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Abstract—With the increasing amount of image data col-
lected from biomedical experiments there is an urgent need
for smarter and more effective analysis methods. Many
scientific questions require analysis of image sub-regions
related to some specific biology. Finding such regions of
interest (ROIs) at low resolution and limiting the data sub-
jected to final quantification at full resolution can reduce
computational requirements and save time. In this paper
we propose a three-step pipeline: First, bounding boxes
for ROIs are located at low resolution. Next, ROIs are sub-
jected to semantic segmentation into sub-regions at mid-
resolution. We also estimate the confidence of the seg-
mented sub-regions. Finally, quantitative measurements
are extracted at full resolution. We use deep learning for the
first two steps in the pipeline and conformal prediction for
confidence assessment. We show that limiting final quanti-
tative analysis to sub-regions with full confidence reduces
noise and increases separability of observed biological
effects.
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I. INTRODUCTION

M ICROSCOPY imaging is one of the most powerful tools
used to investigate complex biomedical processes, and

automated analysis methods are capable of measuring a large
number of parameters from a broad range of samples in parallel.
Rapidly developing high-throughput techniques are generat-
ing data at an unprecedented rate thus placing the biomedical
sciences on the verge of a digital explosion. Transformative
approaches to analyze this massive spatial and temporal mul-
tichannel image data are urgently needed, or there is a real risk
that the promised, rapid advancement in knowledge will not
materialize. In digital pathology, images generated by whole-
slide scanning often reach a couple of gigabytes in size and
can span ten to hundreds of thousands of pixels in both the x-
and y-direction. This full resolution is often needed to acquire
accurate stain quantification or patient diagnosis. Furthermore,
scientific and/or diagnostic information is often sparse, confined
to small regions of interest (ROIs). Specifically, analysis of lung
tissue remains a challenging task due to the heterogenous nature
of the lung with its myriad of sub-compartments, all with distinct
physiological functions and roles in pathophysiology of respira-
tory disease. Although there have been important advancements
made during the past decades in the management of lung disease
there is still a large unmet need in major lung diseases such as
chronic obstructive pulmonary disease (COPD) and idiopathic
pulmonary fibrosis (IPF).

Globally, COPD is the third leading cause of death [1] and
a major challenge with COPD is to subtype it into endo-
types that share underlying pathological mechanisms. How-
ever, two typical manifestations of COPD within different sub-
compartments are bronchitis and emphysema which affect the
airways and alveolar bed respectively. IPF is another delib-
erating lung disease with a 5-year survival rate of 20–40%
[2]. For IPF, the major affected lung sub-compartment is the
alveolar bed.

As of today, image analysis of histological lung samples
typically is conducted on either large scanned images with no
segmentation into different sub-compartments or directly on
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small selected or randomized areas for all of which the analysis
fail to be either specific, unbiased or based on the wealth of the
data in a whole slide scan.

We make two fundamental observations: (1) Not all data con-
tain valuable information. With datasets outgrowing resources
we cannot afford to analyze data that lack scientifically relevant
information. (2) Given limited resources, or if real-time deci-
sions are needed, we have to be smart about which subsets of
the data we use for detailed, costly analyses. We should therefore
focus on processing only the data that is most likely to answer
the scientific question under study.

Deep learning has become one of the most competitive
and successful machine learning approaches for exploring mi-
croscopy images of cells and tissue samples [3]–[5]. Deep
learning approaches used for detection of ROIs and semantic
segmentation often output scores between 0 and 1 defined via
a softmax function [6]. The highest scoring class defines the
predicted class. If these scores could be thought of as estimates
of prediction confidence, further analysis could be confined to
high-confidence regions. However, the softmax function has
been shown to produce overconfident predictions with uncal-
ibrated outputs [7], and softmax values should not be thought
of as confidence measures. Guo and Pleiss et al. [7] proposed a
temperature scaling where a constant temperature (T), optimized
with respect to a validation set, dampens the softmax output to
obtain calibrated confidence. This can however fail to produce
class-wise calibration which is important when the predictions
are to be used as a confidence measure [8]. An alternative
approach guaranteed to obtain valid measures of confidence is
to use the statistical learning theory of conformal prediction
(CP) proposed by Vovk et al. [9], where predictions are hedged:
They incorporate a valid indication of their own accuracy and
reliability. CP works atop any machine learning algorithm and
can be readily applied to deep learning applications at almost no
additional cost [10].

In this paper we present an approach for the analysis of
large-scale whole-slide lung tissue images aiming to limit costly
computations to the parts of the data most likely to answer a
given scientific question. Our main contribution is to combine
deep learning with CP for tissue sub-region prediction with
confidence. Using hierarchical identification of tissue regions
and a measure of confidence in sub-region detection, we quan-
tify region-specific drug response. A key objective is to start
from low resolution to predict and rank regions that should
be investigated at higher resolution, motivated by the fact that
analysis at lower resolution involves fewer pixels and is therefore
cheaper. Costly quantitative analysis of fluorescent markers is
thus limited to very few and small specific regions at the highest
resolution.

The work we present here, adds a valuable methodology to
address the understanding of both the drug target localization
and drug target engagement in specific lung compartments
of interest, based on whole lung slide data thus enabling di-
rect insight into the spatial effect of therapeutic compounds
and the relationship of this to histological and pathological
structures.

II. PROBLEM DESCRIPTION

We present a generalizable method for analyzing large-scale
image data applicable to a wide range of problems where
precision of region detection is prioritised over recall. This is
often the case when evaluating tissue specific drug response,
but may not be suitable for eg. detection of malignancies.
We evaluate the method by quantifying the distribution of
fluorescent signals in well-defined sub-regions of lung tissue.

More specifically, we first use low-resolution images to detect
bounding box ROIs of certain parts of the lung tissue (blood
vessels and airways). This is done using deep learning, but
without CP to maximize detections. Once ROIs are defined,
we move to medium resolution to do semantic segmentation
of ROIs consisting of background and four other sub-regions; 1.
blood vessels 2. alveolar bed 3. epithelial of conducting airways
and 4. sub-epithelial layer of conducting airways. All pixels
classified into these sub-regions are also given a confidence
score which tells us how likely it is that a pixel belongs to the
given class compared to the other classes. In the sub-regions a
fluorescent signal is quantified at full resolution by summing the
intensity values and dividing by the area of the region. Finally, we
investigate if more statistically significant results can be obtained
by focusing the analysis to well-defined ROI sub-regions defined
with high confidence. In other words, we hypothesize that we
can provide a better answer to our scientific question if we focus
our analysis to the part of the data that is most likely to provide
relevant information.

Assumption 1: There is a difference in drug response be-
tween cell layers (epithelium, sub-epithelium and alveoli)
around airways and blood vessels [11].

Assumption 2: These differences can be measured by defin-
ing these cell layers and quantifying fluorescent signals from
gene expression in response to drug uptake in fluorescence
microscopy images.

Hypothesis: The significance in the quantified difference will
be higher if we are more confident in the definition of the cell
layers.

III. RELATED WORK

The most common strategy when applying deep learning
based methods to large whole-slide images is to divide the
image into smaller patches and to make class predictions on
these individual patches. Hou et al. [12], for example, proposed
a patch-based approach where histograms of the patch predic-
tions are used as feature vectors for image-level predictions.
In [13] Graham et al. proposed a multi-step approach where
patch-wise prediction maps are extracted and their subsequent
feature vectors are fed through a random forest classifier for lung
cancer grading. Although promising, patch-based approaches
can become quite computational expensive and time-consuming
when applied to images of large tissue slides. Instead, by uti-
lizing the characteristics of convolutions, analysis can be done
in one pass of the network: All dense layers are replaced by
convolutional layers making the network fully convolutional,
referred to as Fully Convolutional Networks (FCNs) [14]. Thus,
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the network is no longer restricted by a specific input image
size. As the size of the input image is increased the network
generates a coarse prediction map as output. One of their major
strengths is that these networks can be trained on patch-based an-
notations and subsequently utilized for semantic segmentation.
This was shown for example in [15] for quantifying biomarkers
and in [16] for cancer region segmentation. A more efficient
approach utilizing FCNs to detect lymph node metastasis in
whole slide breast images was proposed by Lin et al. [17]. This
idea was later extended showing that FCNs remove a lot of the
redundant convolutional operations in patch based methods [18].
They introduce anchor layers, which in contrast to standard
convolutional layers, can jump and move to a different position
when making dense predictions, thus increasing the speed even
further. Other learning-based methods for region localization
use ground truth annotations consisting of ROIs defined by
bounding boxes. With the annotated data limited to patch-based
annotations, architectures like Faster RCNN [19] and Yolo [20]
are unfortunately unfeasible.

In many cases, definition of ROIs is not sufficient. Within
defined ROIs, pixels have to be assigned to object-specific
classes or sub-regions by semantic segmentation. The problem
of segmentation of large whole-slide tissue images (and many
other image analysis applications), is that it requires making
accurate local predictions whilst accounting for global context.
One of the first applications of deep learning for segmentation
in medical images used CNNs with patch-based sliding win-
dows to classify pixels [21]. As deep learning requires larger
training datasets than are generally available for biomedical
applications, this patch-based representation of the input data
can be beneficial. However, there is a trade-off between local
and global information when using such patches, whereby small
patches sacrifice contextual information over location accuracy
and vice versa. Furthermore, the use of a sliding window results
in a large amount of parameter redundancy when computing
the feature maps of neighbouring pixels. U-Net [22], a popular
modified version of the FCN architecture combines global and
local information into one network. It uses contracting con-
volving encoder layers (learning global context) skip-connected
to expanding “up-convolving” decoder layers (learning high-
resolution location). The U-Net architecture has for instance
been utilized in epithelium segmentation in prostate cancer
whole slide images [23].

A major bottleneck when applying deep learning methods
to cell and tissue images is the lack of labeled data; manual
data annotation is time-consuming and requires a high level of
expertise, and few alternative approaches exist [24]. However,
studies have shown that reusing models pre-trained on different
tasks provides a good network initialization [25], [26]. This is
known as transfer learning, whereby the transferred parameter
values provide good initial values for gradient descent prior to
fine-tuning to fit the target data. This idea has been successfully
applied using large annotated datasets like ImageNet [27]. Oth-
ers have shown that pre-training on data from a similar task can
be even more beneficial [28].

Confidence estimates in deep learning have mainly focused on
Bayesian based methods. Gal and Ghahramani proposed using

Monte Carlo dropout [29] for model (epistemic) uncertainty
by using active dropout layers at test time to obtain a variance
around the predictions. This results in an approximate Bayesian
posterior distribution for the predicted probabilities. However,
these approximate Bayesian methods [30], being based on rather
limited distributional assumptions, are liable to underestimate
uncertainty. The Bayesian hypernetworks of Krueger et al. [31],
which combine Bayesian methods, deep learning and generative
modelling, provide one means of overcoming this problem of
uncertainty underestimation. Other methods propose letting the
model predict the variance [32] as a form of aleatoric (data
driven) uncertatinty. Test time augmentations together with
Monte Carlo dropout was investigated in [33] for fetal brain
segmentation in MRI slices and brain tumor segmentation in
MRI volumes.

As an alternative to Bayesian approaches there is a method
known as Conformal Prediction (CP). CP was initially devised
to work in an on-line transductive setting, such that learning
and prediction occur simultaneously. In this sense confidence
in a prediction is tailored both to the previously seen objects
(whose features and labels are known) and to the features of
the new object, whose label is to be predicted [34]. The fully
on-line mode of CP can be computationally demanding (with
the learning algorithm updated for each new data point). The
theory however extends easily to the off-line inductive mode
(which we use in this paper). CP has been used in moderately
sized problems, e.g. to predict quantitative structure-activity
relationships of molecules [35], to assess complication risks
following coronary procedures [36] and to detect anomalies
in fishing vessel trajectories [37]. It has also been shown to
scale up well on a distributed computing implementation to
very large datasets, such as the Higgs boson dataset [38], the
largest binary classification dataset in the UCI machine learning
repository [39].

IV. DATA

The dataset used in this work was created to investigate drug
distribution in lungs of rats as previously described in [11].
Briefly, rats were treated with different doses of the drug (flu-
ticasone propionate) and with two methods of administration;
either inhaled or intravenously. As response to drug uptake,
cells produce mRNA from glucocorticoid receptor response
genes. Rats were sacrificed followed by tissue fixation and
sectioning. Cell nuclei were stained with DAPI and two dif-
ferent fluorescent markers were applied to detect mRNA for the
glucocorticoid receptor response genes. Resulting tissue slides
were imaged in four fluorescent channels, one for each mRNA
detector, one for nuclei (DAPI) and one for auto fluorescence,
using a slide scanner. All image analysis, apart from the final
quantitative evaluation of drug response, was performed on the
image channels showing nuclei and auto fluorescence, in other
words representing general tissue morphology. Full resolution
images (each around 23000 px × 35000 px) were sub-sampled
to medium resolution (16% of the original size ≈ 9200 px ×
14000 px) and low resolution (4% of the original size ≈ 4600
px × 7000 px) for further processing as described below.
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Fig. 1. Example annotations of lung tissue divided into (a) Airway:
epithelium (yellow), sub-epithelium (red) and alveoli (orange) and (b)
blood vessels (green) and alveoli (orange).

TABLE I
NUMBER OF IMAGES USED FOR TRAINING IN THE DIFFERENT

STEPS OF THE PIPELINE

For model training ROIs were manually extracted and labeled
as ‘Airway,’ ‘Blood vessel’ or ‘Other’. The ‘Other’ class contains
large holes and broken tissue not belonging to either airways or
blood vessels. In total, 1159 ROIs from 58 tissue sections (58
different animals) were labeled.

Further annotations were needed for creating a deep learning
model for semantic segmentation of sub-regions within the
ROIs. These annotations were generated by a semi-automatic
method where images of ROIs were first binarized to cap-
ture large hole structures. Around each hole (representing an
airway or a blood vessel), a sub-region was defined by dila-
tion, and the width of the region was limited by the inten-
sity values in the nuclei and auto-fluorescence channels. This
method gave a rough label mask for both the epithelial and
sub-epithelial layers around airways and also for the blood
vessels. Since we were only interested in finding representative
areas of the different regions, we selected, for annotation only
one airway and one blood vessel from each tissue section,
thus reducing the amount of annotation work required. The
generated annotations were subsequently visually inspected and
filtered to remove images where the method produced sub-
optimal results, resulting in 40 annotated examples per class.
Cell layers representing alveoli were annotated by identifying
smaller hole regions and dilating a small region around those
(Fig. 1).

A test set was defined and removed from the dataset. This test
set was selected to include four images from different animals,
all treated with the same drug dose. The resulting number of
ROIs and annotated sub-regions used for training the different
models can be seen in Table I. For ROI localization, 10 images
per class were removed for validation and the rest were used for
training. For region segmentation, 10 images were removed for
validation/calibration.

Fig. 2. Illustration of proposed workflow. Regions of interest are lo-
cated, through Fully Convolutional Networks, in low resolution (a). The
located regions are mapped to a higher resolution where region seg-
mentation is performed with a U-net architecture (b). Conformal predic-
tions are applied to the output of U-Net to obtain confidence predictions
(c). Lastly, the segmented regions are mapped to the full resolution
where drug response quantification is done (d).

V. METHODS

For the proposed pipeline our focus lies on identifying the
most informative regions to answer the scientific question at
hand, namely if there are differences in drug response in different
cell layers. ROIs are located in low resolution, where finer
details are missing, but larger structures are still visible. A
finer-scale semantic segmentation of ROIs is then produced at
a medium resolution, and combined with a confidence measure
based on conformal predictions. In the final full resolution step
quantification of stains is performed (Fig. 2).

A. ROI Localization at Low Resolution

To make the analysis pipeline as general as possible we
aimed to make the number of tunable hyper-parameters small.
The network had to be able to learn from a small amount of
training data thus making large model architectures unfeasible.
We therefore decided to use ResNet 18 [40], which has, as
its name suggests, only 18 layers. We initialized the network
with pre-trained weights from ImageNet [41] and augmented
the training data by mirroring and 90 degrees rotations to create
eight times as many images. We used the Adam [42] optimizer
with the default learning rate of 0.001 and early stopping (with
a maximum of 100 epochs) based on the loss on a validation set.
We thus used the validation set only for determining how long
the network should be trained. After training, the weights of the
last fully connected layer were transferred and replaced by a 1×
1 convolutional layer making it fully convolutional [14] (Fig. 3).

At inference the large tissue image is unfortunately too large
to fit on a GPU and to be processed by the network. Thus,
smaller tiles of the image needed to be extracted. Since the
original network was trained with a predefined input size the
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Fig. 3. Illustration of the network for ROI localization at training and
inference time. The arrow from Training to Inference illustrates how the
weights of the last fully connected layer are transferred and replaced by
a 1 × 1 convolutional layer making the model fully convolutional.

Fig. 4. Overlapping cutouts were applied to account for loss in spa-
tial output size as the full tissue sample can not fit on a GPU during
inference.

network will output point predictions for this same fixed size.
Most pretrained ImageNet models have a spatial size of 224
px × 224 px, which results in, at inference, a 224 px × 224
px window being convolved over the larger input (Fig. 4). To
account for this, the tiles had to overlap. With a 224 px × 224
px model this overlap had to be 224 px. To produce a result for
the entire image, also the edges should be padded with 112 px.
In this work, this step was not needed since there is a large empty
space between the actual tissue and the edges of the image, and
no information was lost. Similarly, stitching and rebuilding the
full image required re-sizing the output to a width and height
224 px smaller than the input and then padding 112 pixels at
each side.

Due to the varying size of the training ROIs, the training
images had to be sub-sampled to 224 px × 224 px to fit the size
of the network. An average sub-sampling factor (Δxod, Δyod)
was calculated so that it could be used for sub-sampling the test
set. Inference was done by first down-sampling the test images to
a size ImageSizex ·Δxod, ImageSizey ·Δyod. The images
were then tiled into 1500 px × 1500 px patches (size chosen
based on hardware limitations) and passed through the network.
The outputs were finally re-sized and stitched together.

With the obtained ROI prediction maps a couple of post
processing steps were applied. First the prediction maps were

thresholded by 0.5 and ROI candidates were proposed via con-
nected components. Two filtering methods were applied to the
proposed ROIs:

1) Remove ROIs with an area smaller than 1000 pixels
2) Remove ROIs less than 100 pixels from the edge of the

tissue sample
The edge of the tissue was found through active contours

based on the implementation from [43] available at [44].
Lastly, bounding boxes were defined for the final ROIs and

boxes with intersection over union larger than 0.5 were removed
to avoid multiple copies of the same object being forwarded to
the next step.

B. Semantic Sub-Region Segmentation of ROIs at
Medium Resolution

Depending on the question at hand, ROIs may have to be
further divided into sub-regions at a higher resolution. This is
especially the case when structures of interest are comparably
small, such as cell clusters or epithelial layers. In the presented
case, we had to move to medium resolution to do semantic
segmentation of ROIs into sub-regions consisting of background
and four types of cell layers. To simplify the task, we used
knowledge of ROI class (airway or blood vessel), obtained from
the previous step to train two separate networks for sub-region
segmentation. Some initial experiments showed that a single
network with more classes made more errors than two separate
networks focusing only on a specific object.

The ROI segmentation was done with a U-Net architecture
with an encoder initialized with weights pre-trained on Ima-
geNet [27]. The training was based on weighted cross entropy
loss with the weight of the background class set to a third of
the other classes. This weight was set due to the fact that the
background class was not fully annotated and includes regions
from all different classes. A lower weight on the background
class encourages the network to get the actual annotated labels
correct.

The training data was sub sampled to twice the size of the test
images for the ROI localization step to simulate a medium reso-
lution (ImageSizex · 2 ·Δxod, ImageSizey · 2 ·Δyod). The
U-Net architecture is fully convolutional and thus not restricted
by any specific input size. However, to enable batch training,
the data has to have the same size. We therefore ensured all
training ROIs were larger or equal to 512 px × 512 px (based on
the maximum size not exceeding hardware limitation with batch
training). Images smaller than this size were padded with zeros.
The data was then loaded via random crops of size 512 × 512 to
make batches of similar sizes. Training set augmentations were
performed with shifting, scaling, rotating and applying random
re-sized crops. The scaling and shifting factors was limited to
10% of the image size [45]. The two different networks (one for
airways and one for blood vessels) were trained for a maximum
of 400 epochs (again early stopping was performed using the
validation set).

At inference the images were passed through the network
one by one and thus do not need to meet the same size criteria.
Instead, since the network has five pooling layers (each halving
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the size of its input) and skip connections from the encoder to the
decoder, the input sizes are required to be divisible by 25 = 32.
This was ensured by padding the test and calibration images
to the necessary size. As output, all pixels are given a Softmax
value, and the pixels are assigned to the class for which it has
the highest Softmax value.

C. Conformal Prediction for Pixel Classification
With Confidence

As described in the introduction, softmax values do not pro-
vide confidence values for a pixel belonging to the given class
compared to the other classes. Therefore, we apply CP to achieve
a confidence measure that can guarantee the prediction sets to
contain the true label of the object with a probability equal to a
user-defined significance level ε, under the weak assumption of
data exchangeability. We achieve this by comparing new objects
to previous examples of known outcome through a nonconfor-
mity function, indicating the “strangeness” of the new object.
We expand the binary classification setting, where classes 0 and
1 translate into four possible prediction sets: {0}, {1}, {0,1}
and Ø (the empty set) to multi class classification with three and
four classes resulting in additional prediction sets. For instance
three classes has eight prediction sets {0}, {1}, {2}, {0,1}, {0,2},
{1,2},{0,1,2} and Ø (the empty set). With guarantees of validity,
the efficiency of the predictor remains to be evaluated [46]. We
used the ratio of single-label prediction sets as our efficiency
metric, yielding a value between 0 and 1 whereby lower values
are preferable (more efficient). The efficiency is thus calculated
as the number of predictions with a multi-labeled prediction set
over the total number of observations.

We used the following nonconformity measure (here de-
scribed for a single prediction)

α = A(σt) =
maxj=0...c,j �=t(σj)

σt
(1)

where σ is the output from softmax, t the true class and c the
number of classes. In other words the maximum output of all
but the true class divided by the output for the true class, where
α ∈ [0,∞] [10].

Conformal prediction was originally developed in an online
transductive setting for which the model needs to be updated
or re-trained for each new example which is computationally
demanding. Inductive conformal prediction (ICP) operates un-
der the same assumptions and provides the same guarantees as
CP but with reduced computational load [10], [47]. In ICP, the
training dataset is first split into a calibration set C and a proper
training set P. The underlying machine learning model (such
as SVM, Random Forest, or DNN) is then trained only once
on P, yielding a single model that can be used to calculate the
nonconformity scores. The model is then applied on C to cal-
culate nonconformity scores for all calibration instances. In this
work we use Mondrian conformal predictors, where each label
category is treated individually with respect to the comparison of
nonconformity scores, yielding one set of nonconformity scores
(αl) per label l. The Mondrian approach has attractive properties

Algorithm 1: Calculate Alphas for Calibration Set.
Initialize:
αcal ε Rc×m

c = number of classes
m = number of sampled pixels per class
for Images in Calibration set do

random sample m pixels per class t
for pixel x in sampled pixels do

Calculate nonconformity measure:

A(σx
t ) =

maxj=0...c,j �=t(σ
x
j )

σx
t

αcal(t, x) append A(σx
t )

end for
end for

Algorithm 2: Calculate p-values for Test Image.
for Pixel x in test image do

for each possible classification u, u = 1..c do

αx,u = A(σx
u) =

maxj...c,j �=u(σ
x
j )

σx
u

px,u =
#{n=1...m:αcal(u,n)≥αx,u}

m
end for

end for

when e.g. data is unbalanced [48]. When making predictions on
new objects using ICP, the objects nonconformity score is first
calculated using the trained underlying model. P-values p(yj)
are then calculated for each class j as the fraction ofα - values in
the calibration set larger than the newly calculated value divided
by the total number of α - values in the calibration set (m):

p(yj) =
#{n = 1. . .m : αj ≥ αn}

m
(2)

For more details on conformal prediction, see [34].
To examine the calibration of the output from CP a separate

test was set up. All the data (except the test data) was randomly
shuffled and divided into three parts: calibration/validation;
proper training; and calibration testing. To examine the optimal
size for the calibration set, different sizes were explored. For all
experiments the calibration test size was kept fixed at 15 images.
The evaluation was done using five fold cross validation and the
final results were obtained by averaging across the folds. The
final model was then trained on all data with the calibration set
size chosen as the lowest amount showing sufficient resolution
(evaluated by comparing the calibration plots) in the calibration
to ensure valid results. With the softmax output for the images in
the calibration set, alpha values were calculated in a Mondrian
way as follows:

The images in the test set were first passed through the
sub-region segmentation network to obtain the softmax output.
The p-values were then calculated for each pixel position as
follows:

The predicted output being the class with the largest p-value.
The confidence in the prediction is defined as the largest p-value
minus the second largest p-value. Confidence is a measure of
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TABLE II
QUANTITATIVE RESULTS FOR THE RESNET 18 MODEL TRAINED FOR

CLASSIFYING AIRWAYS, BLOOD VESSELS AND OTHER, EVALUATED ON THE
VALIDATION SET

how likely the prediction of the current class is compared to
the other classes. A large measure of confidence means that
the predicted class conforms well to the calibration set, whilst
the other classes conform poorly. Lower confidence is obtained
when multiple classes conform similarly well to the calibration
set or if all classes conform poorly.

D. Quantification of Drug Response at Full Resolution

High image resolution is often required to get accurate quan-
tification of weak or small fluorescent signals only visible at full
resolution. We therefore mapped the sub-regions defined in the
previous step to the highest image resolution available. Different
binary mappings were created for a set of pre-defined confidence
levels. Per-region drug response was thereafter approximated as
the sum of pixel intensities belonging to a given region divided
by the area of the region. The measurements were made in the
image channels describing mRNA content.

VI. RESULTS

When training the network for ROI localization, it was ob-
served that the network converged quickly, hence limiting the
training to 100 epochs was sufficient. The average down sam-
pling factor of the training data was found to be approximately
20% of the original size in each direction (Δxod ≈
0.197,Δyod ≈ 0.206). In other words, the number of pixels
we process during ROI localization is only 4% of the original
amount. Quantitative results from the ROI localization step can
be seen in Table II.

In the semantic sub-region segmentation step, the networks
needed longer training to converge, hence a limit of 400 epochs
was set to reach a good convergence. An example of the output
from sub-region prediction can be seen in Fig. 5(a).

In CP confidence level estimation, varying the calibration
set size was shown to give similar results with the only differ-
ence being that using more than five images showed slightly
more stable results per fold, but similar results on average.
We therefore chose to use ten images in the calibration set to
not exclude too much data but to still reach stability in our
evaluation. The resulting calibration plot comparing the softmax
output, temperature scaling, and the CP output can be seen in
Fig. 6. This figure shows that using the softmax would result
in substantial underestimates of the actual error, whereas CP
produces valid results. The actual error is measured as the ratio
of incorrect predictions (at a given threshold) when measured
against the labeled examples. For each image 1000 pixels were
sampled for inclusion in the calibration set. Taking more or
fewer pixels changes the resolution in the calibration set but
has little effect on the results. Evaluation of the non-conformity

Fig. 5. Semantic segmentation results of tissue surrounding an airway,
with epithelium (yellow), sub-epithelium (red), alveoli (orange) and back-
ground (no color overlay) shown on top of the raw image. The regions
shrink (from a to c) as the threshold for the confidence level in pixel
classification is increased (i.e decreasing ε).

Fig. 6. Calibration plot for predicted and observed error comparing
direct output from the softmax, temperature scaling and the CP output.
The data was split so that 13 images were used for training, ten for
calibration and 15 for calibration testing. The method is evaluated with
five-fold cross validation and presented is the average of all folds.
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Fig. 7. Efficiency measured through single valued predictions (lower is
better) at different ε. The efficiency indicates how well the non-conformity
measure works for capturing the difference between new examples and
seen examples (i.e calibration set).

measure at different ε is presented in Fig. 7. A lower value
means a more efficient measure. This is achieved when the
non-conformity measure successfully captures the difference
between new examples and known examples, i.e, making single
valued predictions.

Using the final pixel confidence level output from CP, low-
confidence pixels can be excluded from each sub-region class
based on thresholding at the pixel class level. An example of the
resulting reduced regions at two different confidence thresholds
can be seen in Fig. 5(b and c).

For final quantification of drug response we show the ef-
fect of focusing measurements to regions with low confidence
(0.1− 0.2) and gradually increasing the confidence interval up
to (0.8− 1). For each confidence interval, drug response was
quantified in the corresponding tissues sub regions, and the
results from quantification of drug response per image sub-
region class are presented in Fig. 8a. The image data in the
presented result was not included during testing or validation
of ROI detection or sub-region segmentation, and represents
tissue slides from four animals exposed to the same drug con-
centration by inhalation. Values shown are means and standard
deviations across all regions within each sub-region class. The
plot indicates that the drug response is higher in the epithelium
of the airways as compared to the airway sub-epithelium and
blood vessel. The lowest level is observed in the alveoli. As the
analysis is confined to regions with higher confidence, larger
differences, with higher statistical significance are observed. To
evaluate the pixel classification performance of the models, 4
airways and 4 blood vessels where selected for more accurate
manual annotations (focusing on the epithelium, sub-epithelium
and blood vessel areas). The resulting precision and recall are
presented in Fig. 8b.

VII. DISCUSSION

The pipeline we present here is created in such a way that
for each part, the data could potentially be replaced with a
different dataset to explore alternative problems. With gener-
alizability, however, one sacrifices specificity, hence depending
on the problem, more tailored solution may be constructed to
outperform our proposed pipeline. We show that FCNs can
detect ROIs in low resolution reducing the amount of data
that needs to be analyzed (as compared to analyzing all data
at full resolution). An interesting approach would be to apply
the hierarchical approach with ROI detection already during
data acquisition at the microscope, and thereby limiting the
collection of irrelevant data. Furthermore, we show that U-Nets
can separate finer regions even with approximate ground truth
labels during training.

With the effectiveness of transfer learning our models were
able to learn from a rather limited training set (Table II, Fig. 8b).
The results (Fig 8b) show an increase in precision at a higher
confidence threshold, but with the sacrifice of recall. Thus, a
high confidence threshold results in a final readout with higher
detection precision, but lower recall, focusing the final measure-
ments on regions with more accurate predictions. The models
were pre-trained on ImageNet which consists of natural images.
Nevertheless, our baseline approach was able to distinguish
between the different tissue regions with a relatively low amount
of training data. Improved results could also be obtained with
networks pretrained on a (large) more domain specific dataset.

In deep learning, and machine learning in general, there are
often considerable uncertainties in many of the predictions. As
mentioned earlier the predicted probabilities from the softmax
output are also not well calibrated. This was shown clearly
in Fig. 6, where temperature scaling gave better calibrations,
but still far from the nearly perfectly calibrated results given
by CP. Furthermore, these probabilities are simply point esti-
mates without any information on their variability. In general,
for medical image data there also often exists a high level of
uncertainty in the annotated labels [49]. Indeed in our data the
annotations were done quite roughly and in some cases the
deep learning segmentation results were more accurate than the
annotations. Awareness of these various forms of uncertainty is
invaluable for accurate conclusions, and deep learning methods
that assign confidence to predictions may also be better received
by clinicians.

Our results show that the higher confidence regions mainly
enclose the most central part of the segmented regions, whereas
the transition between labels in the output often results in the
lowest confidence. With the rough annotations, for training, used
in this work, these pixels were the hardest to learn confidently.
Confidence based prediction methods like CP are therefore a
useful tool in applications where the user can adjust the amount
of errors he/she is willing to make. Allowing more errors equates
to including more uncertain regions and in the case of sparse
labels can also result in larger regions. Allowing less error results
in smaller regions but with more precision.

Furthermore, our results show a larger separation of drug re-
sponse mainly between the sub-epithelial and epithelial regions
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Fig. 8. Measurements of drug response, precision and recall for different pixel classification confidence intervals.

in airways when measured at a higher confidence level. Since
the epithelial region of the airway is narrower, more precision
is required in the segmentation results for accurate predictions.
For this type of region, high confidence predictions help ex-
clude noise. In contrast, the sub-epithelial cell layer is generally
wider and requires less precision for high confident sub-region
classification. This can be seen in Fig. 8a where the measured
drug response for sub-epithelial regions does not change as
much for the higher confidence regions. For the epithelial region
the concentration steadily increases with higher confidence, as
initially hypothesized.

Perhaps the optimal means of accounting for uncertainty will
come with the fusion of deep learning and Bayesian modelling,
permitting the inclusion of parameter, model and observational
uncertainty in a natural probabilistic manner. However, due to
their high computational cost and the need to specify prior
distributions on all the network weights, such fully Bayesian
approaches are currently unfeasible and alternative solutions
are required. One alternative and less computationally costly
approach is to use CP, as we have done here. CP does not
make any distributional assumptions, circumvents the need to
specify priors on the parameters, and interestingly can provide
stronger guarantees of validity than Bayesian methods, even
when based on the true probability distribution of the data [34].
Due to the limited amount of images available for training in
the presented experiment, we derive our calibration set from a
number of randomly sampled points in each image. This strategy
may have an effect on the exchangability assumption of the data
points. Further studies of the lowest number of images and the
highest number of pixels that is required (with unlimited data
one could sample a single point per class and image) are needed.
Since temperature scaling only dampens the softmax output it
is difficult to find an optimal temperature that gives calibrated
outputs for all classes. This is, however, a simpler method and
might work better for simpler problems, or when the ground truth
annotations are more complete. CP is a more powerful (but more
demanding) method where the prediction distribution is utilized

in a more efficient way. We here conclude that our empirical
studies show that for our methodology the predictions are valid
(Fig. 6) with an efficient non-conformity measure (Fig. 7) and
that using CP helps to calibrate the softmax output, giving valid
prediction regions.

REFERENCES

[1] S. A. Quaderi and J. R. Hurst, “The unmet global burden of COPD,” Global
Health, Epidemiol. Genomics, vol. 3, p. e4, 2018.

[2] D. S. Kim, H. R. Collard, and T. E. King Jr., “Classification and natural
history of the idiopathic interstitial pneumonias,” Proc. Amer. Thoracic
Soc., vol. 3, no. 4, pp. 285–292, 2006.

[3] A. Gupta et al., “Deep learning in image cytometry: A review,” Cytometry
Part A, vol. 95, no. 4, pp. 366–380, 2019.

[4] F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in microscopy
image analysis: A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 10, pp. 4550–4568, Oct. 2018.

[5] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen,
“Deep learning for cellular image analysis,” Nature Methods, vol. 16,
pp. 1233–1246, 2019.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, pp. 184–187.

[7] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern
neural networks,” in Proc. 34th Int. Conf. Mach. Learn., 2017, vol. 70,
pp. 1321–1330.

[8] M. Kull, M. P. Nieto, M. Kängsepp, T. Silva Filho, H. Song, and P.
Flach, “Beyond temperature scaling: Obtaining well-calibrated multi-class
probabilities with dirichlet calibration,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 12 295–12 305.

[9] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a
Random World, 1st ed. Berlin, Germany: Springer, 2010.

[10] H. Papadopoulos, “Inductive conformal prediction: Theory and application
to neural networks,” in Tools in Artificial Intelligence. Rijeka, Croatia:
IntechOpen, 2008.

[11] M. Friden et al., “Understanding and quantifying the spatial distribution
of inhaled drugs and their effects,” in Proc. Respiratory Drug Del., 2018,
vol. 1, pp. 45–50.

[12] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz,
“Patch-based convolutional neural network for whole slide tissue image
classification,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
Jun. 2016, pp. 2424–2433.

[13] S. Graham, M. Shaban, T. Qaiser, N. Alemi Koohbanani, S. A. Khurram,
and N. Rajpoot, “Classification of lung cancer histology images using
patch-level summary statistics,” 2018. [Online]. Available: https://doi.org/
10.1117/12.2293855

https://doi.org/10.1117/12.2293855


380 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 2, FEBRUARY 2021

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2015, pp. 3431–3440.

[15] F. Sheikhzadeh, R. K. Ward, D. van Niekerk, and M. Guillaud, “Automatic
labeling of molecular biomarkers of immunohistochemistry images using
fully convolutional networks,” PLOS ONE, vol. 13, no. 1, pp. 1–18,
Jan. 2018.

[16] B. Peng, L. Chen, M. Shang, and J. Xu, “Fully convolutional neural
networks for tissue histopathology image classification and segmentation,”
in Proc. 25th IEEE Int. Conf. Image Process., Oct. 2018, pp. 1403–1407.

[17] H. Lin, H. Chen, Q. Dou, L. Wang, J. Qin, and P. Heng, “Scannet: A fast
and dense scanning framework for metastastic breast cancer detection from
whole-slide image,” in Proc. IEEE Winter Conf. Appl. Comput. Vision,
Mar. 2018, pp. 539–546.

[18] H. Lin, H. Chen, S. Graham, Q. Dou, N. Rajpoot, and P. Heng, “Fast
scannet: Fast and dense analysis of multi-gigapixel whole-slide images
for cancer metastasis detection,” IEEE Trans. Med. Imag., vol. 38, no. 8,
pp. 1948–1958, Aug. 2019.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., Jun. 2016, pp. 779–788.

[21] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Advances in Neural Information Processing Systems 25, F.
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Red Hook,
NY, USA: Curran Associates, Inc., 2012, pp. 2843–2851.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[23] W. Bulten et al., “Epithelium segmentation using deep learning in h&e-
stained prostate specimens with immunohistochemistry as reference stan-
dard,” Scientific Rep., vol. 9, no. 1, 2019, Art. no. 864.

[24] S. K. Sadanandan, P. Ranefall, S. Le Guyader, and C. Wählby, “Automated
training of deep convolutional neural networks for cell segmentation,”
Scientific Rep., vol. 7, no. 1, 2017, Art. no. 7860.

[25] A. Kensert, P. J. Harrison, and O. Spjuth, “Transfer learning with deep
convolutional neural networks for classifying cellular morphological
changes,” SLAS DISCOVERY: Advancing Life Sci. R&D, vol. 24, no. 4,
pp. 466–475, 2019,

[26] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features
off-the-shelf: An astounding baseline for recognition,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit. Workshops, Jun. 2014, pp. 512–519.

[27] V. Iglovikov and A. Shvets, “Ternausnet: U-net with VGG11 encoder pre-
trained on imagenet for image segmentation,” 2018, arXiv:1801.05746.

[28] R. K. Samala, H. Chan, L. Hadjiiski, M. A. Helvie, C. D. Richter, and K.
H. Cha, “Breast cancer diagnosis in digital breast tomosynthesis: Effects
of training sample size on multi-stage transfer learning using deep neural
nets,” IEEE Trans. Med. Imag., vol. 38, no. 3, pp. 686–696, Mar. 2019.

[29] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Rep-
resenting model uncertainty in deep learning,” in Proc. 33rd Int. Conf.
Mach. Learn., 2016, pp. 1050–1059.

[30] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Statistical Assoc., vol. 112, no. 518,
pp. 859–877, 2017.

[31] D. Krueger, C.-W. Huang, R. Islam, R. Turner, A. Lacoste, and A.
Courville, “Bayesian Hypernetworks,” Oct. 2017, arXiv:1710.04759.

[32] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?” in Advances Neural Inf. Process. Syst. 30,
I. Guyon et al., Eds. Red Hook, NY, USA: Curran Associates, Inc., 2017,
pp. 5574–5584.

[33] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren,
“Aleatoric uncertainty estimation with test-time augmentation for medical
image segmentation with convolutional neural networks,” Neurocomput-
ing, vol. 338, pp. 34–45, 2019.

[34] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a
Random World. Berlin, Germany: Springer-Verlag, 2005.

[35] U. Norinder, L. Carlsson, S. Boyer, and M. Eklund, “Introducing confor-
mal prediction in predictive modeling. A transparent and flexible alterna-
tive to applicability domain determination,” J. Chem. Inf. Model., vol. 54,
no. 6, pp. 1596–1603, 2014.

[36] V. Balasubramanian, R. Gouripeddi, S. Panchanathan, J. Vermillion, A.
Bhaskaran, and R. Siegel, “Support vector machine based conformal
predictors for risk of complications following a coronary drug eluting
stent procedure,” in Proc. 36th Annu. Comput. Cardiol. Conf., Sep. 2009,
pp. 5–8.

[37] J. Smith, I. Nouretdinov, R. Craddock, C. Offer, and A. Gammerman,
“Conformal anomaly detection of trajectories with a multi-class hierar-
chy,” in Proc. Int. Symp. Statistical Learn. Data Sci., 2015, pp. 281–290.

[38] M. Capuccini, L. Carlsson, U. Norinder, and O. Spjuth, “Conformal
prediction in spark: Large-scale machine learning with confidence,” in
Proc. IEEE/ACM 2nd Int. Symp. Big Data Comput., Dec. 2015, pp. 61–67.

[39] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2016,
pp. 770–778.

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. Conf. Comput. Vision
Pattern Recognit., 2009, pp. 248–255.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[43] P. Mrquez-Neila, L. Baumela, and L. Alvarez, “A morphological approach
to curvature-based evolution of curves and surfaces,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 1, pp. 2–17, Jan. 2014.

[44] 2018. [Online]. Available: https://github.com/pmneila/morphsnakes
[45] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, and A. A. Kalinin,

“Albumentations: Fast and flexible image augmentations,” Information,
vol. 11, no. 2, 2020. [Online]. Available: https://www.mdpi.com/2078-
2489/11/2/125

[46] V. Vovk, V. Fedorova, I. Nouretdinov, and A. Gammerman, “Criteria of
efficiency for conformal prediction,” in Proc. Symp. Conf. Probabilistic
Prediction Appl., 2016, pp. 23–39.

[47] H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman, “Inductive
confidence machines for regression,” in Proc. Eur. Conf. Mach. Learn.,
2002, pp. 345–356.

[48] U. Norinder and S. Boyer, “Binary classification of imbalanced datasets
using conformal prediction,” J. Mol. Graph. Model., vol. 72, pp. 256–265,
2017.

[49] S. G. Armato et al., “Assessment of radiologist performance in the de-
tection of lung nodules,” Academic Radiol., vol. 16, no. 1, pp. 28–38,
2009.

http://archive.ics.uci.edu/ml
https://github.com/pmneila/morphsnakes
https://www.mdpi.com/2078-2489/11/2/125


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


