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Abstracti—Immunohistochemical (IHC) analysis of tissue
biopsies is currently used for clinical screening of solid
cancers to assess protein expression. The large amount of
image data produced from these tissue samples requires
specialized computational pathology methods to perform
integrative analysis. Even though proteins are traditionally
studied independently, the study of protein co-expression
may offer new insights towards patients’ clinical and ther-
apeutic decisions. To explore protein co-expression, we
constructed a modular image analysis pipeline to spatially
align tissue microarray (TMA) image slides, evaluate align-
ment quality, define tumor regions, and ultimately quantify
protein expression, before and after tumor segmentation.
The pipeline was built with open-source tools that can man-
age gigapixel slides. To evaluate the consensus between
pathologist and computer, we characterized a cohort of
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142 gastric cancer (GC) cases regarding the extent of E-
cadherin and CD44v6 expression. We performed IHC analy-
sis in consecutive TMA slides and compared the automated
quantification with the pathologists’ manual assessment.
Our results show that automated quantification within tu-
mor regions improves agreement with the pathologists’
classification. A co-expression map was created to iden-
tify the cores co-expressing both proteins. The proposed
pipeline provides not only computational tools forwarding
current pathology practices to explore co-expression, but
also a framework for merging data and transferring infor-
mation in learning-based approaches to pathology.

Index Terms—Co-expression, computational pathology,
gastric cancer, image analysis, immunohistochemistry,
protein, registration.

[. INTRODUCTION

ASTRIC cancer (GC) ranks as the fifth most common
G cancer worldwide and the third most frequent cause
of cancer-related mortality [1]. GC patients rarely experience
symptoms at early stages of the disease, and more than 80% are
diagnosed at an unresectable stage, where the 5-year survival rate
is only 20% [2]. A better understanding of tumor heterogeneity
and local molecular signatures is crucial to guide better clinical
and therapeutic decisions, a fact that is true for many types of
cancer [3] where the knowledge of underlying mechanisms is
limited.

Immunohistochemical (IHC) analysis of tissue samples is the
mainstream approach for diagnosis and therapeutic decision in
solid cancers. Pathologists are frequently tasked with the cross-
slide analysis of consecutive tissue sections stained to highlight
particular features of the tissue or to study a new protein of
interest. Despite robust guidelines, IHC is often limited by the
subjectivity associated with qualitative visual interpretation of
expression levels. In this matter, computational pathology can
be an ally, as it objectively assesses, quantifies and relates a large
number of features in a systematic and high throughput way.

Advanced commercial and open-source software is starting to
gain traction in the world of computational pathology and mak-
ing its way into the clinical practice. One example is QuPath [4],
designed for whole slide image analysis. With the help of Bio-
Formats [5], QuPath is capable of opening and reading the most
common slide formats and allows for flexible and efficient tissue
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analysis, including, e.g., annotation and automated cell detection
and counting by pathologists. QuPath can also be programmed
via custom macros which can be useful to extract data for further
processing. However, QuPath does not include registration tools,
making it impossible to quantify co-expression in data coming
from different slides and spaces.

Python’s scientific computing ecosystem composed of core
numeric libraries such as Numpy and Scipy, and domain specific
libraries such as scikit-image and scikit-learn provide interfaces
to perform image processing and make available several machine
learning models that can be used for pixel classification i.e.
segmentation.

In order to quantify protein co-expression, we developed and
present here an image analysis pipeline to perform image regis-
tration on tissue microarray (TMA) slides, define tumor regions
and quantify protein co-expression, built on such libraries. As
proof of concept, we explored two proteins frequently altered
in GC, namely E-cadherin [6] and CD44v6 [7]. Each protein
was characterized by IHC, in separate but consecutive TMA
sections, distanced a few micrometers apart. Therefore, tissue
morphology is expected to be very similar between both tissue
sections.

Recent developments in multispectral imaging and multiplex
immunohistochemical staining makes it possible to study co-
occurrence of several markers in the same tissue core [8]. These
methodologies present multiple pre-analytical and analytical
challenges such as the lack of standardization of fixation times,
dehydration, paraffin impregnation and the cross-reactivity be-
tween multiple antibodies. Additionally, the availability of these
systems 1is still very limited in terms of scalability and high
throughput. The presented study is focused on well-established
protocols commonly used in research and clinical practice.

IHC usually combines two stainings: haematoxilyn (H) and
diaminobenzidine (DAB). H stains the general scaffold of the
tissue in blue/purple, mainly highlighting nuclei morphology.
DAB produces a brown precipitate, revealing the expression
status of a protein targeted by a specific antibody (i.e. subcellular
location, intensity and expression pattern). The morphological
features revealed by H can be used as input for automated
spatial alignment of multiple parallel tissue sections, including
alignment quality assessment, as previously shown in [9]. This
motivates the alignment of the cores. To do so, we used a recent
registration framework [10] that takes advantage of the spatial
information carried by H and also the intensity information of
the unmixed stains.

However, quantifying co-expression patterns from TMA
slides presents additional challenges in the management of
gigapixel images. TMA images are stored in resolution pyra-
midal formats that require specialized programming libraries.
We therefore developed custom tools for slide visualization,
registration, and analysis within the scope of the open source Tis-
sUUmaps project [11]. TissUUmaps is built on top of OpenSead-
ragon [12], meaning that an arbitrary number of slides can be
visualized and annotated in parallel, on a browser, which enables
easy collaboration and sharing of information. The pipeline is
modular and built with open-source tools, and modules can be
changed to suit the tools used in any already existing pipelines.

Overall, using our image analysis pipeline, we were able
to quantify protein co-expression in TMAs that can hopefully
unveil novel insights in the clinical and molecular impact of
multiple protein markers.

Il. PREVIOUS WORK

The workflow presented in this paper involves several image
analysis methods developed over the years. These are introduced
in the following section while the methods section provides the
details of the final workflow.

A. Color Unmixing

Bright-field tissue slide scanning outputs an RGB image,
where each channel represents the absorption of each of the three
colors (red, green and blue). In consequence, the resulting TMA
slide has to be processed to find, separate and quantify the protein
of interest, i.e., provide a way to find how much contribution in
an RGB channel is given to the colors of the desired stains.
The relationship between the concentration of a stain and its
absorbance or optical density depends on the chemical and
physical properties of the stains. There is an ongoing debate on
the interpretation of a pixel intensity and saturation with respect
to the amount of stain [13]. This means that while intensities
provide information about the presence of stain, they might not
be linearly related with the amount of stain it represents. This is
important to remember when considering a pixel as positive or
negative for a certain stain. There are specially hard cases when
the DAB stain is very faint and there can be a high discrepancy
between decisions.

Color unmixing (also referred to as color deconvolution) [14],
is the process of finding a matrix of optical densities or ab-
sorbances from samples of the image. Several ways exist to do
color unmixing [15], [16]. The goal is always to find a way to
transform from the RGB color representation to a space spanned
by the stains in the tissue.

B. Image Registration

Image registration is the process of spatially aligning two
different images. We need to align the core images so that their
corresponding features are aligned in space, enabling analysis of
protein co-expression. After alignment, structures composed by
cells in the tissue will overlap and the images will be considered
spatially aligned. The first image is referred to as the reference,
itis in a reference space. The second image is referred to as the
floating image. Once registered, all the main features, the tissue
scaffold, will be aligned.

There are different types of transformations, features, mea-
sures and evaluation methods for different registration methods
and they are always application dependent; there is no one-size-
fits-all. There are linear and non-linear transformations. Linear
transformations have a smaller number of parameters and a
smaller search space with fewer local optima and are usually
easier to interpret physically [17]. Non-linear transformations,
also called elastic or deformable transformations, have a very
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high number of parameters that need regularization terms to
achieve any kind of physical or anatomical interpretability.

Different types of registration have been used in high reso-
lution tissue images, and registration examples with feature ex-
traction include [18]-[20], while [21]-[23] exemplify non-linear
approaches. A detailed study of registration of consecutive tissue
sections can be found in [24] where linear transformations are
performed on images of the same slide (washed and re-stained).
The same study shows that much of the alignment in the pathol-
ogy field is done manually which is arduous and inaccurate.

There are several automated registration methods based on
Mutual Information, both as a measure to guide the registration
and as an evaluation metric [25], [26]. However, these meth-
ods do not make full use of the spatial information. A recent
registration framework uses a measure that combines intensity
and spatial information in the same regularization term [10],
typically exhibiting a larger region of convergence, increasing
the chance of finding the correct transformation parameters
under larger rotations, translations and scaling.

More formally, the spatial alignment of two images is mod-
elled as a minimization process where the distance between
the overlapped images is the main criterion. This distance d
is measured iteratively as several transformations from a valid
set €2 are applied to an image A to match its counterpart B. It is
formulated as:

T = argmin d(T(A), B)) (1)
Ten
For affine transformations, €2 includes rotations, translation,
scaling, shearing, and reflections. The distance d combines both
intensity and spatial information, with the benefit of few local
optima as compared to intensity based approaches, and no need
for feature matching as compared to feature based methods.

C. Tumor Segmentation

TMA slides represent pieces of a transversal section in a tumor
sample. Tumor samples are three dimensional structures com-
posed of tumor cells but also stromal non-tumor components.
Therefore, regions highly enriched with tumor cells within TMA
cores must be found. As manual labeling is labor intensive,
automatic segmentation with the aid of fewer to no labels is
preferred.

Different tumors exhibit different morphological features de-
pending on the histological type. With daily practice, pathol-
ogists learn to identify tumor-specific features and interpret
them under a specific clinical context. In image analysis, tumor
segmentation becomes a problem of pixel classification where
each pixel is assigned to a class e.g. tumor, non-tumor, and
background.

To distinguish tumor vs. non-tumor cells, the pathologist often
evaluates the H staining that highlights cell nuclei features.
More often H&E staining is used to locate tumor. Visually
speaking, cancer cell nuclei are recognized by a decreased
staining intensity, while normal cells display an homogeneous
purple color, which translates to textures in image analysis. A
pathologist can then manually label a few pixels representing
different cells types and this information can be used in any of
a great number of pixel classifiers. Not all the DAB staining

is biologically meaningful, even when disregarding technical
artifacts. In specific, normal epithelial cells of the stomach lack
CD44v6 expression, but it is expressed in pre-malignant and ma-
lignant lesions of gastric mucosa. On the other hand, E-cadherin
is expressed at the membrane of normal epithelial cells. The loss
of its function, either complete or aberrant protein expression,
reflects a pathological condition in the gastric mucosa. Therefore
it is crucial to perform tumor segmentation to ensure a reliable
automated estimation of protein expression in tumor situ.

There are both classical and modern learning-based meth-
ods that allow for pixel classification, from graphical models,
thresholding, K-means, naive Bayes, support vector machines,
decision trees, random forest, to deep learning, as reviewed
in [27]. One example of pixel classification for TMAs can be
found in [28], where tumors in lung tissue are detected using
Markov Random fields.

Random forests (RF) are a very powerful ensemble method
that creates several decision trees (hence the forests) and these
trees make a decision together. All trees try to find the best
features that represent the data, which makes them an ideal
choice for pixel classification. RF are the default choice in the
interactive Ilastik software [29].

D. Protein Co-Expression

The spatial overlap of two pixels (protein 1 and protein 2)
allows to infer the co-expression of both proteins. Consecutive
TMA slides in close proximity are expected to represent the
same structures. This proximity allows the quantification of
colocalization to be interpreted as co-expression within a level
of certainty. Co-expression can then be assessed by finding
the distances between the nearest pixels that best represent the
protein. But even if proteins are spatially distributed over a
similar region, some co-expression could be the result of random
overlap, specially from pixels with lower intensities.

The work in [30] has been crucial for establishing the math-
ematical framework for colocalization quantification borrow-
ing many elements from statistics. Originally used to quantify
colocalization in fluorescence microscopy [31], colocalization
is quantified using the Pearson Correlation Coefficient.

[lI. METHODS AND DATA

This section presents the proposed image analysis pipeline
and an overview on the data analyzed. The presented pipeline is
based on open source-source code, it is modular, and each mod-
ule can be implemented according to the tools available to any
laboratory searching to incorporate computational pathology
pipelines. Detailed video tutorials and an implementation of the
pipeline are available at github.com/wahlby-lab/TMA-studies.

A. Protein IHC Image Data From a GC Patient Cohort

Tumor samples from a cohort of gastric adenocarcinoma
patients surgically treated between January 2008 and De-
cember 2014 at Centro Hospitalar Universitario de Sao Jodo
(CHUSJ, Porto, Portugal). A TMA was assembled from paraffin-
embedded tumor material of these patients. Representative areas
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TABLE |
PATHOLOGIST CLASSIFICATION SCHEME FOR CD44v6

Score | Estimated tumor area | Expression pattern
coverage (%)
0 0% Negative or cytoplasmic
1+ < 10% Membrane
2+ 10 — 50% Membrane
3+ > 50% Membrane
TABLE Il

PATHOLOGIST CLASSIFICATION SCHEME FOR E-CADHERIN

Score | Estimated tumor area | Expression pattern

coverage (%)
0 0% Negative
1+ < 25% Cytoplasmic or aberrant membrane
2+ 25 — 50% Cytoplasmic or aberrant membrane
3+ > 50% Cytoplasmic or aberrant membrane

of the tumors were selected based on H&E stained tissue speci-
mens and one tissue core with 2 mm diameter was obtained from
each selected specimen.

Nine TMA blocks were constructed and in each block a
normal gastric mucosa core and a GC cell line core were included
as controls, as well as a core of a non-gastric tissue sample for
orientation purposes. IHC staining of E-cadherin and CD44v6
was performed in 3-micrometer TMA sections, in close proxim-
ity. The assay was carried out on the automated Ventana Bench-
Mark ULTRAStaining System, using the OptiView DAB THC
Detection Kit (Roche/Ventana Medical Systems, Tucson, AZ,
USA). H staining is used to reveal all tissue. Positive and negative
staining controls were performed in parallel with paraffin sec-
tions. To monitor E-cadherin normal expression, either normal
gastric mucosa, intestinal metaplasia or cell lines included at the
TMA, while normal skin was used to control CD44v6 normal
expression. Each TMA slide was scanned using NanoZoomer
2.0HT (Hamamatsu) whole slide imaging scanner. TMA image
sizes range between 150,000 pixels in width and 100,000 pixels
in height, resulting in sizes of 5000 pixels? for each core with
a average resolution of 0.226 micrometers/pixel. Overall, our
image data set sums up cores from 18 TMA slides (9 for each
protein) and the respective pathologist grade per TMA core, per
protein. After excluding patients with no clinical-pathological or
treatment data available, patients lost to follow-up and without
available paraffin-embedded material for analysis, in total, 261
cases were eligible for analysis.

One expert pathologist graded all cores for one of the proteins,
while another expert pathologist independently graded all cores
stained for the other protein. In both cases one of four classes
(from O to 34) were assigned based on the estimated tumor
area and the expression pattern. Due to the distinct biological
context of each protein, each class represents different criteria.
Specifically, CD44v6 is not expressed in normal tissue but
becomes expressed in pre-malignant and malignant cells, and
exerts its function at the membrane (Table 1). On the other hand,
E-cadherin is expressed at the membrane of normal cells but, in
a tumor context, is often abnormally expressed (cytoplasmic
or aberrant membrane, i.e. dotted or incomplete membrane) or
absent (Table 2). In this dataset, a fraction of cases (118/261

(45%)) preserved membranous E-cadherin expression. As we
are interested in exploring E-cadherin and CD44v6 dysfunction,
cases preserving complete membranous E-cadherin expression
were excluded and the remaining counterpart (142/261 (55%))
proceeded for analysis.

B. Methods in Image Analysis

The pipeline modules of our work are shown in Fig. 1, serving
as a visual guideline to the outcomes of every module. Our
methods begin by separating the core images into its main com-
ponents and all the necessary information will then be extracted
from these separated stains.

The documentation for the API of the scientific python li-
braries used is available in their respective pages online. We
present our methodology and the parameters used.

1) Color Unmixing: Fig. 1 shows a TMA slide containing
multiple IHC-stained cores where the blue/violet color repre-
sents the H staining and the brown color represents the DAB
staining of E-cadherin and CD44v6. Color unmixing was done
separately for E-cadherin and CD44v6.

First, representative patches were manually selected and RGB
values were grouped into 255 clusters by k-means clustering.
These 255 colors (representative of all RGB values expected
from a given IHC staining) were thereafter sorted by their value
(in HSV space), and colors of very high value were removed
due to their closeness to the white and very light background
colors. Starting from the color samples found in this reduced
RGB space, an absorbance model was extracted as explained
in [14]. Solving a least squares problem between the strongest
absorbance and the remaining ones, creates the orthogonal basis
M whose pseudo inverse is used to create grayscal images
representing H and DAB. The result is two grayscale images,
H; and DAB; for protein 1 (E-cadherin) and correspondingly
two images Hs and D A B, for protein 2 (CD44v6), as shown in
Fig. 1, where intensity corresponds to presence of the respective
stains. M was created once for each of the two stains, and
thereafter used in the full experiment.

2) Image Registration: The H images from the cores carry
information about the common structure of the core; a common
scaffold, and are therefore used for image registration (while the
DAB images may differ as they represent different proteins that
may have different spatial distribution within the tissue). Using
the recent registration framework proposed by [10], the main
transformation between cores and its parameters is obtained by
using H; and H» in equation 1:

T = argmin d(T'(Hy), H2) (2)
TeQ

Where the distance d is Alpha-AMD, a distance that incor-
porates both intensities and spatial information to guide the
registration.

The transformation 7" is chosen to be affine, meaning that 2
only includes scaling, rotation and translation. Since the aligned
scaffolds represent very similar structures but not exactly the
same, any elastic deformation could potentially create undesir-
able false structures. The transformation 7" is stored and applied
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Color unmixing

Image registration

Reporting

[Protein 1

[l Protein 2
Protein 1

an
Protein 2

Fig. 1.

Overview of the stages to quantify co-expression in TMA cores. Two individual proteins stainings of the core images (11, I2) are unmixed

to reveal tissue scaffolding (H1.Hz) and protein expression (D AB;, D ABs). Each pair of TMA cores expected to come from the a very near spatial
location are registered using the H image to find the transformation 7', which is applied to the DAB image. Using image I and manual labels,
tumor segmentation is found in each core. A registration confidence map (RCM) ensures H stained tissue is present and correlates across the
two cores (white = high correlation, green/red = tissue missing in H; or Hs). Only white regions are kept for analysis of co-expression. DAB;
and transformed D A B; stains are superimposed and co-expression quantified using the tumor segmentation and registration confidence maps as

masks.

to D AB5 in order to bring it to the same space as D A By where
they can be effectively compared.

The Alpha-AMD method requires a few parameters to work.
For the level of pyramids we use (32, 16, 8, 4) which means
that the first computations for the registration will be done on
an image 32 times smaller all the way until 4. We used gaussian
blur with sigmas of (15.0, 8.0, 4.0, 2.0) which means that each
of the previously mention levels will be blurred applying a
gaussian filter with the selected sigmas. The method allows
for the input of masks from where to sample so we input
binary masks that cover the core. We use 300 itrerations for the
registration.

We used CD44v6 as the reference image meaning that all the
cores from E-cadherin were transformed to fit in the same space
of the CD44v6 cores.

In general, we observed that the H images contain enough
information to guide the transformation, particularly because
the registration is robust enough to use the information coming
from nucleus and cytoplasm in H despite them not being exactly
equal in both images.

The transformation 7" is stored and kept to be applied to any
information that has to be sent to the CD44v6 space.

3) Registration Confidence Map: In order to trust quantifi-
cation of co-expression from registered images, we must first be
sure that similar tissue actually exists in all parts of the sample.
Images /; and I come from different slides which can present
artifacts in different locations such as rips, folds, dust, noise etc.
When bringing 5 to the space of I; all the artifacts have to be
masked out. This means that information present in /; might be
missing from I and vice versa. If information is missing in one
of the images, no attempt of quantifying co-expression should
be done in the area.

For this purpose, a Registration Confidence Map (RCM) is
created by finding the colocalization between max(H;, DAB)
and max(Hs, D AB2) with artifacts masked out [9]. This max-
imum intensity projection (MIP) of both H and D AB from the
same core indicates the presence of tissue. The RCM will then
indicate the pixels that are trusted to provide information on
expression and co-expression of proteins. In Fig. 1 H and DAB
are shown and the colocalization of the MIPs becomes the RCM,
shown in the box with the same name. White regions represent
regions with high confidence.

4) Tumor Segmentation: An RF classifier was used to seg-
ment each core into tumor, non-tumor and background. Due to
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the lack of H&E staining we performed tumor segmentation on
the CD44v6 image, and as the E-cadherin images are registered
with CD44v6, we later applied the same tumor mask when
quantifying both proteins. Sparse labeling was performed per
category (background, tumor, non-tumor) manually drawn by
the pathologist in 25 cores to train the RF classifier. This results
in hundreds of thousands of features per class. Fig. 1 shows an
illustration of this process.

Using classical image processing, features are extracted from
the pixel information under the labels. The features extracted
are intensities, edges and texture information. In our case, the
most meaningful features were Gaussian smoothing GS(10.0),
Laplace of Gaussian LoG(3.5), Gaussian gradient magnitude
GGM(10.0), Hessian Matrix Eigenvalues HME(1.6, 3.5, 10.0).
GS features remove high frequencies and blur the image. GS
is the input for LoG and GGM which find edges. HME serves
as corner detector. The features are selected by their gini im-
portance, or mean decrease in impurity (MDI) meaning how
much they contribute to the purity of the tree. This is computed
automatically along with the RF and the chosen features are
those that have a MDI over the mean.

To train the RF we used the Scikit-Learn implementation
version 0.22.1 from the “ensemble” module. From the Random-
ForestClassifier class we set the n_estimators to 100 which is the
number of trees in the forest. We also set parameter warm_start
which allows for a continued training if needed, even after the
script has finished.

Using the module “io0” the images I and their corresponding
labels are loaded. For each channel and each pixel from I that
lies under a label, the modules “filters” and “features” compute
GS, LoG, GGM and HME which are then organized in an array
of size (n_samples,n_features) along with an array of size
(n_samples), which is need as input for the fit method from the
classifier.

To perform tumor segmentation, features are extracted from
of unlabeled pixels and classes (tumor, non-tumor, background)
are predicted.

5) Protein Expression Quantification: The developed image
analysis methods to quantify protein expression are inspired by
the pathologist’s method for visual assessment.

From a computational perspective, once stains are separated
and tumor segmented, the images DAB; and D ABsy contain
the information of the protein expression. In a first approach,
the expression of H and D AB images was quantified by direct
thresholding of the images. However, in [13] it is suggested that
caution should be taken when quantifying protein expression
directly from the unmixed images; they must undergo additional
processing before quantification correlating with visual assess-
ment can be done.

DAB stains appears in membranes as well as some other
tissue structures, and while the strength of the staining in the
membranes is variable, yet lower intensities count as much
as strong ones at visual scoring, if the stain is located in a
membrane. Inspired by the visual assessment method, we apply
the Robert’s cross edge filters on the D A B images and combine
this information with the original D AB image. We let D AB be
the input image and F be the Robert’s cross edge information

and construct the membrane image B:

B 2x DAB x E if £<0.5
" 1-2x(1-DAB)x (1-E)ifE > 0.5

This means that weak edges, i.e. ¥ < 0.5, take the informa-
tion from reduced D AB intensities so that the B image will be
darker (as 2 x I is always less than 1.0). For pixels with strong
edges,i.e. E > 0.5, the intensity is enhanced so that the B image
will be close to 1 if E or DAB have strong values.

Next, we removed background noise by thresholding B at a
fixed value (0.03) applied across both stains in all images. A
fixed value, rather than automated thresholding, was applied to
avoid enhancement of background in absence of signal. The
resulting binary image represents the final presence/absence of
the protein. The final percentages of tumor area coverage were
calculated by finding the fraction of positive pixels in the part
of each core fulfilling the RCM criteria and either including
or excluding the tissue regions outside the tumor segmentation
mask.

The protein co-expression was quantified for each pair of
aligned cores fulfilling the RCM criteria and excluding the tissue
regions outside the tumor segmentation mask. All overlapping
pixels in the aligned D AB; and T'(D ABs) images were aggre-
gated and their total number over the number of pixels in the
tumor returns the percentage of co-expression. An example a
co-expression map can be observed inFig. 3.

V. RESULTS

In this study, we developed an image analysis pipeline to align
and quantify co-expression of two proteins in GC TMA cores.
Prior to this work, experienced pathologists visually inspected
the expression profile (both extension and pattern) of E-cadherin
and CD44v6 and grouped cores in four categories (from O to 3+),
called scores.

To evaluate the reliability of our co-expression quantification,
we first evaluated CD44v6 and E-cadherin expression individu-
ally. Our image analysis pipeline is inspired by the pathologist’s
classification methodology, where focus is on expression within
tumor areas.

The box plots in Fig. 2 compare the manual and automated
classification of two proteins in 142 cores, prior to and after
tumor segmentation. Within each class, we can observe that
the automated measurements are widely distributed for both
proteins. To relate manual and automated classifications, we
determine the quartiles from the data and calculated thresholds
based on the weighted medians between the groups. These
thresholds allow the categorization of the predicted percentages
and compare classes with the pathologists’ classification as
shown in the confusion matrices. To evaluate the quantification
of CD44v6 and E-cadherin expression, we present confusion
matrices to compare the number of cases assigned to each class
according to manual versus automated classification. Classes are
imbalanced so we colored each cell to reflect the percentage of
cores within the predicted classes with respect to the pathologist
class.
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Comparison of manual and automated classification of E-cadherin and CD44v6 per core. Confusion matrices show manual classification

score vs. automated classification score based on the weighted median of the continuous automated classification results. Colors in the matrices
reflect the percentage of cases in the predicted classes with respect to the pathologist class. In the bottom area, the yellow background highlights
the classification of CD44v6 within tumor and the blue background highlights E-cadherin classification within tumor. Four cases (A, B, C and D)
illustrate some examples of cores that have been missclassified due to complex expression patterns, less accurate tumor segmentation, or poor

color unmixing.

Before tumor segmentation, the predicted amount of CD44v6
and E-cadherin expression was underestimated for all the scores
which makes the discrimination of classes difficult.

After tumor segmentation, the discrimination between classes
improved for both proteins. We observed that our method per-
formed better quantifying de novo CD44v6 expression, partic-
ularly when CD44v6 membranous expression was present in
the majority (>50%) of tumor cells (class 3+, 41 out of 64 ~
64%). In contrast, predicting E-cadherin aberrant expression
was not a trivial task for the computer, nor was it for the
pathologists, due to the difficulty of estimating multiple of
patterns. Nevertheless, our method performed well in classifying
E-cadherin complete loss of expression (class 0, 9 out of 12
~ 75%), which are often regarded the most aggressive GC
tumors.

The comparison between the pathologists’ classification and
the computer prediction gives a Cohen’s Kappa of 0.362 for
CD44v6 and 0.241 for E-cadherin within tumor areas. The

values are reduced when tumor segmentation is not used, re-
sulting in 0.355 for CD44v6 and 0.236 for E-cadherin. While
the interpretation of Cohen’s Kappa is somewhat ambiguous,
numbers higher than 0.2 indicate some measure of agreement.
We can argue that unbalanced distribution across the classes
usually results in lower Kappa statistics.

Considering that ambiguous cases can be challenging for
either pathologist or computer, we developed a core explorer
visualization tool for IHC data. We performed a depth analysis of
four cases (A and B for CD44v6 and C and D for E-cadherin) and
identified a few sources of discrepancies between pathologists
and computers’ assessment.

For case A, given the absence of CD44v6 staining, the pathol-
ogist scored 0. However, the computer scored it as a 34 because,
during color unmixing step, very light browns had to be included
(which can be confused with light purples/blues) resulting in the
overestimation of the amount of DAB staining. In case B, our
method scored a lower percentage of CD44v6 compared to the
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Fig. 3. Overview of the output from each of the steps to quantify and visualize E-cadherin, CD44v6, and their co-expression. (a, b) Original core

array for E-cadherin and CD44v6. (c) Co-expression map showing E-cadherin in red and CD44v6 in green. (d) Tumor segmentation, darkest gray
shows tumor. (e) The registration confidence map (RCM) highlights tissue colocalization zones in white. (f) Overview of co-expression (yellow), free
proteins (free E-cadherin in red, free CD44v6 in green), and absence of protein (black) within tumor and RCM. The cores preserving E-cadherin
membranous expression or without available paraffin-embedded material were excluded from the co-expression quantification analysis.

pathologist classification of 2+. Even though CD44v6 is present
at the cell membrane, its expression is focal and faint which
results in an underestimation of DAB staining.

Case C was classified by the pathologist as 0, but our method
reports a significant amount of E-cadherin. Even though DAB
staining is visibly present at the membrane, it belongs to a

non-tumor region which was incorrectly considered as tumor.
Improving tumor segmentation would clear this problem. In case
D, E-cadherin protein expression was aberrant in more than 50%
of the cells and thus the pathologist classified it as 3+. Despite
its vast extention, the pattern of E-cadherin aberrant expression
is dotted and incomplete membranous, which resulted in the
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underestimation of DAB staining predicted by the computer,
scored 2+.

All the TMA slides were processed to create co-expression
maps for visual assessment of the relationship between CD44v6
and E-cadherin expression. In the majority of the cases, core
alignment was successfully achieved and the morphologi-
cal structures matched. Despite thin TMA slices, protein co-
localization with a single cell resolution is not achievable since
subcellular details are not shared between slides. Nonetheless,
the overlap of both proteins brings important insights regarding
the heterogeneity degree of a tumor core. In Fig. 3 we highlight
three cores which illustrate the level of heterogeneity that a single
core may harbor. For instance, the first core shows a unique
and homogeneous population that co-expresses both proteins,
while the other cores harbor multiple populations, the majority
expressing one of both proteins and others that co-express both.

At a glance, this type of map helps the quick identification
of cores co-expressing both proteins and the assessment of the
level of tumor heterogeneity that was previously challenging
to do by visual assessment. For example, to evaluate protein
co-expression, the pathologist starts by visually identifying the
tumor areas in the core and then evaluates the pattern for
each individual protein in the tumor area. Only after that, the
pathologist displays two separate images side by side, mentally
divides the image in quarters and starts his/her estimation of
expression level of both proteins simultaneously. On average,
the manual assessment of concomitant protein expression takes
between 5-8 minutes per step. Even with the support of another
operator/researcher, it is unlikely that all the information men-
tioned by the pathologist during his/her assessment is properly
documented. In contrast, our pipeline processes one slide con-
taining 60 cores in 30 minutes (30 seconds per core), saving all
the information processed in each step of the analysis. Therefore,
full images, tumor segmentation, protein intensity and patterns
are documented and can be revisited and re-analyzed at any time.
Note that our pipeline is not an end-to-end software product;
each module of the pipeline should be executed independently
which gives the opportunity to verify the result of each step.
The clinical value of the information has to be evaluated and
verified by an expert, and further studies have to be carried out
to relate the measurements to relevant biological and clinical
information.

Research is moving away from categorical scores to contin-
uous scores such as the results of our pipeline. Either way, we
believe that the contribution of pathologist and computer should
not be independent of each other but complementary.

V. DISCUSSION AND FUTURE WORK

Classifying tissue automatically is never a trivial task. We
have presented here an initial approach with a methodology
that may be improved by using more advanced components
and a continuous feedback from pathologist to researcher. Also,
an evaluation that includes intra and inter pathologist variation
would give a better recognition of difficult-to-grade cases and
more fairly define faults of the computational approach.

Faint and misty protein stainings are one of the most frequent
sources of equivocal information that lead to mistakes in the
subsequent steps of the automated method. In the future, there
is room to improve the performance of our method by refining
the distinction of multiple aberrant patterns that E-cadherin can
assume in the tumor nest and explore the intensity patterns of a
protein.

The computational quantification may be improved by better
tumor segmentation, and taking into account the expression
patterns of both proteins. Our method reports better results for
CD44v6 compared to E-cadherin, because its patterns are less
complex and simpler to quantify.

Data analysis is tightly coupled with good data visualization
where efficient visualization methods are able to summarize
multiple facets of data and can bring new insights. Our process
and interface with the pathologists was improved by developing
a core explorer visualization tool for IHC data to explore cores
according to their pathologist given grade and the percentage
calculated with our method. The information generated through-
out the computer quantification process (as color unmixing and
tumor segmentation) is displayed in the interface. At a glance,
researchers and pathologists can quickly observe the distribution
of the cores, inspecting the outliers or any technical mistake
or bias in a specific slide. Inspecting the cores was crucial to
understand the difficulties of the pipeline and even help with the
correction in a few scores.

Beyond the scope of this paper, we can ask new questions
such as: can the co-expression maps be developed further for the
study of multiple markers? Can the present method be used to
reveal co-localization at the subcellular level? Can any particular
co-expression patterns within the tumor be used as reference for
analysis of other markers? If so, they can become labels for other
pieces of tissue aligned to the same context.

We believe that the proposed pipeline for registration and
quality control for TMA data could be highly valuable in
learning-based approaches to explore the clinical and molecular
impact of multiple protein markers and improve our knowledge
in intra- and inter-tumor/patient heterogeneity. Given the vari-
ability associated with manual assessment and reporting of IHC
results, the key strength of our method is to extract, register
and easily document the analysis of multiple protein markers.
Using our pipeline, researchers are able to run preliminary
analysis in a high throughput manner, on the direction of their
biological or clinical question. This strategy is expected to
save pathologists’ time, while serving as the basis for faster
verification, validation, adjustment and documentation of data.
In future work, combining rare markers with common markers
can provide invaluable and unbiased information for network
training.
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