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Abstract—Since its outbreak in December 2019, the per-
sistent coronavirus disease (COVID-19) became a global
health emergency. It is imperative to develop a prognos-
tic tool to identify high-risk patients and assist in the for-
mulation of treatment plans. We retrospectively collected
366 severe or critical COVID-19 patients from four centers,
including 70 patients who died within 14 days (labeled as
high-risk patients) since their initial CT scan and 296 who
survived more than 14 days or were cured (labeled as
low-risk patients). We developed a 3D densely connected
convolutional neural network (termed De-COVID19-Net) to
predict the probability of COVID-19 patients belonging to
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the high-risk or low-risk group, combining CT and clinical
information. The area under the curve (AUC) and other
evaluation techniques were used to assess our model. The
De-COVID19-Net yielded an AUC of 0.952 (95% confidence
interval, 0.928-0.977) on the training set and 0.943 (0.904-
0.981) on the test set. The stratified analyses indicated
that our model’s performance is independent of age, sex,
and with/without chronic diseases. The Kaplan-Meier anal-
ysis revealed that our model could significantly categorize
patients into high-risk and low-risk groups (p < 0.001).
In conclusion, De-COVID19-Net can non-invasively predict
whether a patient will die shortly based on the patient’s
initial CT scan with an impressive performance, which in-
dicated that it could be used as a potential prognosis tool
to alert high-risk patients and intervene in advance.

Index Terms—Coronavirus disease 2019 (COVID-19),
prognosis, computed tomography, deep learning, artificial
intelligence.

I. INTRODUCTION

S INCE its outbreak in December 2019, the persistent coro-
navirus disease (COVID-19) caused by severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) has become a
global health emergency [1]–[3]. On January 30th, 2020, the
World Health Organization (WHO) confirmed the outbreak as
a Public Health Emergency of International Concern (PHEIC)
[4]. Up until October 19th, 2020, there have been more than
39,596,000 people among over 200 countries/territories/areas
reported to be infected, and more than 1,107,000 of them died
[5]. Due to the rapid spread rate and considerable mortality, the
epidemic areas are suffering an unprecedented lack of medical
resources [1], [6]–[10]. On account of the high false-negative
rates and the lack of Reverse Transcription-Polymerase Chain
Reaction (RT-PCR) kits early in the COVID-19 outbreak, the
readily available medical imaging, such as chest computed
tomography (CT) and X-ray, have been recommended as an
alternative method to identifying COVID-19 patients [11]–[14].
Although some imaging characteristics which are non-specific
in CT images may indicate COVID-19 pneumonia, many types
of viral pneumonia are highly similar in CT appearance, and even
cannot be identified by a radiologist. Besides, some confirmed
COVID-19 patients experienced a rapid deterioration process
(such as shock, acute respiratory distress syndrome, and mul-
tiple organ failure) due to an unknown progress mechanism
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Fig. 1. The flowchart of this study. We segmented the CT images and obtained the lung volumes after pre-processing (A). Used the lung volumes
and clinical information as input, and we trained the constructed De-COVID19-Net (B). We used multiple evaluation techniques to demonstrate the
performance of our model (C).

[8]. Therefore, the prognostic tools, which could be used to
detect high-risk patients with a malignant prognosis, are urgently
needed in clinical practice.

Artificial intelligence (AI), especially deep learning, is an
emerging methodology in the medical field [15]–[17] and is
making a significant contribution to fight COVID-19 [18].
Several AI-based published studies for diagnosing COVID-19
showed acceptable performance. Wang et al. proposed a residual
learning network combined with the prior-attention mechanism
to screen COVID-19 patients from CT images [19]. Li et al.
[20] used ResNet-50 as the backbone to extract the feature of
every 2D CT slice and integrated them using max-pooling to
discriminate COVID-19 with community-acquired pneumonia
and non-pneumonia patients. Huang et al. [21] used an auto-
matic deep learning method to evaluate lung burden changes
in COVID-19 patients via serial CT scans. Bai et al. [22]
conducted research and concluded that AI assistance could help
radiologists in distinguishing COVID-19 pneumonia from non-
COVID-19 pneumonia based on chest CT. However, whether
the AI-energized prognostic tools can help identify high-risk
patients from their medical images still needs to be discussed.

Therefore, in this study, we aimed to develop a deep learning-
based prognostic tool that can non-invasively predict whether
a patient will die shortly (within 14 days) based on the pa-
tient’s initial CT scan and clinical information. Specifically, we
enrolled 366 four-center severe or critical COVID-19 patients,
based on which we develop a 3D convolutional neural network
(3D-CNN) termed as De-COVID19-Net to predict the probabil-
ity of patients’ death within two weeks. The model merged image
features and clinical information with a customized training
strategy. Compared with the clinical model, radiomics-based
model, and pure CNN model, De-COVID19-Net showed the
best performance.

II. MATERIALS AND METHODS

The statistical analyses were conducted using Python pro-
gramming language (version 3.7.6; http://python.org). The De-
COVID19-Net was constructed using the PyTorch package (ver-
sion 1.4.0; http://pytorch.org).

Fig. 1 shows the workflow of this study.

A. Patients and Follow-up

In this study, we retrospectively recruited 366 patients who
were confirmed with severe or critical COVID-19 pneumonia.
The patients were from four centers, including Renmin Hospital
of Wuhan University (RHWU, n = 317), Huangshi Central
Hospital (HCH, n = 28), the Second Affiliated Hospital of
Harbin Medical University (SAHHMU, n = 13), and Henan
Provincial People’s Hospital (HPPH, n = 8). The patients were
enlisted between December 12th, 2019, and March 18th, 2020.
The institutional review boards of the four hospitals approved
this study and waived the requirement for informed consent.
We assessed the severity grade of the patients according to the
definition in the diagnosis and Treatment Protocol for Novel
Coronavirus Pneumonia (Trial Version 7) released by the Na-
tional Health Commission & State Administration of Traditional
Chinese Medicine, People’s Republic of China [23].

The inclusion criteria were as follows: 1) the patient had etio-
logically confirmed COVID-19 pneumonia by RT-PCR tests; 2)
the patient was diagnosed as having severe or critical COVID-19
pneumonia according to the protocol; 3) the patient was cured;
or 4) the patient died within 14 days; or 5) the patient had regular
follow-up for at least 14 days since his/her first CT scan date.
Eight patients were excluded because his/her CT image had
severe artifacts. Finally, we enrolled 366 patients’ initial CT
images and clinical information since admission. We integrated

http://python.org
http://pytorch.org
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the four-center data and divided them into the training and test
sets in a ratio of 2:1 according to a computerized random number
generator.

The CT protocols are detailed in Supplementary Section A.
The clinical characteristics, including sex, age, the severity grade
of the disease (severe or critical), with or without chronic dis-
eases, follow-up duration, and outcome (cured, died, or hospital-
ized), were retrieved from patients’ electronic medical records.
The chronic diseases included hypertension, diabetes, cancer,
chronic pulmonary disease, chronic renal failure, cardiovascular
or cerebrovascular disease, hepatitis, and liver cirrhosis. Some
patients suffered from multiple chronic diseases. From the date
of the CT scan, patients who were cured or survived more than
14 days (termed low-risk patients) were labeled as 0, whereas
those who died within 14 days (termed high-risk patients) were
labeled as 1.

We used the Mann-Whitney U test to measure distribution
differences between the continuous variables of the training and
test sets, and the Chi-square test to measure categorical variables.
A two-side P-value < 0.05 indicated statistical significance.

B. CT Image Segmentation and Pre-processing

All enrolled patients underwent the non-contrast enhanced
chest CT scan in the supine position from the level of the upper
thoracic inlet to the posterior level of the costophrenic angle.

The lung region was mainly analyzed in this study. We used a
threshold-based segmentation method to obtain the lung region
automatically. Specifically, we binarized the CT image by the
threshold of the Hounsfield Unit = −300 to get the trunk of a
human body. Then, given the seed nodes automatically by com-
puter, the flood fill algorithm would seek all voxels connected
to the seed nodes in the 3-dimensional space and return the
connected domains. We used the closed operation to denoise and
retain the largest connected domain as the lung region, blocking
the non-lung area such as the background and the trachea.
Finally, the 3D lung volumes were derived and resampled to
the size of 200 × 240 × 360 using B-spline interpolation [23].

To train a robust and convincing model, we applied several
pre-processing methods. First, we windowed the intensities of
the derived lung volumes to [−1024, −100] to erase other non-
lung tissues and organs (e.g., heart, spine, bones). Then, we
standardized the volumes with z-score normalization. During
the training, we augmented the data by randomly scaling the
volumes to 0.9–1.1, and then randomly cropping it to the size
of 150 × 200 × 320 as input. We provided an example of the
derived lung region and corresponding lung mask in Fig. 2.

C. Model Construction and Training

Rather than the traditional 2D-CNN, which was widely ap-
plied in natural images, we proposed a 121-layer 3D-CNN
architecture termed De-COVID19-Net as our prediction model.
The use of 3D convolution can properly synthesize the spatial
information of the CT image, which is intuitive and consistent
with the way doctors diagnose. The De-COVID19-Net was
inspired by DenseNet [24]. Specifically, the model is comprised
of four dense blocks, each of which is stacked with multiple

Fig. 2. An example of a lung mask and the corresponding derived lung
region is shown in three perspectives (axial, coronal, sagittal). The first
row shows the original CT. The second row illustrates the segmented
binary mask using our segmentation pipeline. The third row indicates
the step of cropping and resizing. With intensity normalization and data
augmentation, we obtained the last row as our model’s input.

convolutional units. A convolutional unit consists of a batch
normalization layer, a ReLU activation layer, and a 3D convo-
lutional layer. Inside each dense block, all convolutional units
are densely connected in a feedforward style. In this way, the
multi-layer image features will be appropriately synthesized.
We integrated clinical information (sex, age, severity grade,
and with/without chronic disease) and image features in the
fully connected layer which would then deduce the prediction.
We used a dropout rate of 0.5 in the fully connected layers
to mitigate over-fitting. The detailed topological structure of
De-COVID19-Net is illustrated in Supplementary Section B.

To tackle the problem of data imbalance, we adopted focal loss
[25] as the model’s criterion, which can balance the contribution
of learning from high-risk and low-risk samples. The formula is

FocalLoss = −αt(1− pt)
γ log (pt) , (1)

where pt is the predicted probability that the sample is high-risk;
αt controls the weight of high-risk and low-risk samples; and
γ > 0 would push the model to put more concentration on the
hard-to-classify samples. Following the instruction of [25], we
used αt = 0.25, γ = 2 in our model training.

To better merge the CT image features and clinical informa-
tion, we have customized the training strategy:

1) We only used CT images to train the model for 50 epochs
with a learning rate of 1e-5;
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2) We froze the weights of the convolutional blocks and in-
volved the clinical information with CT images, followed
by further training of the fully connected layers for 20
epochs with a learning rate of 5e-6;

3) Finally, we fine-tuned the whole model for 10 epochs with
a learning rate of 5e-6.

During the training, the Adam optimizer was applied to update
the model’s weights. The batch size was 8, and the weight-decay
was 1e-2. We trained De-COVID19-Net on the training set using
an NVIDIA Titan RTX Graphics Card.

D. Model Evaluation

We used the ROC curve and the area under the curve (AUC)
to quantify the De-COVID19-Net’s performance of predicting
patients’ death in both the training and test sets.

Using a threshold, the model can classify if a patient belongs to
the high-risk or low-risk groups. The threshold was determined
by the weighted Youden’s index. Youden’s index is a statistic
that depicts the performance of a dichotomous diagnostic model.
Researchers often use the index to determine the threshold of the
model’s continuous output for binary classification, when false
negatives and false positives are considered equally harmful.
However, the sensitivity of the model is worth more attention
than its specificity, because the missed diagnosis will bring
more significant harm in a COVID-19 situation. Therefore, we
introduced weighted Youden’s index [26], [27]:

Jw = [w × sensitivity + (1− w)× specificity]× 2− 1,
(2)

where 0 ≤ w ≤ 1. The w and 1− w reflect the relative impor-
tance regarding false negatives or false positives, respectively.
When w is equal to 0.5, the formula degenerates to the original
Youden’s index. According to J0.5 and J0.6 on the training set,
we derived two thresholds, by which the accuracy, sensitivity,
and specificity were measured respectively.

We performed the decision curve analysis [28], [29] to discuss
the benefit of the model when considering different threshold
probabilities as the cut-off.

Moreover, Kaplan-Meier analysis [30] and the log-rank test
were performed to assess the prognosis performance of the De-
COVID19-Net.

We performed stratified analyses in terms of age, sex, and
chronic diseases to verify the reliability of the model. Further-
more, Delong’s test [31] was used to compare the ROC curves
of subgroups in the stratified analysis.

To demonstrate that the model has learned the abstract map-
pings between image features and clinical outcomes, we visual-
ized the gradient-weighted class activation maps (Grad-CAM)
[32] of the model’s last convolutional filter.

E. Model Comparison

In order to verify the performance of our De-COVID19-Net
pipeline (3D DenseNet + segmentation + clinical information),
we compared it with other prognosis methods, which are detailed
below:

1) Clinical model: We constructed a logistic regression
model based on clinical information (sex, age, severity
grade, and with/without chronic disease) to predict if a
patient is at high risk of death.

2) Radiomics-based model: Radiomics, an emerging tool for
medical image analysis, was used for COVID-19’s diag-
nosis and prognosis [33]–[35]. Inspired by the works, we
extracted radiomic features of the lung volumes and built
a prognosis model. The construction of the radiomics-
based model is detailed in Supplementary Section C.

3) Pure DenseNet: The model removed the segmenta-
tion step and clinical information input from the De-
COVID19-Net pipeline. We randomly resized the CT
volumes to [150, 200, 320] as input without segmentation.
This model was trained for 50 epochs using the learning
rate of 1e-5.

4) DenseNet + segmentation: The model removed the
clinical information input from the De-COVID19-Net
pipeline, while it kept the segmentation procedure. This
model is obtained after the first stage of our training
strategy.

III. EXPERIMENTS

A. Patient Characteristics

A total of 366 severe or critical COVID-19 patients (average
age = 62.0 years, standard deviation = 16.0 years) from four
centers were enrolled in this study and were divided into the
training set (n = 246) and test set (n = 120) with a ratio
of 2:1. The data from each center roughly maintained a 2:1
ratio between the training set and the test set. We analyzed
the distribution of clinical characteristics in the training set and
test set by the Chi-square test for categorical variables and the
Mann-Whitney U test for continuous variables, and found no
statistically significant difference. The detailed information is
shown in Table I. In Supplementary Section D, we also provided
the distribution of patients’ survival time who finally died.

B. Model Evaluation and Comparison

De-COVID19-Net was trained with a customized strategy
based on the processed lung volumes and clinical informa-
tion. We compared four other models (clinical model, radiomic
model, pure DenseNet, and DenseNet + Segmentation) with the
proposed De-COVID-Net. De-COVID19-Net yielded an AUC
of 0.952 (95% confidence interval [CI], 0.928-0.977) for the
training set, and 0.943 (95% CI, 0.904-0.981) for the test set,
which indicated the best discrimination performance among
other models (Fig. 3). Besides, De-COVID19-Net showed com-
parable performance among the two datasets (Delong test, p
= 0.674). Other indicators, including accuracy, sensitivity, and
specificity, were calculated based on J0.5 and J0.6.

Table II shows that De-COVID19-Net achieved the best
performance in all metrics. Compared with pure DenseNet,
the model had a significant gain from the segmentation step.
After incorporating the clinical model, the final model has also
been improved. In comparison, the clinical model and radiomic
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TABLE I
CLINICAL CHARACTERISTICS OF PATIENTS

The distribution of clinical characteristics in the training set and the test set were assessed
by a Chi-square test for discrete variables or Mann-Whitney U test for continuous
variables.
∗The predicted targets: died within 14 days (high-risk group, labeled as 1); survived
more than 14 days (low-risk group, labeled as 0).

model were far from desirable, especially in sensitivity which is
important in the urgent situation.

To prove the superiority of the model when considering differ-
ent threshold probabilities, we draw decision curves. According
to Fig. 4, patients would benefit more from the prediction of
De-COVID19-Net in most ranges (threshold probability > 5%)
compared with other schemes. An interpretation of the decision
curve is provided in Supplementary Section E.

C. Follow-up Analysis

The enrolled patients’ follow-up duration was between 0 (died
on the day of the CT scan) and 62 days (average = 18.62 days,
standard deviation = 12.13 days). To demonstrate the model’s
prognosis performance, we respectively partitioned the patients
into the predicted-high-risk group and predicted-low-risk group
according to the threshold decided by the weighted Youden’s
Index J0.6. Then, we performed a Kaplan-Meier analysis on the
two groups. According to Fig. 5, the model can distinguish the
two groups (log-rank test, p < 0.001).

D. Stratified Analyses

We conducted four stratified analysis experiments according
to patients’ age, sex, and chronic diseases. The results are shown
in Fig. 6.

Fig. 3. The receiver operating characteristic (ROC) curves of mod-
els’ prediction in the training (a) and test sets (b). The proposed De-
COVID19-Net workflow had the highest AUC compared with other meth-
ods.

In terms of age, we partitioned the patients into the younger
group and elderly group by their median age (64). The results of
stratified analyses indicated that the effects of our model were
independent of patients’ age or sex.

Clinical experiences suggested that chronic diseases are often
a high-risk factor for death. Therefore, we also conducted a
stratified analysis comparing patient subgroups with or without
chronic diseases. According to Fig. 6, our model demonstrated
equally impressive discriminating ability in both subgroups
(Delong test, p = 0.905).

We also performed a Kaplan-Meier analysis on each sub-
group. For each subgroup, we divided the patients into the
predicted-high-risk group and predicted-low-risk group using
the threshold derived from the weighted Youden’s index J0.6.
According to Fig. 6, the Kaplan-Meier curves suggested that our
model can successfully stratify every clinical subgroup into two
groups, which has significantly different follow-up durations and
outcomes (log-rank test, p < 0.001 for every subgroup).
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TABLE II
PERFORMANCES OF DIFFERENT MODELS

The thresholds to calculate accuracy, sensitivity, and specificity were obtained by the weighted Youden’s Index J05, J0.6. The AUC confidence intervals were obtained
by a 2000-time bootstrap. Our proposed De-COVID19-Net achieved the best performance in all metrics (in bold). The construction of the models is illustrated in Section II.
E.

Fig. 4. The decision curves. We compared De-COVID19-Net with five
other schemes. The results show that our model has a greater or equal
net benefit in most ranges.

E. Deep Learning Feature Visualization

We selected two cases: a 61-year-old male who died 8 days
after his CT scan (the high-risk patient), and a 70-year-old
male who was discharged 17 days after his CT scan (the
low-risk patient). The two cases were classified correctly by
our model. Using gradient-weighted class activation mapping
(Grad-CAM), we visualized two patients’ feature maps, which
were synthesized by the model’s last convolutional layer. Fig. 7
suggested that the model was highly sensitive to areas of pneu-
monia in the high-risk patient but not in the low-risk patient.

IV. DISCUSSION

In this study, we collected 366 severe or critical COVID-19
patients from four centers, based on which we explored a deep

Fig. 5. The Kaplan-Meier curves. We partitioned the patients into the
predicted-high-risk group and predicted-low-risk group according to the
threshold determined by the weighted Youden’s index J0.6, and plotted
the curves. The shaded areas represent the confidence interval.

learning-based method to predict the probability of the patients’
death within 14 days from the CT images. Our proposed model,
which was termed as De-COVID19-Net, showed promising
performance in the training set and test set. The model showed
excellent ability to differentiate high-risk (died within 14 days)
and low-risk (survived more than 14 days) COVID-19 patients
according to the CT images, which suggested that the model
could be considered as a powerful tool to assess the risk of pa-
tients’ poor outcome. Those who were rated as high-risk patients
require more elaborate intensive care and treatment interven-
tions. The workflow takes about one minute to segment and in-
ference an input CT image. We have already provided the model
on the website http://www.radiomics.net.cn/platform.html for
open access.

http://www.radiomics.net.cn/platform.html
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Fig. 6. Stratified analyses according to age, sex, and with/without chronic diseases. In Kaplan-Meier curves, we partitioned the patients into the
predicted-high-risk group and predicted-low-risk group according to the threshold determined by the weighted Youden’s index J0.6. As for age, we
partitioned the patients into the younger group and elderly group by their median age (64).

Fig. 7. A) A 70-year-old male who was discharged 17 days after his
CT scan (the low-risk patient); B) A 61-year-old male who died 8 days
after his CT scan (the high-risk patient). Both of them were diagnosed as
critical patients, showing ground-glass opacities (black arrow), consoli-
dation (green arrow), and interlobular septal thickening (red arrow). The
activation map indicated that our model was sensitive to the imaging
textures of the high-risk patient, while it had a low response in the
low-risk patient.

The CT symptom of patchy consolidation might be a high-
risk factor associated with dying [36]. This symptom can be
observed in both dead and surviving patients [14], [37], may

not be observed in patients upon admission, and can hardly be
used for prognosis. Based on the impressive performance of our
model, we argue that CT images imply information that can
prompt patients’ prognosis, and our deep learning-based model
can mine and make full use of them to alert high-risk patients.
In the case of tight medical resources, it is necessary to leverage
the readily available CT images to classify high-risk patients
further.

Some studies suggested that older age and chronic diseases
are the potential risk factors in prompting in-patients’ poor
prognosis [36], [37]. Radiomics was also proved to be a potential
method for COVID-19 diagnosis [33], [34]. Inspired by these
works, we constructed a clinical model and a radiomics-based
model based on our dataset. The evaluation metrics (Table II,
Fig. 3) and decision curves (Fig. 4) showed that our proposed
model achieved the best performance in all metrics. Low sensi-
tivities of the clinical model and radiomics model are the fatal
flaw when consider deploying it in the clinic. Table II also
indicates that the De-COVID19-Net model gained performance
from the segmentation procedure and by incorporating imaging
features and clinical information.

Several measures, including the ROC curves, decision curve
analysis, Kaplan-Meier analysis, and Grad-CAM, have validated
the performance of our model. Furthermore, stratified analyses
were conducted to demonstrate the robustness and stability of the
model among different subgroups. The stratified analyses proved
that our model performed equally well in different clinical
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subgroups and was independent of patients’ age, sex, and
whether the patient suffered from chronic diseases.

Lung region segmentation is an essential procedure in AI-
based medical image analysis, including diagnosis and progno-
sis. In our study, to better explore the lung image information,
we used an automatic lung segmentation algorithm based on
threshold segmentation following morphological optimization
and data augmentations, by which we avoided tedious manual
annotation and gained good results. With the low-cost threshold
segmentation and pre-processing procedures, we can block out
most bones, non-lung organs and tissues. In this way, we forced
the model to pay attention to the lung regions. With random
cropping, we can make extensive use of the dataset and avoid
early overfitting, meanwhile reducing the training burden.

In many medical prognosis studies, researchers often used
survival analysis models, such as the Cox proportional hazards
regression model or Fine and Gray competing risk regression
model. We did not use the survival analysis model because
instead of regressing out survival time after a CT scan, it might
make more sense to regress out survival time after symptom
onset. Besides, it may be futile to predict survival time. Patients
often go through a rapid time from admission to the clinical
outcome (death or cure), which are affected by many com-
plex factors. Consequently, we binary classified the high-risk
and low-risk patients according to the scores outputted by the
model’s fully connected layer, rather than constructing a survival
model which is not appropriate to the actual situation.

The activation maps (Fig. 7) suggest that the sensitive areas
which caused the high response of our model are consistent
with the suspicious areas in a clinical diagnosis. In terms of a
high-risk patient, the model was attracted by the COVID-19
typical imaging characteristics, such as ground-glass opaci-
ties, consolidation, centrilobular nodules, and interlobular sep-
tal thickening. In terms of low-risk patients, even though the
patients exhibited similar imaging characteristics with high-risk
patients, our model is less sensitive to them and gives a lower
score. The subtle difference might be noticed by experienced
radiologists observing these characteristics closely. However,
it takes much patience and time, which is expensive in a busy
working environment with heavy work pressure. Therefore, our
model has the potential to help clinicians quickly identify criti-
cally ill COVID-19 cases, provide non-invasive and personalized
prognostic means, and propose recommendations for patients’
surveillance and management. Although our model can handle
most cases, it is still likely to make mistakes, mainly due to
the noise from clinical factors or unusual lung manifestation,
which could be alleviated by incorporating more data. We also
provided a false-positive example and a false-negative example
in Supplementary Section F.

This study still has some limitations. Firstly, we lack an inde-
pendent external validation set. The reason is that the proportion
of data from Wuhan and non-Wuhan areas varies greatly, and it
is not enough to constitute another data set. We will validate
and improve our model with more data in the future. Secondly,
we used the binary classification model to deal with patients’
prognosis problem, because the situation does not lend itself to
the hypothesis of popular survival analysis models. Therefore,

a survival analysis model, which can predict if and when a
patient will die or be cured, might be needed. Thirdly, as a more
accessible modality, chest X-rays may also have the potential
to help detect high-risk patients. Generally, patients did not
perform both CT and chest X-ray scans in the same period. It is
difficult to obtain paired data for comparative studies. We will
try to explore the effect of chest X-rays in detecting high-risk
patients in future studies.

V. CONCLUSION

We proposed a deep learning-based prognosis model based on
initial CT images. The model has the potential to non-invasively
predict the death risk of critical COVID-19 patients within the
next two weeks. The model achieved impressive performance on
the four-center dataset, which indicated that a CT scan combined
with an AI method could be used as a powerful prognosis tool
to alert high-risk patients.
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