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Early Detection of Alzheimer’s Disease with
Blood Plasma Proteins Using Support

Vector Machines
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Abstract—The successful development of amyloid-
based biomarkers and tests for Alzheimer’s disease (AD)
represents an important milestone in AD diagnosis. How-
ever, two major limitations remain. Amyloid-based diagnos-
tic biomarkers and tests provide limited information about
the disease process and they are unable to identify individ-
uals with the disease before significant amyloid-beta accu-
mulation in the brain develops. The objective in this study
is to develop a method to identify potential blood-based
non-amyloid biomarkers for early AD detection. The use of
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blood is attractive because it is accessible and relatively
inexpensive. Our method is mainly based on machine learn-
ing (ML) techniques (support vector machines in particular)
because of their ability to create multivariable models by
learning patterns from complex data. Using novel feature
selection and evaluation modalities, we identified 5 novel
panels of non-amyloid proteins with the potential to serve
as biomarkers of early AD. In particular, we found that the
combination of A2M, ApoE, BNP, Eot3, RAGE and SGOT
may be a key biomarker profile of early disease. Disease
detection models based on the identified panels achieved
sensitivity (SN) > 80%, specificity (SP) > 70%, and area
under receiver operating curve (AUC) of at least 0.80 at
prodromal stage (with higher performance at later stages)
of the disease. Existing ML models performed poorly in
comparison at this stage of the disease, suggesting that
the underlying protein panels may not be suitable for early
disease detection. Our results demonstrate the feasibility of
early detection of AD using non-amyloid based biomarkers.

Index Terms—Alzheimer’s disease, blood biomarker,
dementia, machine learning, support vector machine.

I. INTRODUCTION

A LZHEIMER’s disease (AD) is the leading cause of demen-
tia and poses a significant social and economic challenge.

It is responsible for more than half of all cases of dementia
[1]. Over 50 million individuals currently suffer from dementia
worldwide with a projected increase to 152 million by 2050 [2].

No cure for AD has been discovered, but there is intense
effort to develop new clinical interventions that may slow or
halt the disease. Such interventions are aimed at early (including
preclinical and prodromal [3]) stages of the disease prior to
extensive cell damage, when it is thought treatment is more likely
to be effective.

To facilitate early diagnosis [4]–[6], the use of established
biomarkers such as those based on amyloid-beta in cerebral
spinal fluid (CSF) and molecular imaging of brain amyloid
deposition using positron emission tomography (PET) is rec-
ommended [4]–[6].

However, despite progress with the development of amyloid-
based biomarkers and tests for early AD diagnosis, they have two
major constraints [7]–[9]. Amyloid-based biomarkers provide
limited information about the disease pathological aetiology and
pathways [10]–[12]. In addition, tests based on these biomarkers
are unable to identify individuals at risk of AD prior to a
significant amyloid-beta deposition in the brain.
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There is a need for biomarkers that have the potential to detect
biological processes that precede brain amyloid-beta accumu-
lation (amyloid pathology) during the disease development.
Such biomarkers may advance understanding of the disease, aid
identification of individuals at the early disease stages and the
development of new interventions.

Studies suggest that AD is characterised by metabolic al-
terations [4] that may precede amyloid pathology [12]. Sig-
natures of such metabolic abnormalities may therefore serve
as biomarkers of earlier stages of the disease than amyloid
biomarkers. Such biomarkers may be obtained from blood since
blood has rich metabolic information content. The use of blood
is also attractive because blood biomarker-based test is relatively
non-invasive compared to CSF and may be more cost-effective
than PET imaging. A number of studies have attempted to find
non-amyloid biomarkers of disease by profiling a large array of
non-amyloid proteins in blood and examining their association
with the disease [13]–[15], but this approach is difficult to apply
in practice.

A promising approach is the use of machine learning (ML)
techniques to find appropriate combinations of non-amyloid
proteins to detect AD as no single non-amyloid protein has been
shown to reliably detect the disease. ML makes it possible to
fit multivariable data to a model by learning complex patterns
from data. Several studies [16]–[24] have applied ML to develop
classifiers to differentiate between AD subjects and healthy
controls. For example, O’Bryant et al. [19] developed a model
with a panel of 30 serum proteins that classified Alzheimer’s
disease dementia (ADD) subjects and HCs with sensitivity (SN),
specificity (SP), and area under receiver operating curve (AUC)
of 88%, 82%, and 0.91, respectively. Similarly, with 14 plasma
proteins, a classifier model constructed by Llano et al. [22]
classified ADD and HC subjects with 86.5% SN, 84.2% SP and
AUC of 0.85. More recently, a panel of inflammatory markers
in plasma was identified that classified ADD and HC with 84%
SN, 70% SP, and AUC of 0.79 using a logistic regression model
[25]. In another study, a 12-marker panel classified ADD and HC
with 90% SN and 66.7% specificity, and higher performance in
post-mortem confirmed AD cases [26]. Furthermore, a study
[27] that explored the use of deep learning, random forest, and
XGBoost algorithms for classification of ADD and HC achieved
AUC of 0.88 with XGBoost algorithm and 0.85 with deep
learning and random forest. Despite the promising results from
these studies, most of the models were developed and evaluated
using data from cognitively healthy controls and subjects at the
later stages of the disease. The models were not evaluated in
individuals at the early stages of the disease. Therefore, the
panels underlying such models may not be suitable as biomarker
signatures of early AD.

In this study, the main objective is to develop a ML-based
method (support vector machines (SVM) in particular – see later)
to identify blood biomarkers of early AD based on non-amyloid
proteins with the potential to identify the disease prior to accu-
mulation of amyloid-beta in the brains.

We also assess the potential of existing ML-based methods to
achieve early disease detection.

The rest of this paper is structured as follows. The materials
and methods are described in Sections II and III. The results are
presented in Section IV, and the discussion and conclusions are
provided in Sections V and VI.

TABLE I
DEMOGRAPHIC INFORMATION OF SUBJECTS IN STUDY DATA

SD: standard deviation; HC: healthy control; MCI: mild cognitive impairment; and ADD:
Alzheimer’s dementia

II. MATERIALS

A. Blood Proteomic Data

Blood proteomic data used in this study were obtained from
the Alzheimer’s disease neuroimaging initiative (ADNI) portal
(http://adni.loni.ucla.edu). The quality-controlled data consist
of 146 plasma proteins derived from 58 and 54 healthy con-
trols (HCs) at baseline and 12 months later respectively, 136
individuals with mild cognitive impairment due to AD (MCI) at
12 months from baseline, and 108 Alzheimer’s dementia (ADD)
patients at baseline. The MCI subjects were later diagnosed with
AD dementia within about 10-year follow-up. A list of the 146
proteins are shown in the supplementary material. Mild demen-
tia was diagnosed according to NINCDS-ADRDA criteria for
probable ADD. A detailed description of the protocol may be
found on the ADNI database. The demographic information of
the subjects is shown in Table I. The subjects were age matched,
over 70 years old and had about 16 years of education on average.

III. METHODS

A. Data Pre-processing

All study data were standardized as indicated in (1) to ensure
that proteins with high numeric values relative to others would
not cause bias in subsequent ML operations. Given a feature
instancex, the standardised value z is given as,

z =
x− μ

σ
(1)

Where μ and σ are the sample mean and standard deviation
of the feature distribution, respectively.

To make optimal use of available data while minimizing
susceptibility of our approach to overfitting problems, the
pre-processed data were partitioned into two non-overlapping
datasets; Datasets 1 and 2. Dataset 1 consists of baseline data
from the ADDs and HCs. All existing methods evaluated in this
study except [20] were originally developed based on Dataset 1.
In our approach, Dataset 1 was used to conduct a robust feature
preselection (a key aspect in ML) and model development.

The resulting models were further evaluated with Dataset 2.
Dataset 2 consists of month-12 data from MCIs and HCs. It
was used to assess the performance of the developed models
(trained on the entirety of Dataset 1) for MCI vs. HC classifi-
cation. Models were trained with only Dataset 1 during model
development using the entirety of it or its subsamples (in the
case of cross-validation which is subsequently described).

http://adni.loni.ucla.edu
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Fig. 1. Overall framework for identification of novel putative biomarker panels and model development for early AD detection. K: Different kernels
of SVM including linear, 2 and 3 -degree polynomials, and radial basis function (RBF), respectively. MSK: Most stable kernel. A stable kernel is
one that showed most moderate to high performance for most panels. CV: Cross-validation (CV). CP: Candidate panel. A candidate panel is one
that meets our performance criteria (SN and SP of at least 70%) in the model training and CV step. Sensitivity and specificity have been described
elsewhere [28].

B. Replication and Evaluation of Existing Methods

We replicated the ML models reported in previous studies for
classification of ADD and HC subjects (Dataset 1) using 10-fold
cross-validation with the average performance of the models
taken after 10 repetitions. In 10-fold cross-validation, the dataset
D is randomly split into 10 mutually exclusive subsets (the folds)
D1, D2, …, D10 of approximately equal size. The classifier is
trained and tested 10 times; each time t � {1, 2, …, 10}, it
is trained on D\Dt and tested on Dt [29]. The cross-validation
estimate of the classifier performance is the overall performance
over all the folds. Repeated cross-validation was implemented to
ensure a robust estimation of performance [29]. The ability of the
models to classify MCI and HC was then tested with Dataset 2
to assess their potential and hence the underlying protein panels
to detect early AD.

C. Novel Panel Identification and Model Development

Fig. 1 shows the methodological framework that we used to
identify novel blood protein panels and to develop the new ML
models for early detection of AD. The framework is described
in detail in the following subsections. Briefly, the framework
consists of three major procedures which include feature subset
preselection, protein panel formation, and ML-based model de-
velopment and evaluation. A feature subset preselection process
was performed to identify protein subsets that may have strong
discriminatory power between disease subjects (ADD) and HCs.
A brute force search was applied to the preselected feature subset
to form several protein panels. Each of the panels was then

used to develop and cross-validate SVM classifiers of different
kernels (K) using Dataset 1. Data from ADD subjects were used
in these initial procedures on the basis that dementia subjects
are more likely to exhibit the metabolic alterations that are
associated with the disease. The most stable kernel and candidate
panels (promising models) trained on Dataset 1 were further
evaluated for classification of individuals with MCI and HCs
using Dataset 2. The promising models with best performance
at this stage were selected as final. The protein panels that un-
derlie the selected models are reported as potential blood-based
non-amyloid biomarker signature of early disease.

1) Feature (Protein) Subset Preselection: A feature subset
preselection procedure was implemented with Dataset 1 using
correlation-based feature subset selection (CFS) method [30].
The goal of this task was to make an initial selection of the most
relevant and non-redundant features for classification of ADD
and HC subjects and consequently reduce the dimension of the
study data prior to model development. Reduction of the dimen-
sion of the study data was necessary because it would otherwise
be computationally expensive to implement an exhaustive search
to evaluate the classification performance of all possible feature
subsets with ML algorithms. For N-dimensional data (where N
is 146 in this case) there are 2N possible feature subsets.

The CFS approach comes under the broad category of filter-
based feature subset evaluation methods that attempt to remove
irrelevant and redundant features from data by using correlation-
based heuristic to determine the worth (merit) of a feature subset.
This technique has been shown to compare favourably with
wrapper-based approaches in selecting the best feature subsets
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that achieve high classification accuracy while incurring far less
computational cost [31]. It is based on a heuristic that evaluates
the merit of feature subsets following the hypothesis that a good
feature subset consists of features highly correlated with the
class, yet uncorrelated with each other. Correlation in this sense
refers to the predictability of one variable by another. Equation
(2) shows the mathematical formulation of the CFS heuristics,
a concept borrowed from test theory [32].

Merit =
krfc√

k + k (k − 1) rff
(2)

Merit is the heuristic merit of a feature subset consisting of k
features, rfc is the mean feature-class correlation and rff is the
mean feature-feature inter-correlation. The parameters, rfc and
rff are measures of feature relevance and redundancy, respec-
tively, based on the proposition that a feature is relevant if it is
correlated with the class, otherwise it is irrelevant. Redundant
features are correlated with one or more other features.

To determine the correlations, continuous features were firstly
discretized using the discretization method proposed in [33] to
ensure that all features were uniformly handled. The correlations
were calculated in terms of modified information gain known
as symmetrical uncertainty (SU) [34] to cater for the bias of
information gain in favour of features with more values. Values
were normalised to the range [0, 1] to ensure that they were
comparable and had similar effect.

SU = 2.0

[
gain

H (Y ) +H (X)

]
(3)

Where gain is the information gain [35] for nominal features
X and Y , H(X) and H(Y ) are the entropy [36] of X and Y ,
respectively. The gain is formulated as,

gain = H (Y )−H (Y |X) = H (X)−H (X|Y ) . (4)

Where,

H (Y ) = −
∑
y∈Y

p (y) log2p (y) ; (5)

H (Y |X) = −
∑
x∈X

p (x)
∑
y∈Y

p (y|x) log2p (y|x) . (6)

2) Novel Panel Formation and SVM-based Evaluation:
Firstly, feature panels were formed from the CFS-preselected
proteins based on a brute force approach. Each panel was then
evaluated using a wrapper-based method to identify the ML
algorithm and panels with best performance for classification
of ADD and HC subjects. Using each panel, several SVM [37]
classification models were constructed with different kernels
including linear, 2nd and 3rd degree polynomials, and radial
basis function (RBF) using Dataset 1. Average performance
of each model to classify ADD and HC subjects was obtained
using a 10-fold cross-validation [29] scheme repeated 10 times.
Secondly, the performance of most stable models (SVM algo-
rithm and feature panels) that met the performance criteria of
average SN and SP ≥ 70% for classification of ADD and HC
subjects was tested with Dataset 2 for discrimination of MCI and
HC groups. Finally, the models and underlying protein panels
with best performance in classifying MCI and HC groups were
selected as putative models and non-amyloid biomarker panels
for early detection of AD.

Fig. 2. Mechanism of SVM classification.

3) Classification With Kernelized SVM: The choice of SVM
for the model development task was informed by the fact that
it is robust even with limited training data, and not prone to
local extremum [38], as well as our previous experience [24].
It is a very powerful tool widely applied in similar biomedical
applications [39]. SVM classifies training instances belonging
to either of two classes by fitting a separation boundary (hy-
perplane) between the classes such that the margin between the
boundary and either class is maximized. The class of a new
instance is decided depending on which side of the hyperplane
it lies. Fig. 2 illustrates a 2-class SVM classifier.

Given a 2-class problem with training data consisting of N
examples (x1, y1), (x2, y2), . . . , (xN−1, yN−1), (xN , yN ), with
input features xi ∈ Rd and class yi ∈ {−1, 1}, the goal of SVM
is to define a hyperplane h(x) that is given by,

h (x) = xTw + b = 0 (7)

so as to induce a classification decision rule D(x) that max-
imises the margin M(= 2m).

D (x) = sign
(
xTw + b

)
(8)

Finding such a hyperplane involves optimizing Mas,

max
w,b

M ≡ min
w,b

1

2
‖w‖2 (9)

subject to yi(xi
Tw + b) ≥ 1, where b is a constant, d is the

dimension of the data, w is a vector of unknown length with d
dimension pointing from the origin and normal to the margin,
and m is shown to be equal to 1

‖w‖ .
The resulting w from the optimization in (9) is of the form

shown in (10), with αi being nonzero for instances i (known as
support vectors) where the constraint yi(wTxi + b) ≥ 1 is met.

w =

N∑
i=1

αiyixi, (10)

With (10), b may be determined from (7), and following from
(8), the decision rule for a new sample u of unknown class may
be stated as,

D (u) = sign

[
uT

(
N∑
i=1

αiyixi

)
+ b

]
. (11)

Where αi are Lagrangian multipliers resulting from the opti-
mization of (9).
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When the training data are not linearly separable by a hy-
perplane, SVM may transform the data to new space where
they become linearly separable by using kernel functions. The
kernel function simply computes dot products of features in the
transformed space. One of such kernels is the polynomial kernel
[40]. For example, given feature vectors v and z, a polynomial
kernel K is formulated as,

K (v, z) =
(
1 + vT z

)r
. (12)

Where r is the degree of the polynomial.
Thus, for a SVM classifier with a polynomial kernel, the

solution for the hyperplane (formally determined by substituting
(10) in (7)) and decision rule for a new sample of unknown class
are modified as shown in (13) and (14).

h̄ (x) =
N∑
i=1

ᾱiyiK (x, xi) + b̄ (13)

D̄ (u) = sign
[
h̄ (u)

]
(14)

However, because a standard SVM seeks to fit a margin
separating all positive and negative training instances without
any error which is not often practicable, a concept known
as soft margin [37] which permits minimum misclassification
error is implemented in practical SVM algorithms with a slight
modification of (9).

D. Implementation and Performance Evaluation

Feature selection using CFS as discussed earlier was con-
ducted with attribute selection toolbox in Weka software pack-
age [41]. All classification tasks were conducted with MATLAB
and Weka software packages. MATLAB codes are available
on https://github.com/chimastan/earlydetectionofAD. In evalu-
ating the models from previous studies, we used Weka where
previous studies had used it for model development. Training
of ML models and validation of performance for ADD vs. HC
discrimination was based on 10-fold cross-validation scheme
repeated 10 times. The data (Dataset 1) were randomly re-
partitioned after each run to ensure that data subsets used for
training and validation varied from the ones used in the preceding
run. This way, a more robust average performance is obtained.
Classification performance metrics of primary consideration
were measures of SN and SP in accordance with international
recommendations for clinically usable AD biomarkers [42]. A
performance threshold of 70% for SN and SP was adopted
in the model development task. This is on the grounds that
the diagnostic accuracy of human experts reaches 77% [43]
with sensitivity and specificity reaching 81% and 70% [5],
respectively. Moreover, sensitivity and specificity greater than
80% is the target performance for ideal AD biomarkers [42]. No
class imbalance handling procedure was applied to the training
dataset (Dataset 1) in model development as minority to majority
class distribution was 35:65% which is acceptable in ML-based
classification problems [44], [45].

IV. RESULTS

A. Replication and Evaluation of Existing Models

We successfully replicated 7 models for classification of ADD
subjects and HCs. The model proposed by [20] could not be

replicated because it was originally trained on a dataset not avail-
able to us. Nevertheless, we constructed a model with Dataset 1
based on the ML algorithm and blood protein panel proposed by
the ([20]) study. Only existing models constructed with blood
proteins available in our study dataset were investigated in this
study. Table II shows the average cross-validated performance of
the models repeated over 10 runs for classification of ADD and
HC subjects. Nearly all the models achieved SN, SP, and AUC
greater than 80%, 60%, and 0.70, respectively. However, when
evaluated for possible detection of early AD by classifying MCI
and HC with Dataset 2, the SN values of the models remained
moderately high while their SP values drastically dropped (with
only one model achieving up to 50%). This implies that the
models may have undesirably high levels of false positives when
applied for early disease detection. Consequently, the underlying
protein panels may not serve as good biomarker signatures of
early disease.

B. Feature Subset Preselection

Using our new methodological approach, sixteen proteins
with a merit (Merit) of 0.36 were preselected with the CFS
technique from the 146 proteins in the original study data. The
16 proteins are shown in Table III together with their statistical
significance P as calculated with z-test. The z-test was used to
estimate the statistical significance of the difference between
the pair of clinical groups being considered together (AD vs.
HC) and (MCI vs. HC) for the pre-selected features. All except
a few features were statistically significant (p-value < 0.05) in
the ADD vs. HC pair (Dataset 1). Most of the features were not
statistically significant in the MCI vs. HC pair (Dataset 2). This
may be due to the high imbalance between the samples sizes of
MCI and the HC in the dataset.

C. Novel Panel Formation and SVM-based Evaluation

From the 16 CFS-preselected protein subset, 216 different
protein panels were formed. Results from wrapper-based eval-
uation of all the panels for classification of ADD and HC
groups using Dataset 1 showed that models constructed with
2-degree polynomial kernel had a better and more stable perfor-
mance. Consequently, SVM with 2-degree polynomial kernel
was selected as the algorithm of choice. Only (10,699) 2-degree
polynomial kernelized SVM models that met our performance
benchmark (SN and SP ≥ 70%) for ADD and HC classifica-
tion were further evaluated for their potential to detect early
disease with Dataset 2. Two models constructed with six and
eight protein panels (A1M, A2M, ApoA2, CD5L, IL3, SGOT
and A1M, A2M, ApoA2, BNP, BTC, CD5L, IL3, SGOT, respec-
tively) achieved a remarkable cross-validated performance (SN
of 92% and 93%, SP of 81% and 83%, AUC of 0.90 and 0.94
respectively) in classifying ADD and HC subjects. This perhaps
highlights a possible performance benefit of the CFS-based
feature preselection technique. Nevertheless, the two models
performed poorly when evaluated for classification of MCI and
HC subjects. The implication is that an excellent model at later
stages of the disease does not necessary imply a good disease de-
tection model at the early disease stages. This may be attributed
to subtle differences in the underlying patterns as well as noise
in the data among other factors, thus highlighting the need for

https://github.com/chimastan/earlydetectionofAD
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TABLE II
PERFORMANCE OF EXISTING BLOOD BIOMARKER PANELS FOR AD DETECTION

TABLE III TABLE IV
CFS-BASED PRESELECTED PROTEINS PERFORMANCE OF NOVEL CANDIDATE BLOOD BIOMARKER PANELS FOR EARLY DETECTION OF AD

further evaluations. Five models constructed with panels shown
in Table IV realized best performance for classification of MCI
and HC groups. All but one of the models detected AD subjects
with SN and SP above 80% and 70% respectively at dementia as
well as MCI stage. A larger panel formed by combining all five
panels in Table IV achieved a cross-validated SN, SP, and AUC
of 85%, 70%, and 0.88, respectively in classifying ADD vs. HC.
However, its specificity dropped drastically to 52% with 82%
SN and 0.73 AUC when tested for MCI vs. HC classification.
The introduction of well-known risk factors of AD [46] such as
age and level of education as covariates to the models did not
improve performance significantly. APOE4 genotype was not

used as a covariate to avoid bias since less than 9% of HC group
have positive status.

V. DISCUSSION

In this study, we developed models and identified novel non-
amyloid biomarker panels for early detection of AD following
a new approach, and demonstrated that existing ML methods
may not be suitable for early detection. The models and panels
were selected based on their performance at both the prodromal
and dementia stages of the disease, thus improving the chance
that signals about the disease were captured rather than noise
resulting from individual variations between study participants.
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TABLE V
COMPARISON OF OUR RESULTS WITH RECENT RELEVANT STUDIES

Ideally, the smaller the size of a panel, the better in terms of
interpretability and cost of implementation in practical applica-
tions such as point of care technology. However, because our
study was exploratory, it was important to flag all the panels
that achieved reasonably good performance since it is unclear
which panel or proteins are the most important. Gaining such
clarification may require further investigation such as analysis
of protein-protein interaction for the proposed panels (see later).
We have also shown the performance of the larger panel derived
by combining all five panels we identified, although it has a
lower performance relative to the individual panels perhaps due
to curse of dimensionality.

Comparing our results (Table IV) with those of existing mod-
els we investigated (Table II); the best existing model identified
AD subjects at MCI stage with high sensitivity and fairly good
specificity (79% SN and 50% SP) while our model with the
least panel size achieved a better performance with 80% SN
and 70% SP. At dementia stage, our proposed models achieved
a performance that is comparable to the best model from the
investigated studies.

Comparing our results with the three recent relevant studies
(see Table V), we note that the panels identified in [25] and [26]
classified ADD and HC with high performance, but the markers
were reported by the authors to be poor at distinguishing between
MCI and HC. Furthermore, while study [27] achieved high AUC
of 0.88 with XGBoost model for classification of ADD and HC,
the model’s performance has not been evaluated for disease
detection at MCI stage. Due to unavailability of biomarkers
used in the study in our study data, the performance of the
models for MCI and HC classification was not investigated in
this study. In contrast to the recent studies, our models achieved
high performance for disease detection at ADD stage (with one
of the models shown in the table realising best AUC, with high
sensitivity and specificity) as well as the MCI stage.

Our proposed panels differ significantly from those of ex-
isting methods. This may be due to significant differences in
the approaches including feature preselection and evaluation
modalities which were deliberately applied in this study. We are
not aware of the use of CFS for feature preselection in previous
studies. We have provided details of the ML algorithm used
including the kernel type and order as well as their selection
process to ensure transparency of approach and reproducibility.

In future, the study will be validated in independent cohorts and
extended to preclinical stages of the disease.

It is noteworthy that no existing AD model based on non-
amyloid proteins has hitherto been evaluated for early disease
detection using ADNI data.

Regarding the proteins evaluated in this study, besides PAPPA,
which is rather highly associated with depressive symptoms in
older adults [47] other proteins preselected by CFS have been
previously identified in several studies [16]–[24] to have classi-
fication value in discriminating between ADD and HC groups.
From the five selected panels shown in Table IV, six proteins
(i.e., A2M, ApoE, BNP, Eot3, RAGE, and SGOT) appear as most
prominent, featuring in nearly all the panels. A combination of
the six proteins therefore seem to play a significant role in the
discrimination of disease (prodromal and dementia) subjects
and healthy controls. The panel classified both groups with
sensitivity and specificity > 80% and 65%, respectively and
AUC of at least 0.80. Several of these proteins are found in nearly
all the previously reported models investigated in this study.
Studies show that blood plasma levels of A2M are linked to
mechanisms related to blood-brain barrier damage and neuronal
injury as well as hippocampus metabolism in early AD [15],
[48]. ApoE in blood is speculated as a dementia risk marker in
preclinical AD [49]. BNP levels in plasma is associated with
decline in cognitive function [50]. Plasma levels of RAGE are
altered in AD [51]. RAGE has been reported to play a critical
role in AD and considered as a potential therapeutic target [52].
SGOT is a biomarker of peripheral inflammation and an essential
metabolic enzyme. It is often used as a clinical measure of liver
function [53]. Interestingly, a recent finding has implicated liver
function as a potential significant confounding factor in the onset
of AD (https://www.alz.org/aaic/releases_2018/AAIC18-Tues-
gut-liver-brain-axis.asp).

However, this study has several limitations including the
following:

Sample size and ML method: In this work, the sample size of
study data was small. This is because of the limited availability
of relevant data due in part to the high cost of collection of
such specialized data. As a result of the limited dataset, latest
ML methods such as deep learning (DL) were not explored
in this study owing to their requirement for large datasets.
As more data become available, we shall explore DL methods
such as convolutional and recurrent neural networks [54], [55].
Nevertheless, conventional machine learning methods are still
attractive in this domain given their relative simplicity, cheaper
cost, and usefulness for data modeling [56]. However, despite the
high classification performance achieved by the traditional ML
approach we applied, there are other methods such as ensemble
learning [57] that have the potential to improve performance and
therefore may be applied in future study.

Demographics: Another limitation is that the study data only
consist of older and educated subjects. Thus, our findings may
not generalise well to other cohorts such as less educated indi-
viduals given that level of education is a well-known risk factor
for AD.

Feature selection method: Notwithstanding the usefulness of
CFS feature preselection technique applied for dimensionality
reduction and mitigation of model overfitting, some important
markers with strong biological links to AD may have been
eliminated as the process was blind to prior knowledge.

https://www.alz.org/aaic/releases_2018/AAIC18-Tues-gut-liver-brain-axis.asp


EKE et al.: EARLY DETECTION OF ALZHEIMER’S DISEASE WITH BLOOD PLASMA PROTEINS USING SUPPORT VECTOR MACHINES 225

Protein-protein interaction analysis: In this study, aspects
such as protein-protein interaction were not investigated as these
were beyond the scope of the study. Potentially, analysis of
the interactions between proteins in the identified panels may
facilitate understanding of their joint role in AD process and
clarify which panel(s) are more clinically relevant.

In view of the limitations above, there is a need to conduct ad-
ditional follow-up studies and validation of our findings in large
and independent cohorts considering that validation of findings
is an important step for clinical acceptance and translation into
clinical practice.

Besides proteomics-based biomarkers, there are also other
nonamyloid-based blood biomarkers such as mRNA [58], [59]
and autoantibodies [60] where progress is being made in AD
detection and improving understanding of disease. For instance
in [58], three mRNA biomarkers that suggest important dysregu-
lated pathways in AD pathogenesis have been identified. There-
fore, future studies should consider the exploitation of a range of
blood-based biomarkers including proteomics and mRNA. This
may lead to a more accurate panel of blood biomarkers to detect
AD and improve the understanding of its aetiology.

Overall, the results from this study suggest that it may be
feasible to detect early AD using a profile of non-amyloid
proteins in blood associated with the metabolic processes that
accompany or precede the disease. Because the proteins are
non-amyloid based, they have the potential to detect the disease
even before amyloid pathology develops. It may be possible
to develop new understanding of the disease through further
studies of these proteins and their protein-protein interactions
in the disease pathogenesis. Such understanding may aid the
development of new interventions in response to current failure
of clinical trials targeting amyloid clearance. The main contri-
butions of this study include the potential biomarker signatures
identified and the methodological approach adopted in the search
for these signatures in an effort to bridge an important study
gap of early detection of AD with proteomic-based non-amyloid
blood biomarkers.

VI. CONCLUSION

We have developed potential models and identified five novel
candidate non-amyloid biomarker panels for early detection of
AD utilizing a new approach. The developed models based on
these panels classified prodromal AD as well as AD dementia
and normal controls with sensitivity above 80%, specificity
higher than 70%, and AUC of at least 0.80. A combination of
A2M, ApoE, BNP, Eot3, RAGE and SGOT were identified as
key protein profiles with significant contribution to the classifi-
cations performance. The results suggest that it may be feasible
to detect early AD using a profile of non-amyloid proteins that
identify the metabolic processes that accompany or precede the
disease. It may be therefore possible to detect the disease with the
proteins before amyloid pathology (the earliest signature current
diagnostic biomarkers can detect) develops since they are not
amyloid-based. This may aid identification of individuals at the
earliest stages of AD who may benefit from early interventions.
Furthermore, new insights about the disease may be gained from
understanding the interactions between the proteins in disease
subjects. Such enhanced understanding may contribute to the
improvement of interventions in clinical trials.
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