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Abstract—Auscultation is the most efficient way to di-
agnose cardiovascular and respiratory diseases. To reach
accurate diagnoses, a device must be able to recognize
heart and lung sounds from various clinical situations.
However, the recorded chest sounds are mixed by heart and
lung sounds. Thus, effectively separating these two sounds
is critical in the pre-processing stage. Recent advances
in machine learning have progressed on monaural source
separations, but most of the well-known techniques require
paired mixed sounds and individual pure sounds for model
training. As the preparation of pure heart and lung sounds
is difficult, special designs must be considered to derive
effective heart and lung sound separation techniques. In
this study, we proposed a novel periodicity-coded deep
auto-encoder (PC-DAE) approach to separate mixed heart-
lung sounds in an unsupervised manner via the assump-
tion of different periodicities between heart rate and respi-
ration rate. The PC-DAE benefits from deep-learning-based
models by extracting representative features and considers
the periodicity of heart and lung sounds to carry out the
separation. We evaluated PC-DAE on two datasets. The
first one includes sounds from the Student Auscultation
Manikin (SAM), and the second is prepared by recording
chest sounds in real-world conditions. Experimental results
indicate that PC-DAE outperforms several well-known sep-
aration works in terms of standardized evaluation metrics.
Moreover, waveforms and spectrograms demonstrate the
effectiveness of PC-DAE compared to existing approaches.
It is also confirmed that by using the proposed PC-DAE
as a pre-processing stage, the heart sound recognition ac-
curacies can be notably boosted. The experimental results
confirmed the effectiveness of PC-DAE and its potential to
be used in clinical applications.
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I. INTRODUCTION

RCENTLY, biological acoustic signals have been enabling
various intelligent medical applications. For example, the

biological acoustic signals of the heart and lung can facilitate
tasks such as diagnosing the cardiovascular and respiratory dis-
eases, and monitoring the sleep apnea syndrome [1]–[8]. Previ-
ous studies have already investigated the physical models of the
heart and lung sound generation and classification mechanisms.
For example, signal processing approaches (e.g., normalized
average Shannon energy [9] and high-frequency-based methods
[10]) and machine-learning-based models (e.g., neural network
(NN) classifiers [11] and decision trees [12]) have been used to
perform heart disease classification based on acoustic signals.
In addition, the information of S1–S2 and S2–S1 intervals has
been adopted to further improve the classification accuracies
[12], [13]. On the other hand, Gaussian mixture model [13],
NN classifiers [14], and support vector machines [15] along
with various types of acoustic features (e.g., power spectral
density values, Hilbert-Huang transform [16]) have been utilized
to carry out lung sound recognition [17], [18]. However, medical
applications using such biological acoustic signals still face
several challenges.

To reach accurate recognition, sound separation is one of the
most important pre-processing. Because the measured signal
is usually a mixed version of the heart and lung sounds, and
pure heart/lung acoustic signals is generally not accessible,
effectively separating heart and lung sounds is very challeng-
ing. The frequency ranges of normal heart sounds (first(S1)
and second(S2) heart sound) is mainly 20–150 Hz, and some
high-frequency murmurs may reach to 100–600 Hz, or even
to 1000 Hz [19]. On the other hand, the frequency range of
normal lung sounds is 100–1000 Hz (tracheal sounds range
from 850 Hz to 1000 Hz), abnormal lung sound as adventitious
sounds of wheeze span a wide range of frequencies variation of
400–1600 Hz, and the range for crackle and rales is 100–500 Hz
[20], [21]. Therefore, the frequency range of the heart and lung
sounds can be highly overlapped. This results in interference be-
tween the acoustic signals and may degrade the auscultation and
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monitoring performance. With an increasing demand for various
acoustic-signal-based medical applications, effective heart and
lung sound separation techniques have become fundamental,
although challenging.

Sound separation techniques for heart and lung have been
studied extensively, and numerous methods have been proposed
so far. For example, the study [22]– [26] focuses on the adaptive
filtering approach while Mondal et al. [27], [28] use the empiri-
cal mode decomposition methods. Hossain and Hadjileontiadis
et al. [29], [30] proposed to use the discrete wavelets transform
approach to filter interference. Pourazad et al. [31] derived an
algorithm that transforms the signal to time-frequency domain
(STFT) and combined with the continuous wavelets transform
(CWT) to filter out heart sound components by a band-pass filter.

However, the above-mentioned traditional filtering ap-
proaches encounter difficulties due to the overlapped frequency
bands. The works in [32]– [34] proposed another class of blind
source separation algorithms, including independent component
analysis (ICA) and its extensions, in which the prior knowledge
of sources is not required. Nevertheless, the ICA-based methods
require at least two sensors and thus, do not work for the
devices having only single-channel [35]–[37]. The assumption
of independence between heart sound sources is also somehow
optimistic.

Recently, the supervised monaural (single-channel) nonneg-
ative matrix factorization (NMF) was adopted to separate dif-
ferent sources [35], [38]. It was recognized for its capability of
handling overlapping frequency bands [39], [40]. More recently,
deep learning approaches have been used for source separation
[40]–[43]. Although these deep models directly dismantle the
mixture source into the target ones and outperform the NMF
approach, those frameworks were subject to supervised training
data. However, in biomedical applications, the training data of
pure heart/lung acoustic signals is difficult or too expensive to
measure.

To overcome the mentioned challenges, this paper proposes
a periodicity-coded deep autoencoder (PC-DAE) approach, an
unsupervised-learning-based mechanism to effectively separate
the sounds of heart and lung sources. The proposed algorithm
first adopts the DAE model [40], [44]–[46] to extract highly
expressive representations of the mixed sounds. Next, by ap-
plying the modulation frequency analysis (MFA) [47] on the
latent representations, we can group the neurons based on their
properties in the modulation domain and then perform separation
on the mixed sound. The advantage of PC-DAE is that the
labeled training data (more specifically, paired mixed sounds
and individual pure sounds) are not required as compared to the
typical learning-based approaches. It benefits from the period-
icity structure to provide superior separation performance than
the traditional methods.

The remainder of this paper is organized as follows. In
Section 2, we will review the NMF and DAE algorithms. In
Section 3, the proposed PC-DAE will be introduced in detail.
In Section 4, we present the experimental setup and results,
where two datasets were designed and used to test the proposed
PC-DAE model. The first one is phonocardiogram signals from
the Student Auscultation Manikin (SAM) database) [48], and the

second one is prepared in a real-world condition. Experimental
results confirm the effectiveness of PC-DAE to separate the
mixed heart-lung sounds with outperforming related works, in-
cluding direct-clustering NMF (DC-NMF) [35], PC-NMF [49],
and deep clustering (DC) [45], in terms of three standardized
evaluation metrics, qualitative comparisons based on separated
waveforms and spectrograms, and heart sound recognition ac-
curacy.

II. RELATED WORKS

Numerous methods have been proposed to separate the heart
and lung sound signals. Among them, the NMF is a notable
one that has been applied to separate different sounds [35],
[38]. The DAE model is another well-known approach. Based
on the model architecture, the DAE can be constructed by
a fully connected architecture, termed DAE(F), or by a fully
convolutional architecture, termed DAE(C). In this section, we
provide a review of the NMF algorithm, DAE(F), and DAE(C)
models.

A. Non-Negative Matrix Factorization (NMF)

The conventional NMF algorithm factorizes the matrixV into
two matrices, a dictionary matrix W and an encoded matrix
H . The product of the W and H approximates matrix V . All
the matrices entries are nonnegative. The NMF-based source
separation can be divided into two categories, namely supervised
(where individual source sounds are provided) and unsupervised
(where individual source sounds are not accessible). For su-
pervised NMF-based approaches, a pre-trained, fixed spectral
matrix W S , where W S = [W S

1 . . .W S
A], and A is the number

of sources, which consists of the characters of each sound source,
is previously required [35], [50]. To process NMF, first, the
recording that consists of multiple sounds was factorized by
NMF into W S and HT . Then HT is divided into A blocks:
HT = [HT

1 . . .HT
A]. Through multiplying W S

i and HT
i

(i = 1,…A), we obtain individual sound sources.
For unsupervised NMF-based approaches, since individual

source sounds are not available, some statistical assumptions
must apply. An intuitive approach is to cluster the vectors in H to
several distinct groups. A particular sound can be reconstructed
by a group of vectors in H along with W. The work of Lin et al
[49], on the other hand, designed PC-NMF using another con-
cept, which is to incorporate the periodicity property of distinct
source sounds into the separation framework. More specifically,
PC-NMF considers the encoded matrix HT as the time vectors
and uses the nature of periodical differences to separate the
biological sounds. Because heart sounds and lung sounds are
different in periodic characters (heart rate and respiration rate are
very different), the mixed heart-lung sound can be well separated
through a PC-NMF model, as will be presented in Section 4.

B. Deep Autoencoder (DAE)

The DAE has two components, an encoder E(·) and a
decoder D(·). Fig. 1 shows the architecture of a DAE(C) model.
Consider the encoder and decoder to have KE and KD layers,



TSAI et al.: BLIND MONAURAL SOURCE SEPARATION ON HEART AND LUNG SOUNDS BASED ON PERIODIC-CODED DEEP AUTOENCODER 3205

Fig. 1. The convolutional deep autoencoder (DAE(C)) architecture.

Fig. 2. Relation between hidden layers in a fully connected layer, convolutional layer, and deconvolutional layer.

respectively, the total number of layers in the DAE is KAll = KE

+KD. The encoder encodes the input x to the middle latent space
l(KE) (l(KE) = E(x)), and the decoder reconstructs the input
by (x̂ = D(l(KE))). The reconstructed output x̂ is expected to
be approximately equal to x. The mean squared error (MSE)
is generally used to measure the difference between x̂ and x.
Minimizing the value of MSE is the goal to train the DAE
model. As mentioned earlier, by using fully connected and fully
convolutional architectures, we can build DAE(F) and DAE(C),
respectively [51]– [53]. Fig. 2 shows the neuron connections of
the k-th and (k+1)-th layers for the two types of DAE. Fig. 2(a)
presents the fully-connected layer, where each neuron in the
(k+1)-th layer is fully-connected with all neurons in the k-th
layer. Fig. 2(b) and (c), respectively, present the convolutional
and deconvolutional connections, where each neuron in the
(k+1)-th layer is partially-connected with the neurons in the
k-th layer. As can be seen from Fig. 2(a), the DAE(F) forms
the encoder and decoder by fully-connected units, which is
shown in Eqs. (1) and (2), W

(k)
E and W

(k)
D represent the

encoding and decoding matrix, b(k)E and b
(k)
D are the bias terms:

l(1) = σ
(
W

(0)
E x+ b

(0)
E

)
l(k+1) = σ

(
W

(k)
E l(k) + b

(k)
E

)
k = 1, . . . ,KE − 1, (1)

where l(k) ∈ RM×1, and M stands for the total number of
neurons in the latent space. For the decoder, we have

l(k+1) = σ
(
W

(k)
D l(k) + b

(k)
D

)
, k = KD . . . , (KAll − 1)

x̂ = σ
(
W

(KAll)
D l(KAll) + b

(KAll )
D

)
. (2)

In DAE(C), the encoder is formed by convolutional units,
as shown in Eq. (3), that executes the convolutional function
FConv(·). Each encoded layer has J filters: {W 1, . . . ,W J};
W j ∈ RL×1, L is the kernel size, and W ji is the i-th chan-
nel of W j , where W ji = (w1, . . . ,wI). Each neuron in the

(k+1)-th layer’s feature map, l(k+1)
j , is the summation of the
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Fig. 3. (a) Convolutional and (b) deconvolutional operations.

element-wised product of W j and receptive field of all previous

feature maps l(k) by convolution operation, and b
(k)
j denotes the

bias term. The corresponding convolution operation is shown
in Fig. 3(a). The decoder is formed by a deconvolutional unit,
as shown in Eq. (4). During deconvolution, all of the k-th
layer’s feature maps l(k) first go through the zero-padding and
then deconvolution processes (with function FDeconv(·)). Each
decoded layer has J filters: {W 1, . . . ,W J}; W j ∈ RL×1, L is
the kernel size, andW ji is the i-th channel ofW j , whereW ji =

(w1, . . . ,wI). Each neuron in the (k+1)-th layer, l(k+1)
j , is the

summation of the element-wised product of W j and recep-
tive field of all previous feature maps l(k) by deconvolution
operation, and b

(k)
j denotes the bias term. The corresponding

deconvolution operation is shown in Fig. 3(b).

l
(1)
j = σ

(
FConv(W

(0)
ji , x) + b

(0)
j

)
l
(k+1)
j = σ

(
I∑

i=1

FConv(W
(k)
ji , l(k)) + b

(k)
j

)
(3)

where l
(k)
j is the j-th feature map in the k-th layer, and I is the

total number of channels. For the decoder, we have

l
(k+1)
j = σ

(
I∑

i=1

FDeconv(W
(k)
ji , l(k)) + b

(k)
j

)

x̂ = σ
(
FDeconv(W

(KAll)
ji , l(KAll)) + b

(KAll)
j

)
(4)

where KAll denotes the total number of layers in the DAE(C).

III. THE PROPOSED METHOD

The proposed PC-DAE is a DAE-based unsupervised sound
source separation method. When performing separation, the
recorded sounds are first transformed to spectral-domain ampli-
tude and phase parts via short-time Fourier transform (STFT).
The spectral features are converted to log power spectrum (LPS)
[52], whereX = [x1, . . . , xn, . . . ,xN ] denotes the input, and
N is the number of frames of X. Then the DAE encodes the mixed
heart-lung LPS by E(·) to convertX to the matrix of latent repre-
sentations, L(KE) = [l

(KE)
1 , . . . , l

(KE)
n , . . . , l

(KE)
N ]. The de-

coder, D(·), then reconstructs the latent representations back to
original spectral features. The back-propagation algorithm [54]
is adopted to train the DAE parameters to minimize the MSE
scores. Because the input and output are the same, the DAE can
be trained in an unsupervised manner.

Fig. 4. The PC-DAE Framework.

With the trained DAE, the periodic analysis is applied to the
latent representations to identify two disjoint portions of neurons
corresponding to heart and lung sounds. The basic concept is to
consider the temporal information of different periodic sources.
Moreover, to classify the temporal information by periodicity,
the coded matrix is transformed into periodic coded matrix P
via modulation frequency analyzer (MFA). Here, we adopted
the discrete Fourier transform (DFT) to perform MFA. The
periodic coded matrix presents clear periodicity characteristics.
Because heart sound and lung sound have different periodicity,
the coded matrix can be separated to heart coded matrix and lung
coded matrix from the whole encoded matrix, P. Afterwards,
each source coded matrix is transformed by the decoder and
reconstructed to obtain the LPS sequences of the separated heart
soundY heart and lung soundY lung. The output LPS features are
then converted back to waveform-domain signals by applying
inverse short-time Fourier transform (ISTFT).

A. Periodic Analysis Algorithm

In this section, we present the details of the MFA. Fig. 4 illus-
trates the overall PC-DAE framework. First, we train a DAE(F)
or DAE(C) model with the encoder and decoder as shown in
Eqs. (1) and (2) or Eqs. (3) and (4), respectively. Then, we input
the sequence of mixed heart-lung sounds, X, to obtain the latent
representations. The collection of latent representations and the
time sequence are the matrix L = {l(KE)

1 , l
(KE)
2 , . . . l

(KE)
N }.

Thus, we obtain

L =
[
E (x1) . . . E (xn) . . . E (xN )

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l
(KE)
11

...

l
(KE)
j1

...

l
(KE)
M1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. . .

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l
(KE)
1n

...

l
(KE)
jn

...

l
(KE)
Mn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. . .

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l
(KE)
1N

...

l
(KE)
jN

...

l
(KE)
MN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(5)

where L ∈ RM×N , j is the neuron index, where 1 ≤ j ≤M, and
n is the time stamp, where 1 ≤ n ≤N, and N is the total number
of frames.

We assume that among the latent representations, some neu-
rons are activated by heart sound and the others activated by
lung sounds. Based on this assumption, we can separate mixed
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heart-lung sounds in the latent representation space. To deter-
mine whether each neuron is activated either by heart or lung
sound, we transpose the original L to obtain Zmix = LT (T
denotes matrix transpose). Thus, we obtain

Zmix =
[
zmix
1 , . . . , zmix

j , . . . , zmix
M

]
, (6)

where

zmix
j =

[
l
(KE)
j1 , . . . , l

(KE)
jn , . . . , l

(KE)
jN

]T
With Zmix, we intend to cluster the entire set of neurons into

two groups, one group corresponding to heart sounds and the
other to lung sounds. More specifically, when pure heart sound is
inputted to the DAE, only one group of neurons corresponding to
the heart sounds is activated, and the other group corresponding
to the lung sounds is deactivated. When the pure lung sound is
inputted to the DAE, on the other hand, the group of neurons
corresponding to the lung sounds is activated, and the other
group corresponding to the heart sounds is deactivated. The
strategy to determine these two groups of neurons is based on
the periodicity of heart and lung sounds.

Algorithm 1 shows the detailed procedure of periodic anal-
ysis. To analyze the periodicity of each submatrix zmix

j , we
form the periodic coded matrix P = [p1, . . . ,pj , . . . , pM ] by
applying the MFA on zmix

j , as shown in Eq. (7).

pj =
∣∣MFA

(
zmix
j

)∣∣ . (7)

When we used DFT to carry out MFA, we have pj ∈
R(N/2+1), and P can be clustered into two groups. There are
numerous clustering approaches available, and we used the
sparse NMF clustering method to cluster the vectors in P into
two groups [55]. Eq. (8) shows the clustering process by NMF,
which is also achieved by minimizing the error function. On
the basis of the largest score in the encoding matrix, Hp, of
the transposed P , the clustering assignment of Zmix can be
determined.

Hp = argmin
[‖ P −W pHp‖2 + λ ‖ Hp ‖] , (8)

where W p represents the cluster centroids, Hp = [h1, . . . ,
hj , . . . ,hM ] represents the cluster membership, hj ∈ Rk×1,
k is set as the cluster amount of the basis, λ represents the
sparsity penalty factor, || · || represents the L1-norm, and ‖ · ‖2F
represents the Frobenius distance.

On the basis of the hj of encoding matrix Hp, the clustering
results c = [c1, . . . , cj , . . . , cM ] is determined by the largest
score of hj . In this case, cj ∈ {heart, lung}, and the cluster
results assign to zmix

j . According to the assigned clustering
result, Zmix is separated to Zheart and Z lung by deactivating
the submatrices which do not belong to the target, respectively.

After obtaining the coded matrix of each source, we decode
it as Eqs. (9) and (10).

Y heart = D
(
Zheart

)
(9)

Y lung = D
(
Z lung

)
. (10)

Algorithm 1: MFA on Coded Matrix.

Input: mixed heart-lung coded matrix Zmix, where
Zmix ∈ RN×M

Output: heart coded matrix Zheart, lung coded matrix
Z lung

1: for j = 1 to M do
2: pj = | MFA(zmix

j )|
3: end for
4: Perform clustering on vectors [p1, . . . , pM ] in P
5: Obtain labels of P: c = [c1, . . . , cM ], where there are

only two labels for cj {heart or lung}.
6: Set ξmin ∈ RN×1, where ξmin is a vector whose

coefficients are the latent neuron’s minimum values
7: foreach t = [heart; lung] do
8: Initialize Zt= Zmix

9: for j (1 to M) do
10: if cj � t then
11: do zt

j = ξmin

12: end if
13: end for
14: return Zt

15: end foreach

In the proposed approach, we further compute the ratio mask
of these two sounds, which are defined as Eqs. (11) and (12).

Mheart =

(
D
(
Zheart

)
D (Zheart) +D (Z lung)

)
(11)

M lung =

(
D
(
Z lung

)
D (Zheart) +D (Z lung)

)
. (12)

With the estimated Mheart and M lung, we obtain the heart
LPS Ŷ heart and lung LPS Ŷ lung by Eqs. (13) and (14).

Ŷ heart = Mheart �D
(
Zmix

)
(13)

Ŷ lung = M lung �D
(
Zmix

)
, (14)

where � denotes the element-wise multiplication. Then Ŷ heart

and Ŷ lung along with the original phase are used to obtain the
separated heart and lung waveforms.

IV. EXPERIMENTS

A. Experimental Setups

In addition to the proposed PC-DAE(F) and PC-DAE(C), we
tested some well-known approaches for comparison, including
direct-clustering NMF (DC-NMF), PC-NMF, and deep clus-
tering based on DAE (DC-DAE). The PC-NMF and PC-DAE
shared a similar functionality where the PC-DAE performs
clustering on the latent representations for heart and lung sound
separation. For a fair comparison, the DC-NMF, PC-NMF, and
DC-DAE implemented in this study are carried out in an unsu-
pervised manner. For all the methods, the mixed spectrograms
were used as the input, and the separated heart and lung sounds
were generated at the output.
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The DAE(F) model consisted of seven hidden layers, and the
neurons in these layers were 1024, 512, 256, 128, 256, 512,
and 1024. The encoder of the DAE(C) model consisted of three
convolutional layers. The first layer had 32 filters with a kernel
size of 1 × 4, the second layer had 16 filters with a kernel size
of 1 × 3, and the third layer had 8 filters with a kernel size of
1 × 3 of the encoder. The decoder comprised of four layers.
The first layer had 8 deconvolutional filters with a kernel size
of 1 × 3, the second layer had 16 deconvolutional filters with
the kernel size of 1 × 3, the third layer had 32 deconvolutional
filters with a kernel size of 1 × 4, and the fourth layer had 1
deconvolutional filter with kernel size of1× 1. Both convolution
and deconvolution units adopt a stride of 1. The rectified linear
unit were used in encoder and decoder, and the optimizer was
Adam. The unsupervised NMF-based methods were used as the
baseline, where the basis number of NMF was set to 20, and
the L2 norm was used as the cost function. The NMF approach
first decomposes the input spectrogram V into the basis matrix
W and the weight matrix H, where W serves as the sound basis
(including both heart and lung sounds), and H are the weighting
coefficients:

Vij ≈ (WH)ij =

A∑
a=1

WiaHaj , (15)

whereVij is the ij-th component of V (a matrix that contains mul-
tiple sound sources) and Wia and Haj are the ia-th component
of W and the ai-th component of H, respectively.

For unsupervised source separation, the weighting coefficient
matrix H is clustered into several distinct groups. When per-
forming separation, the target source of interest can be recon-
structed by using the group of vectors in H that corresponds
to the target source. Because the clustering is directly applied
to the weighting matrix, we refer to this approach as DC-NMF
as the first baseline system. Rather than directly clustering, the
PC-NMF [49] clusters the vectors in H based on the periodicity
of individual sound sources; the PC-NMF was also implemented
as the second baseline.

Recently, a deep clustering technique [56] that combines
a deep learning algorithm and a clustering process has been
proposed and confirmed effective for speech [45] and music
[46] separation. The fundamental theory of deep clustering is
similar to DC-NMF as the clustering is applied in the latent
representations instead of the weighting matrix. Because the
deep-learning models first transform the input spectrograms
into more representative latent features, the clustering of latent
features can provide superior separation results. In this study, we
implement a deep clustering approach as another comparative
method. We used the model architecture of DAE(C) as the deep-
learning-based model when implementing the deep clustering
approach; hence, the approach is terms DC-DAE(C).

For all the separation methods conducted in this study, we
can obtain separated heart and lung sounds. We used the pure
heart and lung sounds as a reference to compute the separation
performance and adopted three standardized evaluation metrics,
namely signal distortion ratio (SDR), signal to interferences

Fig. 5. Student Auscultation Manikin (SAM).

ratio (SIR), and signal to artifacts ratio (SAR) [57] to evaluate
the separation performances. In a source separation task, there
are three types of noise: (1) noise due to missed separation
(einterf ); noise due to the reconstruction process (eartif ), and the
perturbation noise (enoise). The computations of SDR, SIR, and
SAR are presented in Eqs. (16)–(19), where ŝ(t) is the estimated
result and starget(t) is the target.

ŝ (t) = starget (t) + einterf + enoise + eartif (16)

SDR := 10 log10
starget(t)

2

einterf + enoise + eartif 2
(17)

SIR := 10 log10
starget(t)

2

einterf 2
(18)

SAR := 10 log10
starget (t) + einterf + enoise

2

eartif 2
. (19)

For all of these three metrics, higher scores indicate better
source separation results.

We conducted experiments using two datasets. In the first
dataset, the heart and lung sounds were collected by SAM,
which is a standard equipment in teaching and learning heart and
lung sounds [48]. Fig. 5 shows the model of SAM. The SAM
attempts to simulate the real human body and has many speakers
inside its body corresponding to organ’s positions. The SAM can
generate clean heart sound or lung sound in different locations.
We used the iMEDIPLUS electronic stethoscope [58] to record
heart and lung sounds in an anechoic chamber. The heart sounds
used in this experiment included normal heart sounds with two
beats (S1 and S2). The lung sounds in this experiment included
normal, wheezing, rhonchi, and stridor sounds. Both heart and
lung sounds were sampled at 8 kHz. The two sounds were mixed
at different signal to noise ratio (SNR) levels (−6 dB, −2 dB,
0 dB, 2 dB, and 6 dB) using pure heart sound as the target signal
and pure lung heart sound as the noise signal. All the sounds
were converted into spectral-domain by applying the short-time
Fourier transform (STFT) with a 2048 frame length and 128
frame shifts. Because high frequency parts may not provide
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Fig. 6. Analyses of latent representations of sample sounds. (a) and
(b), respectively, are the spectrograms of the pure heart and lung
sounds, the x-axis is time (s) and y-axis is frequency (Hz); (c) presents
the latent representation extraction based on the DAE model; (d) and (e)
are trajectories of two latent neurons, where the x-axis is the time, and
the y-axis is activation value; (f) and (g) are the DFT results, where the
x-axis is the frequency and y-axis denotes the power density.

critical information for further analyses, we only use 0–300 bins
(corresponding to 0-1170 Hz) in this study.

B. Latent Space Analysis of a Selected Case

In this section, we used a sample mixed sound to detail every
step in the PC-DAE system. Fig. 6 shows the overall procedure
of the PC-DAE, where Figs. 6(a) and (b) show the spectrograms
of pure heart and lung sounds, respectively. Fig. 6(c) shows
the latent representation extraction process. For demonstration
purpose, we selected two specific neurons, one corresponding
to heart sounds and the other corresponding to lung sounds, and
plotted their trajectories along the time axis in Figs. 6(d) and (e),
respectively. By evaluating Figs. 6(d) and (e), we first perceive
that the periodicity properties of Figs. 6(d) and (e) aligned well
with Figs. 6(a) and (b), respectively. Meanwhile, we observe
different trajectories of these two neurons, and the periodicity
of heart sound is different from lung sound. Next, we applied
the DFT on the trajectories of Figs. 6(d) and (e) and obtained
Figs. 6(f) and (g), respectively, to capture the periodicity more
explicitly. Notably, the x-axis for Figs. 6(a),(b),(d), and (e) is
time (s), while the x-axis of Figs. 6(f) and (g) is frequency (Hz).
In the temporal signal analysis, the signals in Figs. 6(f) and

Fig. 7. Spectrograms of two mixed heart-lung sounds and the cluster-
ing results of latent representations. (a) and (b) are the spectrograms
of two mixed heart and lung sounds; (c) and (d) are the DC clustering
results of the latent representation; (e) and (f) are the PC clustering
results of the latent representation.

(g) are termed MFA [59] of Figs. 6(d) and (e). As can be seen
by converting the trajectory into the modulation domain, the
periodicity can be more easily observed.

By comparing Figs. 6(f) and (g), we observe a peak in the
low-frequency part in Figs. 6(g), and a peak is located at a
high-frequency part in Fig. 6(f). The results suggest that these
two neurons should be clustered into two different groups. We
apply the same procedures (trajectory extraction and DFT) on
all the neurons in the DAE. The neurons that process shorter and
longer periodicity are clustered into two distinct groups. Finally,
given a mixed sound, we first extract the latent representation; to
extract heart sounds, we then keep the neurons that correspond
to heart sounds and deactivated the neuron that corresponds to
lung sounds and vice versa.

To further verify the effectiveness of the PC clustering ap-
proach, we compare DC and PC clustering approaches by qual-
itatively analyzing the clustering results. To facilitate a clear
visual comparison, we adopted the principle component analysis
(PCA) [60] to reduce the dimensions on the latent representa-
tions to only 2-D and then draw the scattering plots in Fig. 7. The
figure shows the spectrograms of two mixed heart-lungs sounds
and the clustering results of latent representations. Fig. 7(a)
shows the spectrogram of a mixed normal heart sound and
abnormal lung (rhonchi) sound; Fig. 7(b) shows the spectrogram
of a mixed normal heart sound and abnormal lung (stridor)
sound. Figs. 7(c) and (d) are the DC clustering results of latent
representations (dimensionality-reduced by PCA) correspond-
ing to Figs. 7(a) and (b), respectively. Figs. 7(e) and (f) are the
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TABLE I
EVALUATION RESULTS OF SEPARATED HEART SOUNDS GENERATED BY THE PROPOSED PC-DAE(F) AND PC-DAE(C) COMPARING TO THREE

CONVENTIONAL APPROACHES IN TERMS OF SDR, SIR, AND SAR. AVG DENOTES THE AVERAGE SCORES OVER FIVE SNRS

TABLE II
EVALUATION RESULTS OF SEPARATED LUNG SOUNDS GENERATED BY THE PROPOSED PC-DAE(F) AND PC-DAE(C) COMPARING TO THREE CONVENTIONAL

APPROACHES IN TERMS OF SDR, SIR, AND SAR. AVG DENOTES THE AVERAGE SCORES OVER FIVE SNRS

PC clustering results of the latent representations corresponding
to Figs. 7(a) and (b), respectively.

By observing Figs. 7(a), (c), and (e), we can note that heart and
lung sounds showed clearly different time-frequency properties
(as shown in Fig. 7(a)). In this case, both DC (as in Fig. 7(c)) and
PC (as shown in Fig. 7(e)) clustering approaches can effectively
group the latent features corresponding to lung and heart sounds
into two distinct groups. Consequently, satisfactory separation
results can be achieved for both DC and PC approaches. Next,
by observing the results of Figs. 7(b), (d), and (f), since the
stridor sound are highly overlapped with heart sound (as show in
Fig. 7(b)), the DC clustering approach (as show in Fig. 7(d)) can-
not effectively group the latent representations into two distinct
groups. On the other hand, the PC clustering approach (as show
in Fig. 7(f)) can successfully cluster the latent representations
into two distinct groups and consequently yield better separation
results.

Please note that any particular time-frequency representation
method can be used to perform MFA. The present study adopts
the DFT as a representative method. Other time-frequency
representation methods, such as CWT [29]–[31] and [61] and
Hilbert–Huang transform [62]–[64], can be used. When using
these methods, suitable basis functions or prior knowledge need
to be carefully considered. In this study, we intend to focus our
attention on DFT and will further explore other time-frequency
representation methods in the future.

C. Quantitative Evaluation Based on Source Separation
Evaluation Metrics

Next, we intend to compare the separation performance using
Eqs. (9) and (10) and Eqs. (13) and (14). The results are listed
in Fig. 8. Since Eqs. (9) and (10) directly estimate the hear
sound and lung sounds, the results using Eqs. (9) and (10) are
termed “Direct”. On the other hand, because Eqs. (13) and (14)

Fig. 8. Average separation results over different SNR conditions.
(a) and (c) show the heart sound separation results using PC-DAE(C)
and PC-DAE(F), respectively; (b) and (d) show the lung sound separa-
tion results using PC-DAE(C) and PC-DAE(F), respectively.

estimate the heart and lung sounds by a ratio mask function,
results are termed “Mask”. We tested the performance using
both PC-DAE(F) and PC-DAE(C). From the results in Fig. 8,
we observe the results of “Mask” consistently outperform that
of “Direct” except for heart sound’s SIR of PC-DAE(F), and
confirm the effectiveness of using a ratio mask function to
perform separation instead of direct estimation. In the following
discussion, we only report the PC-DAE separation results using
the ratio mask functions of Eqs. (13) and (14).
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Fig. 9. The waveform of a mixed sample. The y-axis is the amplitude
of the signals, and the x-axis is time index (s). From (b) to (g), the left
and right panels are heart sound and lung sound, respectively.

Tables I and II show the evaluation results of heart and
lung sounds, respectively, tested on the proposed PC-DAE(F)
and PC-DAE(C) with comparative methods. The separation
performance is consistent for heart and lung sounds. From the
two tables, we observe all the SDR, SIR, and SAR scores
mostly increase along with increasing SNR levels. Mean-
while, we note that PC-NMF outperforms DC-NMF, and PC-
DAE(C) outperforms DC-DAE(C), confirming the periodicity
property to provide superior separation performance than direct

Fig. 10. Spectrograms of a mixed sample. The y-axis is the frequency
of the signals, and the x-axis is time index (s). From (b) to (g), the left
and right panels are heart sound and lung sound, respectively.

clustering. Meanwhile, we observed that the deep learning-based
approaches, namely DC-DAE(C) and PC-DAE(C), outperform
NMF-based counterparts, namely DC-NMF and PC-NMF, ver-
ifying the effectiveness of deep learning models to extract
representative features over shallow models. Finally, we ob-
serve that PC-DAE(C) outperforms PC-DAE(F), suggesting that
the convolutional architecture can yield superior performance
than fully connected architecture for this sound separation
task.
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TABLE III
RECOGNITION ACCURACIES OF MIXED HEART-LUNG SOUNDS AND SEPARATED HEART SOUNDS WITH DIFFERENT AGE AND GENDER GROUPS

Fig. 11. The waveforms of two sound samples and the corresponding S1-S2 recognition results. (a) a mixed heart-lung sound with normal heart
sound and normal lung sound. (b) a mixed heart-lung sound with abnormal heart sound and abnormal lung sound. (c) and (d) are the separated
results corresponding to (a) and (b), resepctively. The recognized S1 and S2 results are colored by green and red symbols, respectively.

D. Qualitative Comparison Based on Separated
Waveforms and Spectrograms

In addition to quantitative comparison, we also demonstrate
waveforms and spectrums of a sample sound to visually compare
the separation results. We selected a sample sound, which is
the mixed sound with the SNR ratio of heart sound (treated
as the signal) and wheezing lung sound (treated as the noise)
to be 6 dB. Fig. 9 demonstrates the waveforms of the sample
sound, where Fig. 9(a) shows the mixed sounds. Fig. 9(b) shows
the pure heart sound (left panel) and lung sound (right panel)
that have not been mixed. Figs. 9(c), (d), (e), (f), and (g) show
the separated results of DC-NMF, PC-NMF, DC-DAE(C), PC-
DAE(F), and PC-DAE(C), respectively. From Fig. 9, we observe
that PC-DAE(C) can more effectively separate the heart and lung
sounds as compared to other methods; the trends are consistent
with those shown in Tables I and II.

Next in Fig. 10, we show the spectrograms of the same
sample sound shown in Fig. 9. Fig. 10(a) presents the mixed
sounds, Fig. 10(b) shows the pure heart and lung sounds, and
Figs. 10(c) to (g) are separated results. From Fig. 10(a) we can
observe that the two sounds are highly overlapped in the lower
frequency region. It is also noticed that PC-NMF possesses a

higher performance for interference suppression during the high
frequency of lung sounds, and PC-DAE(F) possesses a higher
performance in overlapped frequency bandwidth and receives
improved heart sound quality. PC-DAE(F) and PC-DAE(C)
performed the best with minimal artificial noises. Generally
speaking, the two PC-DAE approaches outperformed the other
approaches yielding clear separation spectrograms.

E. Real Application in First Heart Sound (S1) and
Second Heart Sound (S2) Recognition

We used another dataset to further evaluate the proposed
algorithm in a more real-world scenario. Real mixed heart-lung
sounds were collected from National Taiwan Hospital, and the
proposed PC-DAE was used to separate the heart and lung
sounds. Because it is not possible to access pure heart and
lung sounds corresponding to the mixed heart-lung sounds, the
SDR, SIR, and SAR scores cannot be used as the evaluation
metrics in this task. Instead, we adopted the first heart sound
(S1) and second heart sound(S2) recognition accuracies to deter-
mine the separation performance. We adopted a well-known S1
and S2 recognition algorithm from [10], [65], which considers
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frequency properties and the assumption of S1–S2 and S2-S1 in-
tervals. We believe that this alternative metric is convincing and
valuable since the S1-S2 recognition accuracy has already been
used as a crucial index for doctors to diagnose the occurrence of
diseases[66], [67].

This dataset includes 3 different age groups, namely 0–20
(childhood and adolescence), 21–65 (adulthood), and over 66
(senior citizen)). Each group has 6 cases, including 3 males and
3 females, and each case has 7 mixed heart-lung sounds (each
has 10 sec). Based on this design, we can determine whether
the proposed approach can be robust against variations of age
and gender groups (accordingly covering people with different
physiological factors, such as blood pressure, heart rate, etc.).
Table III shows the recognition accuracies of before and after
performing heart-lung sound separation.

To visually investigate the S1–S2 recognition performance,
we present the waveforms along with the recognition results
in Fig. 11. Figs. 11(a) and (b) are two sound samples, where
Fig. 11(a) is the mixed heart-lung sound with normal heart and
lung sounds, and Fig. 11(b) is the mixed heart-lung sound with
abnormal heart sound (weak periodicity) and abnormal lung
sound (rhonchi). Figs. 11(c) and (d) show the S1-S2 recognition
after performing heart-lung sound separation corresponding to
Fig. 11(a) and (b), respectively.

From Figs. 11 (a) and (b), we can note that the S1-S2 recog-
nition results are poor for the mixed sounds, and the recognition
performance are notably improved with the separated heart
sounds (as can be seen from Figs. 11(c) and (d)), confirming
the effect of the proposed PC-DAE’s outstanding capability of
separating the heart sounds from mixed sounds.

V. CONCLUSION

The proposed PC-DAE is derived based on the periodicity
properties of the signal to perform blind source separation in a
single-channel recording scenario. Different from the conven-
tional supervised source separation approach, PC-DAE does not
require supervised training data. To the best of our knowledge,
the proposed PC-DAE is the first work that combines the ad-
vantages of deep-learning-based feature representations and the
periodicity property to carry out heart-lung sound separations.
The results of this study indicate that the proposed method is
effective to use a periodic analysis algorithm to improve the
separation of sounds with overlapped frequency bandwidth. The
results also show that PC-DAE provided satisfactory separation
results and achieve superior quality as compared to several
related works. Moreover, we verified that by using the proposed
PC-DAE as a preprocessing step, the heart sound recognition
accuracies can be considerably improved. In our current work,
we need to define how many sources are in the signal. However,
in most cases, determining the exact number of the sources
is difficult. Hence, identifying an effective way to determine
the number of the sources is an important future work. In the
present study, we consider the condition where only sounds
recorded by an electronic stethoscope is available. We believe
that this experiment setup is close to most real-world clinical
scenarios. In the future, we will extend the proposed PC-DAE to
the conditions where additional physiological data is available,

such as electrocardiography (ECG), photoplethysmogram, and
blood pressure signals.
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