the Discrete Wavelet Transform
(DWT) where the signal was decomposed into a number of
different bandwidths expressed by approximation and detail
coefficients on which features were computed. We extracted the
wavelet coefficients experimenting with three wavelet families
(Daubechies, Symlets, Coiflets) [32]. At each decomposition
level, or bandwidth, we computed the energy, entropy (using
both Shannon’s and the log energy definitions), and the Teager-
Kaiser Energy Operator (TKEO) on approximation (cA) and
detail (cD) coefficients. Wavelet Energy (both using the discrete
CWT and DWT representation) is defined as:

E(x) =

N∑

i=1

|xi|2 (1)

Wavelet (non-normalised) Shannon Entropy is defined as:

H(x) = −
N∑

i=1

x2
i log(x

2
i ) (2)

where x = cDj ; x = cAj are the detail and approximation
coefficients at level j = 1, 2, 3, . . ., L;

Empirical Mode Decomposition (EMD) has been used pre-
viously to characterise the frequency range distributions of
gait rhythms from accelerometer signals [33]. Classical EMD
decomposes a signal into a small finite number of intrinsic mode
functions (IMFs) using the Hilbert-Huang transform (HHT) to
encode instantaneous frequency and amplitude information [34].
IMFs offer a data driven approach to analyse non-linear, non-
stationary signals. The energy (1) of each IMF is computed,
where the first IMF represents the “high-frequency (noise)”
components with the latter IMFs capturing the relatively “low-
frequency (signal)” components of gait rhythm. The relative
signal-to-noise ratio (SNR) is then computed as a feature to
characterise the ratio of gait to higher frequency perturbations
in the sensor signal.

3) Statistical and Entropy Features: A number of statistical
features were also computed on the sensor signals such as the
mean, standard deviation, skewness, kurtosis, zero-crossing rate
and auto-correlation coefficients.

Multiscale entropy (MsEn) calculates the sample entropy
(SampEn) of a signal at increasingly coarser grains (scales) [35].
MsEn is advantageous to entropy alone in that calculating
the entropy of a signal at multiple time scales discriminates
long-range correlations in complex systems from completely
random signals. Costa et al. [35], for example, found that faster
and unconstrained walking had more complex dynamics than
slower walking, as captured through greater SampEn at different
scales. Further to calculating raw MsEn over the first 20 time
scales, higher order MsEn-based statistical features were also
computed. Similar entropy parameters of embedding dimension
m = 2, and tolerance r = 0.2were used [35]. Recurrence period
density entropy (RPDE) is a method used to characterise the
deviations from exact periodicity and stochasticity within a
signal [36], proposed here to capture the ability to maintain
consistent gait rhythm.

Supplementary material, including a full description and im-
plementation of all of the features extracted in this study can
be found at: https://github.com/apcreagh/MS-GAIT_feature_
extraction.

C. Feature Analysis

Univariate feature differences, taken as the median feature
value per subject over all available test observations, were
investigated using the Mann-Whitney U Test for each paired
subject group combination (HC, PwMSmild, and PwMSmod).
Associations between mean clinical metrics (EDSS and T25FW)
and median feature values per subject were investigated using
Spearman’s correlation (Rs). Differences in feature distribu-
tions between smartphone locations identified as running belt
or pocket were investigated using a Mann-Whitney U Test,
for subjects who contributed both placements only. In order to
reduce our highly dimensional feature space (features derived
from 2 devices, with 3 axes per sensor) prior to model building
all redundant features were first removed based on Rs to subject
group (HC, PwMSmild, PwMSmod) < 0.3 (n = 93 and n =
63 respective smartphone and smartwatch features retained).
P-values were corrected for multiple hypothesis testing using

https://github.com/apcreagh/MS-GAIT_feature_extraction
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Fig. 1. Schematic of gait processing pipeline. Users are requested to perform a remote 2MWT daily, for up to 24 weeks, with a smartphone affixed
within a waist-worn running belt on the anterior of their waist and smartwatch on their wrist. Sensor data is extracted from both devices independently
and signal-based features are computed on each 2WMT per subject. Classification models are then constructed, tuned and evaluated using
subject-wise k-fold cross-validation. Individual 2MWT predictions per subject are then majority voted to generate a single prediction per subject,
which are used to distinguish subgroups of PwMS and HC as binary classification tasks.

methods described in [37]. Exploratory analysis of data and fea-
ture structure was performed using principal component analysis
(PCA) [38]. Feature reproducibility was investigated using the
intraclass correlation coefficient (ICC) metric (see appendix A
for more details).

D. Model Construction

A number of machine learning (ML) techniques were ex-
plored in order to asses the ability to discriminate HC from
PwMS sub-groups as binary classification tasks. Model gener-
alisability was determined using 5-fold, subject-wise, stratified,
cross-validation (CV). After partitioning the data into training
sets, observations were randomly re-sampled to balance class
distributions, as subject each contributed unequal quantities of
2MWT observations. CV was repeated 10 times to reduce biases
in re-sampling and dataset splitting.

Logistic Regression (LR) was compared to Support Vector
Machines (SVM) and a Random Forest classifier (RF) [39].
LASSO regularisation for generalised linear models (lassoglm)
was employed in order to reduce the dimensions of the ex-
tracted feature space into a ranked parsimonious set [39]. In
this case lassoglm is an extension of LASSO which uses a
logit link function: log( π

1−π ) = β0 + βᵀx, yielding a posterior
probability mapping binomial responses. Features were ranked
per CV fold by increasing shrinkage regularisation parameter λ,
and cumulatively presented to LR and SVM classifiers. A top
feature ranking table was deduced by interrogating the feature
subsets selected by lassoglm at each fold and repetition. The
relative stability of features selected was assessed by recording
the percentage of time that the feature was selected in the top 5
and top 25 features at each fold and repetition.

Instead of using the the raw lassoglm coefficients (β) for
regression problems, it has been suggested that bias or prediction
error can be reduced by performing a separate regression
post-lasso [40]. Observations were assigned to the class yielding
the largest posterior probability, where in the case of the SVM,
posterior probabilities were first obtained using methods
described by Platt [41]. SVM tuning was performed for each
fold via grid-search over internal CV to determine optimal

values of the Gaussian radial bias function (RBF) kernel
parameter γ and the penalty parameter C. We selected the pair
that gave the lowest CV misclassification error for each added
feature to the classifier [39]. A selection of RF classifiers were
built (using 1500 trees) and trained with a split criterion based on
Gini impurity. Classifier performance was examined by varying
the number of input variables chosen at each node (denoted as
mtry). Values ofmtry used were tested as the square root of the
number of features (n = 13); double and half this value was also
investigated as suggested in [42]. Classification models were
built using individual test observations and metrics based on
majority voting of individual test predictions per subject are re-
ported in order to increase prediction robustness. Classification
performance metrics such as accuracy (acc), sensitivity (sen)
and specificity (spec) are computed, where the more diseased
class is the positive case. In order to account for the imbalance
in the number of subjects within each sub-group, we also report
the macro-average of the F1 score for each class [43], [44].
Distribution differences in performance results calculated based
on feature sets (smartphone, smartwatch, smartphone & smart-
watch) and classification models (SVM, LR, RF) built across
CV repetitions were tested using a Wilcoxon signed-rank test.

All data processing and analysis was performed using MAT-
LAB vR2018a (The MathWorks, Natick, MA, USA). Fig. 1
schematically illustrates the entire gait processing, model con-
struction and evaluation pipeline.

III. RESULTS

A. Feature Analysis

Examples of raw sensor signals illustrate visual differences
between HC and PwMSmod for both smartphone (Fig. 2(a)
and 2(b)) and smartwatch devices (Fig. 2(c) and 2(d)). The
CWT spectral energy density distribution (Fig. 3) demon-
strated that PwMSmod had less power than PwMSmild and HC
(p < 0.01). It was additionally observed that the ratio of
total (AUC) spectral energy in the gait domain (0.5–3 Hz)
to higher frequency “noise” energy per subject was lower
in PwMSmod than in HC or PwMSmild smartphone tests
(Fig. 3(a), p < 0.001). This study further focused on subjects
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Fig. 2. Typical examples of accelerometer data recorded by smartphone device carried in a running belt for representative. (a) HC and
(b) PwMSmod subjects, and their respective linked accelerometer data recorded by smartwatch device for the same, (c) HC, and (d) PwMSmod
subject. The first column represents of raw magnitude acceleration signals ‖a‖. The second column shows the top view of the CWT scalogram,
which is the absolute value of the CWT as a function of time and frequency. The third column corresponds to the scale-dependent (spectral) energy
density (Es) distribution of the CWT coefficients. (HC: T25FW, 3.6 ± 0.4 [s]); (PwMSmod: EDSS, 4 ± 0; T25FW, 8.1 ± 1.3 [s]); Note the axis scales
for figure (d).

who exhibit clinically moderate disease symptoms, within the
gait domain (PwMSmod, EDSS [3.5–5.5]). Table II depicts
the top features between HC and PwMSmod as selected by
lassoglm, the percentage of time chosen in the top 5 and
25 selected features, along with associated statistics and cor-
relation to clinically administered metrics. A number of the

top features selected derive from energy and entropy in the
frequency bands for gait and movement [15]. Smartphone device
features contributed most to the number of top features in the
top 15 ranking (11 overall). The top-ranked features show high
stability and consistency with good to excellent ICC values.
Furthermore, these features significantly discriminated HC from
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Fig. 3. The scale-dependent (spectral) energy density Es distribution
of the CWT coefficients for HC, PwMSmild and PwMSmod groups for (a)
smartphone and (b) smartwatch devices. Bold lines and shaded region
corresponds to the median and standard deviation in spectral energy
amplitude per group.

PwMSmod using the median feature values per subject. Many
top features demonstrated significant correlation (p < 0.05) to
MS clinical measures in PwMSmod, especially T25FW [11] and
EDSS [8].

The top features selected by lassoglm were also compared to
total step count [29]. Step count was significantly correlated with
EDSS (Rs: 0.64, p< 0.01) and T25FW (Rs: 0.52, p< 0.001) for
PwMSmod groups only. Total step count did not significantly
distinguish HC from PwMSmild (p = 0.09) or PwMSmod
(p = 0.08) groups. However, a significantly lower step count
was observed in PwMSmod versus PwMSmild (p < 0.01).

B. Classification Analysis

To gather an understanding of added smartphone and smart-
watch feature performance we computed the out-of-sample
classification accuracy (HC vs. PwMSmod) as we varied the
number of features added into an SVM and LR classifier.

While subjects were instructed to preferably carry the smart-
phones in the provided running belt, analysis has found that
some participants wore the smartphone on either the running
belt or in a pocket during the 24-week testing period (HC,
n = 15; PwMSmild, n = 41; PwMSmod, n = 14). Smartphone
orientations captured in landscape orientation were deduced to
have come from the running belt in the anterior waist location
(HC n = 905; PwMSmild, n = 2424; PwMSmod n = 1296),
whereas portrait orientations were labelled as pocket locations
(HC, n = 457; PwMSmild, n = 1497; PwMSmod, n = 156). No
subject in this analysis contributed only pocket locations.

SVM classification accuracy using running belt tests rather
than any location (either pocket or the running belt) (Fig. 4(a))
yielded improved accuracy; significantly so (p < 0.05) beyond
3 features thereafter (besides 7–8 features added p = 0.09
and p = 0.23 respectively). Classification accuracy plateaued
after 15 features are added to the model. Many smartphone
features indicated significantly different distributions between
pocket and running belt locations (n = 22, p < 0.05). Given
the smaller number of subjects and highly skewed number of
pocket observations contributed per subject, where few subjects
contributed the majority of pocket tests, we were unable to test
the classification performance of pocket locations alone.

Classification performance was compared using features de-
rived from either smartphone or smartwatch devices or with
features derived from both devices (Fig. 4(b) and Table II).
Maximum out-of-sample CV subject classification performance
was reached using an SVM for smartphone devices with 23
features (Acc. 82.2 ± 2.9, Sen. 80.1 ± 3.9, Spec. 87.2 ± 4.2, F1:
84.3 ± 3.8), compared with 19 features for smartwatch devices
(Acc. 71.3 ± 3.6, Sen. 71.8 ± 6.8, Spec. 71.3 ± 3.7, F1. 71.1
± 3.5). Furthermore, smartphone devices showed significantly
better accuracy (p < 0.05) with at least 8 features added to the
classifier.

Additional classification models were also constructed to
explore the separability between PwMSmild and PwMSmod
groups, and HC and PwMSmild groups separately shown in
Table III. It was observed that classification of PwMSmild and
PwMSmod groups performed similarly: subject classification
was maximised (Acc. 82.3 ± 1.9, Sen. 71.6 ± 4.2, Spec. 87.0 ±
3.2, F1: 75.1 ± 2.2) using an SVM classifier with 21 features.
Separation between HC and PwMSmild sub-groups however
was less visible; where maximum classification accuracy was
achieved (Acc. 66.4 ± 4.5, Sen. 67.5 ± 5.7, Spec. 60.3 ± 6.7,
F1: 58.6 ± 5.8) with 19 features modelled using an SVM.

Univariate and multivariate modelling of top-ranked signal-
based complexity features achieved improved classification per-
formance compared to using total step count alone as a fea-
ture for all classification outcomes based on EDSS grouping
(Fig. 4(a)) and Table IV.

Classification was compared across different classifiers (LR,
SVM and RF) as depicted in Table III. SVM models performed
best at distinguishing HC from PwMSmild and PwMSmod,
whereas the RF was marginally better at separating PwMSmild
vs. PwMSmod. Accuracy was not significantly different be-
tween LR, SVM and RF models for all binary classification tasks
expect at distinguishing HC from PwMSmod, with both LR and
SVM performing significantly better than the RF (p < 0.05).
Maximal subject classification was obtained for all classifiers
using ≤ 26 features. It was observed that majority voting im-
proved all classifier’s performance.

IV. DISCUSSION

The present study examined gait and physical function in
PwMS and HC using remotely captured smartphone and smart-
watch sensor data, while subjects performed a 2MWT. The aim
of this analysis was twofold: (1) can meaningful features be
derived from the remotely performed 2MWT that correlate with
clinical assessments, and (2) can multivariate modelling of these
performance metrics correctly distinguish groups of HC and
PwMS with mild and moderate disability.

A. Feature Evaluation

The 2MWT assesses walking distance in PwMS [12],
which can be indirectly approximated by the number of steps
taken [27]. Studies have found that cadence (steps/minute) dur-
ing the 6MWT and daily step count to be significantly different
between MS subgroups [45], [46]. This simple biomechanical
metric, as computed based on Lee et al. [29], showed less
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Fig. 4. Comparison of out-of-sample subject classification performance (HC vs. PwMSmod) as features are added to an SVM classifier using
5-fold cross validation with 10 repetitions. Figure (a) compares classification accuracy between smartphone tests performed using the running belt
only versus tests using either the running belt or the pocket. Total step count represents the total step count over the whole 2MWT if used as a
feature for classification. Figure (b) compares classification performance using features from smartphone, smartwatch and both devices. Confidence
intervals denote one standard deviation (SD) around the quoted mean performance. For clarity, we present here only the first 25 steps.

discriminatory power between groups compared to signal-based
complexity features. However, it must be considered that a recent
comparative study calculating step counts in PwMS has also
found considerable variability in the precision and accuracy of
the algorithms and devices [19]. Ideally, step length would be
used to calculate distance travelled during the 2MWT. Methods
to derive step length however are erroneous or highly com-
plex [47], [48], and their use in this study would also require
validation in more controlled (non-remote) settings. Therefore,
we opted to approximate the outcome of distance travelled for
the remote 2MWT using a simple step count and its inclu-
sion as a classifying feature is presented here primarily for
comparative purposes. Classification performance, bench-
marked against total step count, improved for all classification
outcomes based on EDSS group stratification through the usage
of these features (Tables III and IV). A number of the top
features characterise the energy, frequency and variability of
sensor signals recorded in the gait domain (Table II). In par-
ticular, percentage energy, multiscale and Shannon’s entropy
appeared prominently for both devices. Fig. 3 demonstrated that
HC had more power in the gait domains (0.5–3 Hz). Also, the
entropy computed in the gait band H(cD5(‖a‖)) was higher in
PwMSmild and PwMSmod, i.e., the predictability of the gait sig-
nal in PwMS was lower than HC, with PwMS exhibiting lower
energy and slower movements in their gait. Mapping clinical
meaning to this could attribute PwMS, especially PwMSmod,
to be less predictable with increased gait variability. Those with
more severe MS could move more erratically as suggested in the
overall top features selected from both devices that characterise

the signal-to-noise ratio (SNR) and accelerometer skewness,
which could capture noise and jerk-like movements.

B. Classification Evaluation

It was observed that PwMSmod were distinguishable from
both HC and PwMSmild (Acc. 82.3 ± 2.9% and 82.3 ± 1.9%
respectively), whereas PwMSmild were relatively less distin-
guishable from HC (Acc. 66.4 ± 4.5%). One of the primary
means of PwMS disease assessment is the EDSS [8], hence it
was used to stratify sub-groups of PwMS in this study. While
those subjects with EDSS≥ 3.5 are considered to have some gait
related impairment, analysis of EDSS ambulation sub-scores
demonstrated lower levels of ambulatory impact [49]. The het-
erogeneity of MS as a disease and its effect on symptom man-
ifestation must also be considered when stratifying sub-groups
based on clinical assessments and analysis thereafter, especially
for those with lower (milder) severity scores [4], [8]. For exam-
ple, examination of the mean PCA value per subject (Fig. 5(d))
using the first 2 components demonstrated that some PwMSmod
can appear like HCs and vice-versa, where PwMSmild bisected
regions between the two groups. This is an outcome to be
expected from such a model considering that PwMSmild sub-
jects experience very little gait abnormalities, and T25FW times
were not significantly different between PwMSmild and HC
(p = 0.26).

LASSO is a common ML technique with integrated feature
selection and regression functionality (in this case LR) which
is robust for reducing large numbers of features [39]. LR, in
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TABLE II
COMPARISON OF STEP COUNT AND TOP FEATURES1 BETWEEN HC AND PWMSMOD AS SELECTED BY lassoglm ACROSS 5-FOLD CV

WITH 10 REPETITIONS

1See supplementary material for a full description of all of the features extracted in this study.
ICC, Intraclass correlation coefficient (95% CI); Other statistics calculated on median feature value per subject (HC, n = 24; PwMSmod n = 21): P, Mann Whitney
U Test between groups; Rs EDSS, Spearman’s correlation to EDSS in PwMSmod; Rs T25FW, Spearman’s correlation to Timed-25 ft. walk test; *p < 0.05,
**p < 0.01, ***p < 0.001; n.s., not significant.

essence, describes a linear relationship between the predictors
with a non-linear mapping to response variables. LR models
performed similarly to the SVM and RF classifier, suggesting
perhaps a simple linear relationship exists between the combi-
nation of gait features. However there may be other non-linear
feature selection techniques (such as Relieff or mRMR), which

may select more optimal features in a more optimal ranking [39].
RF models built in this study, which internally use non-linear
feature selection, did however perform significantly worse than
LR and SVM models for HC vs. PwMSmod classification tasks
(p < 0.05). A limitation of this work is that each subject’s
tests were considered independent and identically distributed
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TABLE III
SMARTPHONE-BASED SUBJECT CLASSIFICATION OUTCOMES BY

EDSS GROUPING FOR VARIOUS CLASSIFIERS

Mean and standard deviation across CV repetitions (%); LR - Logistic Regression;
SVM - Support Vector Machines with a RBF; RF - Random Forest.

TABLE IV
SMARTPHONE-BASED STEP COUNT CLASSIFICATION OUTCOMES BY

EDSS GROUPING USING A SVM WITH A RBF

Mean and standard deviation across CV repetitions (%).
†Total step count over the whole 2MWT used as a single feature
for classification.

(i.i.d), where subjects each contributed a varying number of
tests. In reality, test observations per subject will be dependent
and may be better suited to sequence modelling approaches.
For example, there may be alternatives to RF in this application
such as Mixed Effect Trees [50], which consider repeated mea-
sures (tests) for classification and could help overcome potential
model biases related to the varying number of observations per
subject.

Comparing the classification accuracy of HC vs. PwMSmod
using smartphone and smartwatch devices showed compar-
ative prediction accuracy for a smaller number of features
added (<8) to our models (Fig. 4(b)). However, beyond this
smartphone features demonstrated significantly improved per-
formance (p < 0.05) over smartwatch features. Surprisingly,
drawing from both the smartphone and smartwatch feature space
did not lead to improved classification performance and maximal
accuracy was achieved using smartphone features only (smart-
phone: Acc. 82.2 ± 2.9%; smartwatch: Acc. 71.3 ± 3.6%).
Further investigations revealed a high variability in the type of
feature (calculated from smartphone vs. smartwatch) selected
at each fold. Interrogating the feature distributions within CV
folds highlighted poor feature generalisability between training
and testing sets in some cases. Table II indicated for example
the top feature H(cD5(‖a‖)) was picked 80% of the time, but
when the feature was picked, it was nearly always in the top 5
features per fold — in other folds the distributions were changed
so dramatically they would not be picked. Combining features
from both devices amplified these problems and did not lead
to improved results. Finally, the added smartphone classifica-
tion accuracy beyond 10–15 features was minimal (Fig. 4(b)),

demonstrating that accurate classification can be achieved with
a small number of features.

C. Considerations for the Remote Characterisation of
Ambulation in HC & PwMS Using Smartphones and
Smartwatches

Although remote monitoring has many advantages such as
unobtrusive, high-frequency assessment of disease, a number of
confounding factors must be considered when taking measure-
ments in real-world non-laboratory scenarios. Some examples
encountered included the differences in subjects’ adherence
during the study, some subjects not following the prescribed
protocols (instances of smartphones in pocket locations or the
use of only one device during testing), along with the many
degrees of freedom associated with self-generated patient data
from real-world testing. While the instructions given (see [22])
were standardised, analogous to that of an in-clinic performed
2MWT [12], [13], the 2MWT in this study was a remotely exe-
cuted out-of-clinic assessment. The performance of the 2MWT
can be highly influenced by the testing environment such as the
length of the hallways, the number and frequency of subjects’
turns, or other factors which we cannot determine remotely.

The number of unique HC (n = 24), PwMSmild (n = 52) and
PwMSmod (n = 21) in this study was relatively few. Sampling
sufficiently sized data from a more diverse cohort should also be
considered in order to build robust and generalizable models. For
example, biases may exist related to the mismatch in the male
to female ratio between HC and PwMS groups (Table I). It was
also acknowledged that there was a high standard deviation in the
number of tests contributed by each subject, however no subject
group contributed significantly more tests than another (Table I).
Besides individual subjects’ adherence rates, this variability was
also partly due to the exclusion criteria imposed on the data used
in this analysis, where only linked smartphone and smartwatch
tests, and of those, only smartphone tests performed with the
running belt were considered for fair comparisons between the
devices. As such, performing CV on subject-wise splits with
each subject contributing varying numbers of tests can cause
the distributions of features to vary between CV partitions. This
helped attribute to the high classification variance between folds
and variability in the type and number of features needed for
maximal classification. Furthermore, subject heterogeneity can
also highly influence model robustness when data is sparse. For
example, Fig. 5 illustrated the first two principal components
computed from PCA plotted against each other for all HC and
PwMS test observations. The top 25 smartphone features were
used to perform the PCA and hence represents the overall struc-
ture of the features which are mostly selected for classification.
It was observed that intra-subject variability appeared low, while
inter-subject variability was distinctly high as subjects clustered
within themselves. Subject-wise CV is hence confounded not
only by low subject numbers and sparse, heterogeneous data,
but in this case was also heavily exacerbated by subject’s gait
feature patterns, which were uniquely associated to the individ-
ual. This manifested as problems exhibited in feature selection
and generalisability across CV partitions. There has been much
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Fig. 5. Example of PCA performed on top 25 smartphone features. The first two components have been plotted per subject and their respective
test observations for HC (a) PwMSmild, (b) PwMSmod, and (c) subjects. Figure (d) represents the mean component value per subject coded by
subject group, HC (green circles), PwMSmild (light blue triangles) and PwMSmod (dark blue inverted triangles). Intra-subject variability appears
low, while inter-subject variability is distinctly high as subjects cluster within themselves.

discussion within the academic community as to the advantages
and disadvantages of subject-wise versus observation-wise CV
approaches [51]–[53]. Subject-wise CV has been criticised in
that it may break assumptions to consistently estimate generali-
sation error in heterogeneous data and lead to model under-fitting
and larger classification error [52]. However, in subject-wise
CV it is argued that there is no “leakage” of subject informa-
tion between training and testing partitions where models can
learn individual subjects’ characteristics [51]. Further recent
analysis by Neto et al. [53], using and real-world mobile data,
demonstrated how various examples of heterogeneity across
subjects can lead to the identification of subjects’ characteristics
rather than disease in observation-wise CV approaches. As such,
this study adopted the conservative subject-wise CV method to
eliminate identity-confounding factors, but acknowledges that
sub-optimal classification and model under-fitting can occur
given the low number of subjects contributing multiple obser-
vations in this study.

Finally, a high inter-dependence was observed within the fea-
ture space. A number of the top features within a source (device)
and features between sources were highly correlated with each
other. This indicates that some features may represent the same
information. Fig. 6 in Appendix B shows the inter-source and
intra-source feature correlation. This could attribute to predictor
redundancy and explain the marginal classification performance
beyond 10 features added for all sources (Fig. 4(b)). However,
smartwatch features reached a plateau in added information
before smartphone features, suggesting that this device may
contain less information and hence more feature redundancy.
Every top smartwatch feature (HC vs. PwMSmod) characterises
the relative power in gait to non-gait frequency domains derived
from CWT and EMD. It should be considered that the location
of smartwatch (wrist) sensor to smartphone (running belt) may
have a profound effect on the depth of information that can be
recorded about gait function. This may be manifested by a larger
and more varied number of useful features (as discussed, the top
smartwatch features chosen only characterise the relative power
in gait to non-gait frequency domains).

Despite applying an orientation transformation during pre-
processing, it was found that some smartphone-based features
were also location dependent (running belt versus pocket) and
classification based on features from only one pose increased the
accuracy of our models (Fig. 4(a)). As such, smartphone-based
tests performed with the running belt were considered different
to the smartphone in the pocket.

D. Future Work

This study demonstrated the feasibility of characterising gait
function in PwMS remotely using body-worn inertial sensors
embedded in consumer smartphones and smartwatches.

It was observed that classification performance was affected
by inconsistent placement location (i.e., some 2MWTs were
performed using the running belt versus others where the smart-
phone was placed within a pocket). The results from this study
therefore emphasise the importance of a standardised approach
to remote sensor monitoring and advocates the use of a consistent
sensor location such as a running belt for future studies. Advan-
tages of running belts are that they offer a fixed and standard
placement location to capture gait characteristics, and avoid the
need for participants to have pockets or another means to carry
their device.

Adherence to the prescribed protocol was an issue observed
in this study however. It is acknowledged that instructing partic-
ipants to regularly carry their smartphone and smartwatch for a
daily 2MWT, and to affix their smartphone using a running belt
is both obtrusive and inconvenient. As such, perhaps the use
of a smartphone within a pocket, or even a single smartwatch
during passively collected free-living gait may be a better option
for the unobtrusive, long-term monitoring of PwMS subjects.
Future work is needed first however to explore in greater detail:
(1) the effect of placement location of smartphone devices,
and (2) to investigate the differences in information captured
by smartphone and smartwatch devices for quantifying gait
dysfunction in PwMS, particularly in more controlled settings.
These further studies should also aim to compare the outcome
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measures investigated in this work to clinically administered
2MWTs and in-clinic gait measurement systems. This suggested
analysis would allow the further evaluation, understanding and
improvement of the most optimal protocols designed to explore
how sensor data can represent PwMS impairment remotely and
out-of-clinic.

As MS symptoms fluctuate periodically, the real value of
remote monitoring PwMS may ultimately lie in investigating
test performance as a function of time. To sufficiently capture
the time-varying nature of MS ambulatory impairments it will
require both robust outcome measures and the design and stan-
dardisation of feasible and unobtrusive protocols for objective
assessments — that can be delivered remotely and administered
frequently — such as those introduced in this work.

V. CONCLUSION

This study demonstrates the benefits of ML and multivariate
feature modelling in the identification of the signs of ambu-
latory function impairment in PwMS from remotely captured
smartphone and smartwatch inertial sensor data. A combination
of statistical- and signal-based features calculated from both
devices performed better than simple biomechanical metrics
such as step count, which was used to approximate the standard
2MWT outcome of walking distance. Many previous studies
probing the characteristics and separability of PwMS and HC
have used multiple standalone inertial sensors affixed to the body
at various locations during controlled in-clinic assessments [6],
[7], [17], [18]. In this study it can be seen that sufficient
information for accurate MS symptom characterisation may be
captured in relatively few features (≤26) obtained from an out-
of-clinic using only one device. It was found that PwMSmod,
who experience gait-related dysfunction, could be distinguished
with a high accuracy from PwMSmild and HC, whom the latter
two groups were more difficult to differentiate from each other.
The work presented here, with on-going future work, helps es-
tablish a methodological foundation to construct models that can
identify patterns of PwMS ambulatory impairment from remote
gait assessments. MS is a heterogeneous, mutable disease and
subjects may experience symptoms in various domains which
hard thresholds on infrequently administered clinical scales may
fail to capture. Key advantages of objective assessments like
those in this study are that they can be administered at high-
frequency and longitudinally in out-of-clinic environments.

APPENDIX A
CALCULATION OF ICC

The intra-class correlation coefficient (ICC) is a widely used
metric to quantify the test-retest reliability of test observations
in the biomedical field [54]. The reliability of the feature values
can be inferred if we consider each feature value over repeated
test observations per subject. ICC (A, k) was calculated for the
the 14-day session median across subjects. To be included in the
analysis, subjects needed to have a minimum of 3 measurements
per window. Reliability was categorised as either poor (ICC <
0.5), moderate (ICC = 0.5–0.75), good (ICC = 0.75–0.9) or
excellent (ICC > 0.9).

APPENDIX B

Inter-Source and Intra-Source Correlation

Fig. 6. Pairwise correlation matrix showing the intra- and inter-source
correlation for the top 25 ranked smartphone (index 1–25) and smart-
watch (index 26–50) features respectively. The top 10 smartwatch fea-
tures are highly correlated with each other, whereas the top 10 smart-
phone features exhibit much less inter-correlation. The inter-source
correlation is strong in the top 5 features between smartphone and
smartwatch devices.
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