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Abstract—Accurate segmentation of lung cancer in
pathology slides is a critical step in improving patient care.
We proposed the ACDC@LungHP (Automatic Cancer De-
tection and Classification in Whole-slide Lung Histopathol-
ogy) challenge for evaluating different computer-aided di-
agnosis (CADs) methods on the automatic diagnosis of
lung cancer. The ACDC@LungHP 2019 focused on segmen-
tation (pixel-wise detection) of cancer tissue in whole slide
imaging (WSI), using an annotated dataset of 150 training
images and 50 test images from 200 patients. This paper
reviews this challenge and summarizes the top 10 submit-
ted methods for lung cancer segmentation. All methods
were evaluated using metrics using the precision, accuracy,
sensitivity, specificity, and DICE coefficient (DC). The DC
ranged from 0.7354+0.1149 to 0.8372+0.0858. The DC of
the best method was close to the inter-observer agree-
ment (0.8398+0.0890). All methods were based on deep

Manuscript received November 30, 2019; revised June 16, 2020 and
October 12, 2020; accepted November 11, 2020. Date of publication
November 20, 2020; date of current version February 4, 2021. This
work was supported in part by the National Natural Science Funding of
China (No.61801491), in part by the Natural Science Funding of Hunan
Province (No. 2019JJ50728), and in part by the NIH/NCI Cancer Center
Support under Grant (P30 CA008748). (Zhang Li, Jiehua Zhang and Tao
Tan equally contributed to this work.) (Corresponding authors: Zhang Li;
Hui Chen; Yuling Tang.)

Zhang Li, Jiehua Zhang, Xichao Teng, Xiaoliang Sun, Hong
Zhao, and Qifeng Yu are with the College of Aerospace Science
and Engineering, National University of Defense Technology,
Changsha 410073, China, and also with the Hunan Provincial Key
Laboratory of Image Measurement and Vision Navigation (e-mail:
zhangli_nudt@163.com; zhangjiehua_nudt@outlook.com; tengari@
buaa.edu.cn; alexander_sxl@nudt.edu.cn; shamrock-zhao@
hotmail.com; yugifeng@vip.sina.com).

Tao Tan is with the Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, Eindhoven, MB 5600, The
Netherlands, and also with ScreenPoint Medical, Nijmegen, EC 6525,
The Netherlands (e-mail: t.tanl@tue.nl).

Lihong Liu and Yang Xiao are with Pingan Technology, Shenzhen
518000, China.

Byungjae Lee is with Lunit, Inc., Seoul, Korea.

Yilong Li and Qianni Zhang are with the School of Electrical Engineer-
ing and Computer Science, Queen Mary University of London, London,
U.K.

Shujiao Sun is with the Image Processing Center, School of Astro-
nautics, Beihang University, Beijing 102206, China, and also with the
Beijing Advanced Innovation Center for Biomedical Engineering, Beijing
100191, China.

Digital Object Identifier 10.1109/JBHI.2020.3039741

learning and categorized into two groups: multi-model
method and single model method. In general, multi-model
methods were significantly better (p<0.01) than single
model methods, with mean DC of 0.7966 and 0.7544, re-
spectively. Deep learning based methods could potentially
help pathologists find suspicious regions for further analy-
sis of lung cancer in WSI.

Index Terms—Atrtificial intelligence, convolutional neural
networks, deep learning, lung cancer.

[. INTRODUCTION

UNG cancer is the top cause of cancer-related death in
L the world. According to the 2009-2013 SEER (Surveil-
lance, Epidemiology, and End Results) database, the 5-year
survival rate of lung cancer patients is approximately 18% [1].
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For patients with the early stage, resectable cancer, the 5-year
survival rate is about 34%, but for unresectable cancer, the
5-year survival rate is less than 10%. Therefore, early detection
and diagnosis of lung cancer are the key important steps in
improving patient treatment outcomes. According to the Na-
tional Comprehensive Cancer Network (NCCN) guidelines, for
image-suspected tumors, histopathological assessment of biop-
sies obtained via fiberoptic bronchoscopy should be performed
for the diagnosis [2], [3].

Assessment of biopsy tissue by a pathologist is the golden
standard for lung cancer diagnosis. However, the diagnostic
accuracy is less than 80% [4]. The major histological subtypes
of malignant lung disease are squamous carcinoma, adenocar-
cinoma, small cell carcinoma, and undifferentiated carcinoma.
Correctly assessing these subtypes on biopsy is paramount for
correct treatment decisions. However, the number of qualified
pathologists is too small to meet the substantial clinical demands,
especially in countries such as China, with a significant popu-
lation of lung cancer patients. Recently, the results from the
largest randomized control lung screening trial, the National
Lung Screening Trial (NLST), led to the implementation of
lung cancer screening with low-dose Computed Tomography
in the United States in 2015. Moreover, the results from the
second-largest randomized control trial, the Dutch-Belgian lung
cancer screening trial (NELSON), also show the benefits of
implementing lung cancer screening. The implementation in the
U.S. and the possible implementation of lung cancer screening
in Europe will likely lead to a substantial amount of whole-slide
histopathology images biopsies and resected tumors. At the
same time, the workload and the shortage of pathologists are
severe. An artificial intelligence (AI) system might efficiently
solve the problems mentioned above by an automatic assessment
of lung biopsies.

Digital pathology has been gradually introduced in patholog-
ical clinical practice. Digital pathology scanners could generate
high-resolution WSIs (up to 160 nm per pixel). It facilitates the
development of automatic analysis algorithms for reducing the
burden and improving the performance of pathologists. Most
recently, a large number of deep learning (DL) methods have
been proposed for automatic image analysis of WSIs from the
cell level to the image level [5]-[20].

At the cell level, DL methods were used in mitosis de-
tection [21]-[23], nucleus detection [24]-[26] and cell clas-
sification [27], [28]. These proposed methods were all based
on convolutional neural networks (CNNs). At the tissue level,
CNNs were proposed for segmentation (e.g., segmenting glands
for grading adenocarcinomas [29]). Moreover, contour informa-
tion [30], handcrafted features [31], [32], multi-loss [33]—[35]
were incorporated into CNNs to obtain more reliable tissue
segmentation results.

At the image level, a three-layer CNN was first introduced to
detect invasive ductal breast carcinoma and showed a compara-
ble result (65.40% accuracy) with classifiers relying on specific
handcrafted features [36]. CNNs were also used in the detection
of prostate cancer [37], pancreas cancer [38], renal diseases [12],
stomach disease [16], kidney cancer [39], and colon cancer [40].

Deeper CNN, such as GoogLeNet [41], AlexNet [42],
VGG [43] and ResNet [44], was transferred to breast cancer

Fig. 1. Pathological WSI with annotations for cancer regions.

classification [45] and prostate cancer prediction [46]. In the
CAMELYONI16 challenge [47], the 1st rank team ensembled
two GoogLeNets to elevate the AUC of classification of lymph
node metastases to 99.4%. Several challenges in medical imag-
ing also significantly advanced the pathology image analysis
community, such as mitosis detection challenges in ICPR 2012,
CAMELYON16? and CAMELYONI17?3 for identifying breast
cancer metastases. In particular, the CAMELYONI16 was the
first challenge to offer WSIs a large number of annotations,
which is essential for training deeper CNNss.

With the breakthrough of DL methods in medical image
analysis and increasing of available public WSIs for developing
a specific CNN, we believe that the CNN could be leveraged
to give pathologists more reliable objective results or even help
pathologists to improve the cancer diagnostic level. However, af-
ter assessing recent review papers [10], [11], we found very few
articles discussing the applications of CNNss to histopathological
images of lung cancer. Furthermore, no public datasets of WSI
were available to evaluate such algorithms. A recent paper that
used CNNs on lung cancer detection was only on cytological
image [48]. The size of each image was limited (only around
1k*1 k pixels), and the appearance of this image was quite
different from the hematoxylin&eosin (H&E) stained image that
we used in this paper. The recent research [49] suggested that
image features automatically extracted from WSIs can predict
the prognosis of lung cancer patients and thereby contribute to
precision oncology by machine learning classifiers.

To further explore the potential application of DL on WSI
for lung cancer diagnosis, we proposed the ACDC@LungHP
challenge which is the first challenge at addressing lung can-
cer detection and classification using WSI, to our best knowl-
edge [45]. This manuscript is a summary of the first stage of
ACDC@LungHP (in conjunction with ISBI2019) that focused
on the segmentation of cancer tissue in WSI. The sample of
pathological WSI with annotations is shown in Fig. 1.

Il. MATERIALS
A. Patient Recruitment

For the ACDC@LUNGHP challenge, 200 lung patients were
recruited in this study at the Department of Pulmonary Oncol-
ogy in the First Hospital of Changsha, from January 2016 to

Thttp://people.idsia.ch/~juergen/deeplearningwinsMICCAlgrandchallenge.
html

Zhttps://camelyon16.grand-challenge.org/

3https://camelyon17.grand-challenge.org/
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Fig. 2.

Example of tumor patches and normal patches.

November 2017. According to the American Joint Committee on
Cancer (AJCC) staging system, patients firstly diagnosed with
lung/bronchus cancer (site: C34.1-C34.9; histology type: adeno-
carcinoma, squamous cell carcinoma, and small cell carcinoma)
were recruited. Other inclusion criteria included: 1) patholog-
ically confirmed patients with surgery biopsy maintained; 2)
no radiotherapy before surgery; 3) aged between 30 and 90 yr.
The exclusion criteria were: 1) multiple primary cancers; 2)
metastatic lung cancer; 3) patients with immune-deficiency or
organ-transplantation history; 4) patients who did not provide
informed consent. This study was approved by the Ethics Com-
mittee of the First Hospital of Changsha. Informed consent was
obtained from each patient before the examination. Necessary
demographic and clinical information for each patient, such as
age, gender, stage, pathology, etc. were collected.

B. Data Preparation

Histological slides were stained with H&E scanned by a digi-
tal slide scanner (3DHISTECH Pannoramic 250) with objective
magnifications of 20x. The close look of different tissues in the
slides can be seen in Fig. 2. One can see that the patch colors
were quite different even among the patches from normal tissue
due to the staining variability. The appearance of the cancer
regions was also quite different because of the different cancer
types. For instance, Fig. 2.(A) and (B) represent small-cell lung
cancer, and Fig. 2.(C) and (D) represent squamous cell lung
cancer and adenoid cell lung cancer. Fig. 2.(E)-(H) are normal
patches.

In total, 200 H&E stained slides were scanned and digitized.
We randomly split those 200 slides into training and test sets. 150
slides with annotation were released as the training set. 50 slides
were held as the test set. The main types of cancer were included
in our data: squamous cell carcinoma, small cell carcinoma, and
adenocarcinoma. The ratio of them was approximately 6:3:1.
One pathologist with 30 years of experience (the director of
the pathology department) annotated the cancer regions for all
200 slides (See Fig. 1). We also asked the second pathologist
(with 20 years experience) to annotate the test set only. The
annotation of the second pathologist was only used for accessing

391 Participants

Individual
23%
- \University
Company 63% 33
14% /

y

Fig. 3. The distribution of participants from ACDC@LungHP 2019.

the inter-observer variability. Participants were allowed to use
their own training data for pre-training. All data were uploaded
to Microsoft OneDrive, Google Drive, and Baidu Pan for partici-
pants from different regions. Whole-Slide images were released
in the TIFF format. Manual annotations were in XML format.

In the clinical practice, more than one sample from the same
biopsy were scanned. If samples had a similar shape, the pathol-
ogist only annotated one sample in the WSI. Participants were
suggested to use ASAP* to make a bounding box themselves to
exclude the unused samples.

1. ACDC@LUNGHP CHALLENGE SUMMARY
A. Challenge Overview

The first stage of the ACDC @ LUNGHP challenge focused on
detecting and segmenting lung carcinoma in WSI. The segmen-
tation as a potential aid could quickly help pathologists to iden-
tify suspicious regions. At this stage, 495 participants submitted
the challenge applications, and 391 of them were confirmed as
valid participants (with required registration information). Each
team was allowed to submit their result three times per day.
25 participants successfully submitted their results before the
closing time. The distribution of the participants is shown in
Fig. 3.

The Dice coefficient (DC) was computed to evaluate the
agreement between the automatic segmentation and the manual
annotation by the pathologist. The DC was defined as:

2|GT N RES|
|GT| + |RES]|

where the GT and RES are ground truth from the pathologist
and result of automatic segmentation, respectively. The top 10
teams were selected from the final participants. The overall
comparison could be seen in Table I. The DC ranges from 0.7354
to 0.8372. Based on the model ensembling strategy (See the
following sections), the methods from top 10 teams could be cat-
egorized into two groups: multi-model method and single model
method. Other criteria, such as label refine, pre-processing and
pre-training strategy are also summarized in Table I.

ey

Dice =

“https://github.com/GeertLitjens/ ASAP
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TABLE |
OVERALL COMPARISON OF TOP 10 TEAMS FOR THE ACDC@LUNGHP CHALLENGE 2019
Task:
Team Lung cancer Deep Learning Algorithm
detection
Mean Label . s
DC Rank refine Architecture Preprocessing Comments
PATECH 0.8372 1 v/ | dilation block - st U ures )
. to refine label Ensemble of models by changing
with U-Net .
loss function
. ResNet50& Multi data augmentations; | Initialize encoder with ImageNet
Multi Byungjae Lee | 0.8297 2 v DeepLab V3+ Ostu to refine label pre-trained weights
U-Net& Multi-resolution training Multiple networks; enhance the
Model | Turbolag 0.7968 3 ConvCRF data boundary accuracy
ArontierHYY | 0.7638 6 Va ll\{ledsrli;z?+DenseNet& Tile labeling strategy Ensemble of 16 models
”Co-teaching” method made
Newhyun00 0.7552 7 v DenseNet103 Select clean labels training deep neural networks
robustly
DenseNet121& Locate the tissue regions L
CMIAS 0.7700 4 v FCN by a bounding box Combination of two networks
Ostu to refine label;
Divided into 3 classes . .
Jorey 0.7659 5 \/ IncRes+ACF& (tumor: normal:mix) Featqre fusing by using
CRF . . . multi-atrous convolution
and mix Mix file into
Sinsl other classes
Nﬁ:geﬁ Training in the AI Explore
platform; Using a large
AIExplore 07510 8 FCN None momentum in SGD; Pre-trained
network
. . | Classifier-based approach;
Skyuser 0.7456 9 ResNet18 Multi data augmentations; Fast, small and robust network
Vahid 07354 | 10 Small-FCN-512 None Designed a custom FCN; Pre-trained
network

B. Methods Based on Single Model

The single model methods only used the individual model as
their architectures. The mean DC for single model methods was
0.7544. An overall comparisons of single model methods could
be seen in Table I).

The rank #4 team combined advantages of a CNN and a fully
convolutional network (FCN) [50] to improve the accuracy of
segmentation. At first, a bounding box was manually annotated
to locate the tissue regions. CNN was based on DenseNet-121
structure [51] with two output neurons, and the FCN was based
on the DenseNet structure consisting of three dense blocks. The
first dense block was with five convolutional layers, and the
other two were with eight convolutional layers. The architecture
of their model is shown as Fig. 4. Intel Core 17-7700 k CPU
and a GPU of Nvidia GTX 1080Ti were used for training. They
used cross-entropy with softmax output as the loss function, and
Adam as the optimizer for CNN structure. The dice loss and focal
loss were set as loss function, and the SGD with momentum was
set as the optimizer for FCN structure.

The rank #5 team integrated the Atrous fusing module and
CNN feature extractor to build their networks (See Fig. 5). They
combined ResNet and Inception V2 (IncRes), which replaced
eight middle blocks of ResNet18 with Inception’s module. The
WSI was split into big patches (with size of 768 x 768 * 3)
in the data pre-processing step, and nine small patches were
extracted uniformly from each big patch. After feature extrac-
tion using IncRes, the multi-atrous convolution was used for
feature fusion [52]. The big patches were assigned to TUMOR,

NORMAL,and MIX according to the annotation. They mixed
MIX patches into TUMOR and NORMAL to keep the balance
of the training data. In their experiments, four parallel atrous
convolution modules were used to fuse all features with different
dilation ratios. The Convolutional Conditional Random Field
(CRF) [53] after the concatenate layer was connected. The CRF
did notinvolve in the training stage, but used to modify the output
results. They used four NVIDIA GTX 1080Ti 12 GB GPU
and set the learning rate to 1e-3 for beginning 40 epochs, 7e-4
for the last 20 epochs. The loss function was set as BCEWith-
LogitsLoss. They illustrated that the model combining IncRes,
atrous convolution module, and CRF gave the best segmentation
performance.

The rank #8 team used a fast deep learning-based model.
They put all training sets into the FCN [50] in the AI Explore
platform [54]. After training, the test set was tested by the Al
Explore platform for real-time lung whole slide segmentation.
They used NVIDIA GeForce GTX 1080 Ti to train the model
and the SGD with large momentum to avoid the multiple local
gradient minimums. The learning rate set to le-10.

The rank #9 team used a classification method by labeling
large regions instead of distinct pixels. They trained a ResNet18
model with multiple data augmentation methods. An adaptation
of threshold was used for cell detection. The training was on
a single NVIDIA GeForce GTX 1060, Adam was used as the
optimizer with a learning rate set to le-4.

The rank #10 team processed WSIs in large patches with no
overlap to capture more context. They evaluated three alternative
networks: Small-FCN-16, Small-FCN-32 and Small-FCN-512.
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Fig. 4. The network architecture proposed by rank #4 team.
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Fig. 5. Model architecture used by rank #5 team.

For locating the cancer region rather than exact boundaries, they
used 4 x4 convolutional filters to increase the receptive field at
a different level. They also used Imagenet-FCN to train their
model. The training was on the NVIDIA Pascal GPU. Adam
optimizer, with a decaying learning rate that started with le-4,
was used to optimize the weights of these networks. The cross-
entropy was set as a loss function. They compared different
small networks and selected small-FCN-32 with Imagenet-FCN
as their final model.

C. Methods Based on Multi-Model

In general, the single model is not flexible enough to solve
complex problems [55], such as the segmentation of lung cancer
regions. Furthermore, training multiple models could signif-
icantly improve the generalized performance than only using
single model [55].

The rank #1 team combined the DenseNets and dilation block
to work with U-Net. DenseNet [51] connected each layer to

Backbone 2
Feature Extractor

Atrous Feature Fusing

A, CRF

every other layer in a feed-forward fashion (See Fig. 6(a)). The
U-Net has an encoder-decoder structure with skip connections
that enables efficient information flow [56]. In the dilation block,
with the same convolution kernel size, different dilation rates
could be utilized to obtain multi-scale features and more context
information. The dilation rate (1, 3, 5) with 3x3 kernel were
concatenated as the input of the convolution. The dense block
was constructed by four layers. They trained different models
by changing the loss function through weights and choose
the best-performing model to ensemble. This model was more
sensitive to tiny lesions and able to capture more context infor-
mation and multi-scale feature. They used four GPU on Tesla
M60 and Adam optimization with default parameters 5; = 0.9,
B2 = 0.999 for training, set the initial learning rate to 2x10-4,
and then divided learning rate by 20 in every 20 epochs. The loss
function was a combination of dice function and cross-entropy.

The rank #2 team refined labels by removing the background
within the tumor area and performed data augmentation at the
training step. The ResNet50 was used as an encoder network
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Fig. 6. Network architectures proposed by top three teams.(From top to bottom: rank #1, rank #2 and rank #3).

to extract semantic information. The DeepLab V3+ was used
for upsampling. They also modified the ResNet architecture to
adapt to the task as described below: 1) Down-sampling step
in stage4 was eliminated by changing first convolution layer
stride 2 to 1; 2) All convolution layers in stage4 had been altered
to use atrous rate 1 to 2; 3) Global average pooling layer was
removed and attached DeepLab V3+ decoder;4) All convolution
layers in DeepLab V3+ decoder used separable convolution.
The model is shown as Fig. 6(b). In the experiments, they used
ImageNet pre-trained weights for encoder and Adam as the
optimizer, set the initial learning rate to 1e-4. The loss function
was a combination of the cross-entropy loss and soft dice loss.
They trained CNN models with five-fold cross-validation and
ensembled five models from cross-validation training.

The rank #3 team proposed a multi-scale U-net fusion model
with the CRF [53] (See Fig. 6(c)). The framework fused net-
works in two ways: multi-scale fusion and sub-datasets fusion.

In multi-scale fusion, three models were trained on the whole
training set of three resolutions (576, 1152, and 2048 pixels). The
network structure was a modified U-net called SU-net (shallow
U-net), which focused on the local details of tumor cells. They
removed one downsampling and one upsampling steps in the
original U-net and added a fully connected layer before every
remaining downsampling and upsampling steps. The SU-net in-
cluded three times of downsampling and upsampling, consisting
of 24 layers in total. In sub-datasets fusion: the dataset was
divided into three sub-datasets by k-means algorithm [57]. Each
sub-dataset was in the same image resolution of 512 pixels and
trained on a DU-net (deep U-net model). The DU-net added one
additional downsampling and upsampling stages, consisting of
28 layers. In the experiments, they used the soft-max combining
with the cross entropy loss as the loss function.

The rank #6 team used existing classical models, includ-
ing ResNet101, ResNet152, DenseNet201, DenseNet264 and
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Mdrn80 (a short version of the network that DeepMind [58]).
They used the tile labeling strategy to label the cancer regions
(See Fig. 7). Tile overlapped more than 75% with annotated
cancer region was defined as a positive cancer tile, and the tile
without overlapping the cancer region was a negative tile. Other
tiles were not used for training. They trained and ensemble 16
models to conduct the experiments. They used three NVIDIA
RTX Titan GPUs and Adam optimization with a learning rate
of le-4 for training. Cross-entropy was set as the loss function.

The rank #7 team used “Co-teaching” to train networks (See
Fig. 8). Co-teaching [59] aims to clean the noisy label. The
proposed method trained two networks simultaneously. In each
mini-batch of data, each network viewed its small-loss instances
as useful knowledge and taught such instances to its peer net-
work for updating the parameters. Comparing with the original
Co-teaching algorithm, the main difference was the dynamic
drop rate 3(7"), which controlled the number of clean-instances
selected for training. It was used to avoid the training error
from a network to be directly transferred back on itself (See
Algorithm.1). They used the fully convolutional DenseNet (FC-
DenseNet) 103 network as a backbone. The two FC-DenseNet

Algorithm 1: Pixel-level Co-teaching Algorithm.

Input: w; and w,, learning rate 7, epoch T,,,, iteration
Niazs

1: for T=12,...T,,4, do
2: Shuffle the training set D;
3: for N=1,2,....N,,qz do
4: Fetch J and L from D;
5: Obtain Ly = o|f,,(J)] > 0.5;
6: Obtain Ly = o[ fu, (J)] > 0.5;
7: Update w; = w; —nVis(f, Ly, L)
8: Update w, = wy, — nV1i,(f, Ly, L)
9: end for
10: end for

Output:wy and w,

103 networks were trained from scratch simultaneously using
the same data. In their experiment, the networks were trained
using four NVIDIA GeForce GTX 1080 Ti GPUs, and an Adam
optimizer was used with an initial learning rate of 1.5e-4.

A detailed description of the top 10 methods will be uploaded
to our challenge website.

IV. RESULT AND DISCUSSION
A. Comparisons of Top 10 Methods

The box-plot of the DC for test set of the top 10 teams is
shown in Fig. 9. The inter-observer variability between the two
pathologists was also assessed using the mean DC, which was
0.8398 (See Fig. 9). And mean DC of multi-model methods and
single model methods for each test image is shown in Fig. 10. All
teams got a relative high DC on the NO.27 test image. The DC
ranged from 0.8653 to 0.9435. This sample was well prepared
during H&E staining like most of the training datasets, and the
cancer tissue was clearly shown in this image. One could see
typical results from two different teams in Fig. 11(c) and (d).
The tissue is shown in Fig. 11(a) and (b).

In contrast, most of the teams got relative low DC on the
NO.41 test image (between 0.2-0.5, see Fig. 9). Only rank #1
team got a high DC (0.9458), among others. A visual comparison
could be found in Fig. 12(c) and (d). NO.41 was an example of
highly differentiated squamous cell carcinoma. The abnormal
cells were similar to normal cells in this case. And the color
appearance of this slide was not consistent with other slides due
to the off-standard H&E staining process. Models from most
of the teams might not be generalized enough to deal with this
problem.

In order to better evaluate the performance of top 10 methods
on the test set, we listed the mean DC on the images of the
squamous cell carcinoma (SCC), small cell carcinoma (SCLC),
and adenocarcinoma (ADC) (See Table II). The result illustrated
that the accuracy of the segmentation depends on how the cancer
cells grow. There were no other components in the squamous cell
carcinoma nest, so the segmentation accuracy was higher than
the other two types. However, small cell carcinoma spread along

Shttp://acdc-lunghp.grand-challenge.org
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Fig. 11.
(DC = 0.9435) and rank #8 team (DC = 0.8653).

TABLE Il
COMPARISONS OF MULTI-MODEL AND SINGLE MODEL METHODS ON THREE
TYPES OF LUNG CANCER

SCC SCLC ADC
Multi Model | 0.8205 | 0.7521 | 0.7888
Single Model | 0.7797 | 0.7186 | 0.7468
All 0.8001 | 0.7353 | 0.7678

the sparse fibrous interstitium and gaps, and its cytoplasm was
minimal. The adhesion between the cells was inferior, and it was
easy to loosen, plant, transfer. Also, the cells were squeezed and
deformed during the biopsy, resulting in unclear boundaries. So
high performance was hard to be achieved for SCLC. ADC grew
along the alveolar wall, and there were too many vascular inter-
stitial components that may affect the segmentation accuracy.

B. Multi-Model v.s. Single Model

The sign rank test was used to evaluate differences of DC
between multi-model and single model methods (based on
Fig. 10). The multi-model methods gave significantly better
results (p=1.0872e-09) than single model methods. Besides
comparing the DC, we also calculated accuracy, precision, sen-
sitivity, and specificity of detection for the top 10 methods (See
Table III).

Pathological WSI for test image NO.27. (a) image with annotation (blue line). (b) selected patch of (a). (c) and (d) results of rank #2 team

We can see from Table III that sensitivity and specificity of
multi-model methods were generally higher than single model
methods. We can see that different types of cancer tissue were
with different appearances. The current challenge may difficult
to provide enough data for all types of cancer. Using a single
model might not be sufficient in identifying specific types of
cancer. Through model fusion, we could combine multiple
models’ performance and reduce the probability of missed
inspections.

C. Pre-Trained Model v.s. No Pre-Trained Model

Transfer learning is a commonly used method in the Al com-
munity. Using the pre-trained model for fine-tuning can reduce
training time and achieve better results in several applications.
Three teams used ImageNet pre-trained weights to initialize their
models. In the challenge, the methods using pre-trained models
did not outperform the method that learning from scratch. This
might be because the digital pathology domain is inherently
different from the ImageNet domain.

The CAMELYON16, TUPAC, and CAMELYON17 chal-
lenges aimed at detecting the micro- and macro- metastases in
the lymph node in H&E stained WSIs (CAMELYON16/17) and
assessing tumor proliferation in breast cancer (TUPAC). Using
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Fig. 12.  Pathological WSI for test image NO.41. (a) image with annotation (blue line). (b) selected patch of (a). (c) and (d) results of rank #1 team

(DC = 0.9458) and rank #7 team (DC = 0.3327).

TABLE I
QUANTITATIVE COMPARISONS OF MULTI-MODEL AND SINGLE MODEL METHODS ON TEST SET
Rank Mean.DC Accuracy | Precision | Sensitivity | Specificity
1 0.8372+0.0858 0.9505 0.7929 0.9052 0.9531
Multi 2 0.8297+0.0867 0.9508 0.7996 0.8628 0.9609
Model 3 0.7968+0.1081 0.9462 0.7646 0.8469 0.9585
6 0.7638+0.1107 0.9289 0.7163 0.8558 0.9404
7 0.7552+0.1237 0.9307 0.7312 0.8199 0.9489
4 0.7700+0.1177 0.9375 0.7701 0.8003 0.9567
Single 5 0.7659+0.1130 0.9369 0.7376 0.8151 0.9514
Model 8 0.7510+0.0973 0.9231 0.6829 0.8596 0.9279
9 0.7465+0.1188 0.9319 0.7428 0.7672 0.9563
10 0.7354+0.1149 0.9212 0.6830 0.8462 0.9316

The top 3 methods were shown in bold format.

these data for pre-training might get good results. However, none
of the teams used a pre-training model from those data.

D. Label Refine

Experienced pathologist annotated cancer regions using
ASAP software. We intended to make relative rough labels for
the training set (e.g., label contains background region shown
as Fig. 13) to evaluate the robustness of the methods in dealing
with label noise. All backgrounds and normal tissues were kept

in the training set as well. It makes tumor tissue and the normal
area extremely unbalanced in the training set. Therefore, label
refine is one of the significant issues that should be taken into
consideration in this challenge to keep data balanced.

Several teams used different methods to refine the label. Three
teams (rank #1, #2, #5) used the Otsu algorithm to remove the
background area in tumor tissue labeled and obtain a tighter
boundary of the cancer region. The team (rank #4) located the
tissue region by a bounding box and filtered the blank areas using
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Fig. 13.
region).

The sample with label noise (annotation contains background

a threshold. The team (rank #6) used a tile labeling strategy in
their method and removed background by the percentage of pixel
values above 200 in grayscale space. The team (rank #7) used the
“Co-teaching” algorithm to refine noisy annotation. The team
(rank #10) increased the receptive field at a different level, and
they tried to label regions of WSIs rather than finding the exact
boundaries.

We found that teams using the Otsu algorithm that remov-
ing background gave relatively higher DC. The preprocess for
removing the label noise (such as the background in the label
area) is essential for model training for the challenge despite the
network design.

V. CONCLUSION

In this paper, the ACDC@LungHP challenge was summa-
rized. The current stage of the challenge focused on lung cancer
segmentation. 200 slides were used for this challenge, and
methods from the top 10 teams were selected for comparison.
In general, multi-model method was relatively better than sin-
gle model-based methods. The results showed the potentiality
of using deep learning for accurate lung cancer diagnosis on
WSL

All submitted methods were based on deep learning, but the
networks were quite different. Methods based on multi-model
outperformed single model method (mean DC of a single model
is 0.754440.0991 and multi-model is 0.796640.0898). Unlike
fine-tuning for other computer vision tasks, the submitted meth-
ods did not benefit too much from the ImageNet pre-trained
models. The pre-processing for the label noise during the train-
ing stage is crucial since our training data was not accurately
labeled for test set.

In the coming second stage of this challenge, we will focus
on classifying the primary lung cancer subtypes (e.g., squamous
carcinoma, adenocarcinoma) using WSI biopsy. At least 1000
slides collected from multiple medical centers will be released
in 2020. We believe that the experiences of the first stage will
greatly help digital pathology communities to achieve better
performance for the second stage.
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