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Abstract—Objectives: Compensations are commonly
employed by patients with stroke during rehabilitation with-
out therapist supervision, leading to suboptimal recovery
outcomes. This study investigated the feasibility of the real-
time monitoring of compensation in patients with stroke
by using pressure distribution data and machine learning
algorithms. Whether trunk compensation can be reduced
by combining the online detection of compensation and
haptic feedback of a rehabilitation robot was also investi-
gated. Methods: Six patients with stroke did three forms of
reaching movements while pressure distribution data were
recorded as Dataset1. A support vector machine (SVM)
classifier was trained with features extracted from Dataset1.
Then, two other patients with stroke performed reaching
tasks, and the SVM classifier trained by Dataset1 was em-
ployed to classify the compensatory patterns online. Based
on the real-time monitoring of compensation, a rehabili-
tation robot provided an assistive force to patients with
stroke to reduce compensations. Results: Good classifica-
tion performance (F1 score > 0.95) was obtained in both
offline and online compensation analysis using the SVM
classifier and pressure distribution data of patients with
stroke. Based on the real-time detection of compensatory
patterns, the angles of trunk rotation, trunk lean-forward
and trunk-scapula elevation decreased by 46.95%, 32.35%
and 23.75%, respectively. Conclusion: High classification
accuracies verified the feasibility of detecting compensa-
tion in patients with stroke based on pressure distribution
data. Since the validity and reliability of the online detec-
tion of compensation has been verified, this classifier can
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be incorporated into a rehabilitation robot to reduce trunk
compensations in patients with stroke.

Index Terms—Stroke, trunk compensation,
recognition, rehabilitation robot.
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|. INTRODUCTION

TROKE is a leading cause of adult-acquired disability
S worldwide, and over a half of patients with stroke suffer
from upper-limb impairments [1]. With limited upper limb
motor function, patients with stroke usually use compensatory
strategies during reaching tasks [2]. Compensation, described
as incorporating additional degrees of freedom at new joints
and body segments, are commonly employed to adapt to the
loss of motor function [3]. Although motor compensation helps
patients achieve an immediate improvement in function, it can
impede progress toward recovery in the long term and intro-
duce new orthopedic problems [4], [5]. Previous studies have
demonstrated that reducing compensatory trunk movements
may be helpful for the recovery [6]-[8]. Current approaches
to reduce compensation relies on the supervision of and cor-
rections by therapists. However, one-to-one manually assisted
training is labor intensive, time consuming and expensive. There
is a need for detecting and reducing trunk compensation of
patients with stroke automatically to optimize the rehabilitation
process.

A. Compensation Detection

Detecting compensation is important to ensure the quality
of rehabilitation therapy. Existing detectors of compensatory
motions mainly depend on wearable sensor and camera sys-
tems. In wearable sensor systems, accelerometers [9], inertial
measurement units [10] or other sensors are placed on the
patients with stroke to monitor the posture and upper limb
motions during rehabilitation [11]. One limitation of wearable
sensor-based systems is the probability of causing unnatural
motions as aresult of the attached sensors [12]. Finding an unob-
trusive and easy-to-use solution is quite difficult. Camera-based
detection systems, which include marker-based and markerless
human motion capture technologies [13], [14]. Marker-based
motion tracking systems can achieve accurate and robust results,
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however, suffer from complex setups [15]. Marker-free systems
enable simple and time-efficient evaluation of human motions
in clinics by eliminating the need for markers, however, the
accuracy of markerless systems is still technically challenging
[16], [17]. In addition, camera-based detection systems induced
issues with respect to privacy and may cause unnatural behaviors
in patients with stroke due to the discomfort of being monitored
[18]. In general, detecting compensation in patients with stroke
still lacks an appropriate method.

Recently, we addressed this important problem by present-
ing a compensation detection system using machine learning
algorithms based on pressure distribution data [19]. Pressure
distribution-based detection systems do not induce unnatural
movements or the discomfort of being monitored [20], [21]. In
our previous study, 15 healthy participants simulated common
compensatory movements and several features were extracted
from the pressure distribution data. Different classifiers were
used to detect compensations and obtained good classification
performance. However, compensatory patterns are more com-
plex in patients with stroke [22], and classification performance
in patients with stroke and in healthy people can be quite differ-
ent[23]. Furthermore, since there is usually a gap between online
and offline classification accuracies, the feasibility of detecting
compensation in real time deserves further investigations. There-
fore, we expanded on our previous study and provided additional
details, results, and analyses in this work. First, we investigated
whether the pressure distribution-based system can recognize
compensatory patterns in patients with stroke during reaching
tasks, and the existing approach was adapted to account for the
variability in compensatory movements. Then, we tested this
pressure distribution-based approach for the real-time monitor-
ing of compensatory motions in patients with stroke in order to
reduce compensation during robotic rehabilitation therapy.

B. Upper-Limb Rehabilitation Robot

Stroke rehabilitation is essential to all patients with stroke;
however, many patients cannot receive rehabilitation training in
a sufficient amount of time due to a lack of available therapists
[24]. Rehabilitation robots, which can provide more effective
and efficient rehabilitation, have the potential to improve stroke
outcomes and have been increasingly used in rehabilitation
training [25], [26]. Many different types of rehabilitation robots
have been developed, and many studies have shown that robot-
assisted training can significantly reduce upper limb impair-
ments [27], [28]. Although the potential clinical efficacy of
rehabilitation robots is promising, an important consideration
is whether participants can correctly execute training exercises
without the need for direct supervision by a therapist [29].
Specifically, patients with stroke often perform rehabilitation
tasks with compensatory trunk movements when unsupervised.
Therefore, there is a critical need to automatically detect and
reduce such compensation in patients with stroke during robotic
rehabilitation therapy.

In the past, our team developed an end-effector-based rehabil-
itation robot platform, ReRobot, which can provide the impaired
arm with assistance in 3D space. To take full advantage of
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TABLE |
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS (N = 8)
Participant Age  Sex Weight Aff?Cted M;(I)]stth ’ FMA?
(kg) Side
stroke
P1 54 F 60 Left 2 34
P2 45 M 54 Left 3 55
P3 68 F 39.5 Left 2 38
P4 52 M 65 Left 6 19
P5 37 M 72.5 Right 5 32
P6 65 M 65 Right 9 35
P7 65 M 51 Left 4 36
P8 66 M 65 Left 3 29

robot-assisted movement training, pressure distribution-based
compensatory pattern recognition was integrated into the ReR-
obot system in this study. Thus, ReRobot provided an assistive
force to patients with stroke as haptic feedback when trunk
compensation was detected during reaching tasks.

C. Objectives

In this study, we aimed to detect compensatory patterns in
patients with stroke in real time based on pressure distribution
data to reduce trunk compensation during robotic rehabilitation
therapy. First, offline classification accuracy in detecting com-
pensatory movements in patients with stroke was investigated.
Second, online accuracy was investigated to assess the feasi-
bility of our method for monitoring compensatory movements.
Finally, based on the real-time monitoring of trunk compensa-
tion, the ReRobot provided assistance to patients with stroke
to investigate whether haptic feedback is effective in reducing
compensation during reaching tasks.

[I. METHODS

A. Participants

Eight patients with stroke (P1-P8, 56.5 & 10.6 years, 6 males,
2 females) were recruited from the Third Affiliated Hospital at
SUN Yat-sen University in this study. These participants had a
large variety of impairment severities; in the upper extremity,
the Fugl-Meyer Assessment (FMA) scores ranged from 19 out
of 66, which is indicative of a severe stroke, to 55, which is
indicative of a mild stroke. Details of these participants are
listed in Table I. All participants provided written informed
consent, and the procedures were approved by the Guangzhou
First People’s Hospital Department of Ethics Committee.

Participants met the following inclusion criteria: 1) first ever
stroke, 2) patients with stroke either in the subacute (between 1
to 6 months post stroke) or chronic (over 6 months post stroke)
stage of recovery, 3) patients with stroke with a fair to good
cognitive level (Mini Mental State Examination (MMSE) score
>24 [30]), 4) patients with stroke with the ability to perform
the required movements, and 5) patients with stroke with the
ability to remain sitting. Exclusion criteria were as follows:
1) upper limb pain >4/10 on a Visual Analogue Scale (VAS)
[31], 2) upper limb spasticity >2 on the Modified Ashworth
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Fig. 1.
obot, (B) pressure distribution mattress, (C) 3D motion capture system
(VICON, Oxford Metrics, UK), (D) six-axis force sensor, (E) handle of
ReRobot and (F) reflective markers.

The ReRobot system and the experimental setup. (A) ReR-

Scale (MAS) [32], and 3) visual spatial neglect based on clinical
judgment.

B. Experimental Setup

1) ReRobot Platform: The ReRobot, designed for stroke re-
habilitation training, was employed to assess the performance
of real-time control driven by compensatory pattern recogni-
tion, as shown in Fig. 1. The ReRobot is set up to assist the
movement of the impaired arm by using URS (Universal Robots
Ltd, Odense, Denmark). URS is a lightweight, flexible and safe
robotic arm with six degrees of freedom in cartesian space
based on its six rotary joints [33]. A handle was attached at
the end of URS for participants to hold. The ReRobot platform
can be commanded to maintain the correct direction when the
participant performs reaching tasks without compensation or
provide haptic feedback in the form of assistive force to the
participant when the participant performs the movements with
compensation. An admittance control scheme [34], [35], which
is a position controller with force feedback, was implemented
and the assistive force was provided based on the ‘assistance-as-
needed’ principle [28], [36]. A 6-DOF force sensor is attached
to the end effector of the ReRobot, then the input from this
sensor is used to produce velocity commands for the device.
The transmission control protocol/internet protocol (TCP/IP)
was used for communication between the ReRobot platform
and the MATLAB (MathWorks Corp., Natick, MA, USA) user
interface.

2) Pressure Measurement System: A pressure distribution
mattress (Body Pressure Measurement System, Model 5330,
Tekscan, Inc., South Boston, MA, USA) was used to measure
and record the pressure distribution of patients with stroke
during the seated reaching tasks, as shown in Fig. 1. A sampling
frequency of 50 Hz was used in this study and these pressure
distribution data were processed by using MATLAB software.

C. Experimental Procedures

Participants held onto the handle of the ReRobot while seated
on a chair with the pressure distribution mattress mounted. If
participants were unable to hold the robots’ handle, they were

provided with a strap. Every participant performed three forms
of reaching motions which covered a wide range of movements
of the upper limb. These reaching movements included (i) back-
and-forth reaching (B-F reaching), (ii) side-to-side reaching
(S-S reaching) and (iii) up-and-down reaching (U-D reaching).
Reaching movements performed by the participants’ healthy
arm were labeled as noncompensation (NC) movements. And
a therapist visually monitored these motions performed by the
affected arm and labeled the compensatory motions.

Each experiment consisted of two sessions, including data
recording for offline and real-time analysis. Participants were
divided into two groups: Group 1 (P1-P6) and Group 2 (P7, P8).
Several familiarization trials were performed to ensure these
participants understand and feel comfortable with the experi-
mental procedures. In this process, participants were also asked
to perform reaching movements with their unaffected arm to set
the required distance for each reaching task. In addition, each
participant confirmed that he/she could sense the change in force
when compensating and ensure the assistive force was suitable
for him/her. To avoid fatigue, each participant was allowed 10 s
of rest between two reaching motions and 3 min of rest after a
certain type of reaching task.

1) Session 1. Data Recording for Offline Detection of
Compensation: Each participant in Group 1 performed B-F, S-S
and U-D reaching tasks with his/her healthy arm and affected
arm. Each task was repeated 30 times and the ReRobot platform
was commanded to maintain the correct direction during the
execution of each motion. Hence, each participant performed
180 motions in total, with 90 motions on each arm. This ses-
sion lasted between 1 and 1.5 hr, including resting time. The
pressure distribution data of the participants in Group 1 were
recorded as Dataset] for the training and testing of the classifier
offline.

2) Session 2. Data Recording for Online Detection and
Reduction of Compensation: Participants in Group 2 were in-
volved in Session 2, which consisted of Phase A and Phase B.
This session lasted 1 to 2 hr, including resting time.

Phase A (online detection of compensation): Each participant
in Group 2 performed each reaching task with his/her healthy
arm and affected arm 15 times at a self-selected speed. The
pressure distribution data of the participants in Group 2 were
recorded as Dataset2, and the classifier trained by Datasetl
was employed to detect compensation online. ReRobot was
commanded to maintain the correct direction during the execu-
tion of each movement. A 3D motion capture system (VICON,
Oxford Metrics, UK; 100 Hz) was used to track and record the
participants’ upper limb and trunk movements.

Phase B (online detection and reduction of compensation
during robotic rehabilitation therapy): Each participant in Group
2 performed reaching tasks with his/her affected side. When
the participant performed reaching tasks without compensation,
the ReRobot platform was commanded to maintain the correct
direction. When a compensatory motion was detected, ReRobot
was then commanded to provide an assistive force to participants
in the next movement. Each reaching task was completed 15
times in total, and the participant’s kinematics were measured
by the VICON system.
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TABLE Il the sum of p;(¢) for all ¢ at a given time ¢.
MOTION PRESSURE MAP IMAGES WITH MOVEMENT PATTERNS

N

SSV () = pi(t )
Movement pattern Motion image Pres.sure map ®) Z: ()

image =1

T
SSV =Y " SSV(t) 3)

Noncompensation

(NO)

Trunk
lean-forward
(TLF, hip flexion
angle less than 90°
in the sagittal
plane)

Trunk rotation

(TR, turning of

the torso in the
transverse plane)

Trunk—scapula
elevation (TSE,
lateral inclination
of the trunk and/or
the scapula)

D. Classification of Compensatory Movements

Three types of compensatory patterns were commonly elicited
during reaching tasks, including excessive trunk lean-forward
(TLF), trunk rotation (TR), and trunk—scapula elevation (TSE)
movements [6], [37]. The details and pressure maps of NC,
TLF, TR and TSE were shown in Table II. The pressure dis-
tribution data of Group 1 (P1-P6) were acquired, and each
pressure map consisted of a 32 x 32-dimensional vector. The
pressure sensor array is represented as a set of indexed sen-
sors { Py [t], Pat], ---, Pnl[t] }, where N = 1024 is the total
number of sensors in the array. Each sensor is represented as
a triple, P;[t] = (x4, yi, pi(t)), where x; and y; are the lateral
and longitudinal coordinates of the ith sensor, respectively, and
p;(t) is the sensor value at time ¢.

By reviewing previous research on pressure distribution mat-
tresses [38], [39] and analyzing the pressure distribution data in
this study, the following features were extracted to distinguish
compensatory movements:

1) The average sensor values (AV Eggy).

AV Egssy = SSV/T (D

where T is the duration time and SSV is the summation of
all sensor values, SSV (t). SSV(t) was gained by calculating

t=1

1) The maximum of the pressure sensor values.

2) The average values of the lateral and longitudinal center of
pressure (AV Epgicop and AV Epgncop). The lateral
center of pressure (LatC'OP) and longitudinal center of
pressure (LonCOP) can be calculated with (4) and (5),
respectively.

N
LatCOP (t) = ap; (t) /SSV () (&)

N
LonCOP (t) = Zyipi (t) /SSV (t) (5)

3) The average ratio of the pressure on the left side to that
on the right side (AV ERgratio) and average ratio of
the pressure on the anterior end to the pressure on the
posterior end (AV EApratio). The ratio of the pressure
on the left side to that on the right side (LRratio) and
the ratio of the pressure on the front side to that on the
back side (APratio) were determined with (6) and (7),

respectively.
yi=16 Yi=32
LRratio (t) = Z pi (t) Z pi(t) (6
yi=1 yi=17
;=16 ;=32
APratio(t) = > pi(t) / Y pi(t) (D)
zi=1 ;=17

4) Standard deviation of the lateral and the longitudinal cen-
ter of pressure (SDyq.cop and SDroncop). Standard
deviation of the ratio of the pressure on the left side to
that on the right side (SDp rratio) and the ratio of the
pressure on anterior end to the pressure on the posterior
end (SDAPTatio)'

Support vector machine (SVM) [40] is widely used and one
of the highest performing classifiers because of their high gen-
eralization performance [41]. Pervious study has demonstrated
that the SVM classifier has achieved a higher classification
accuracy in recognizing sitting postures from the pressure dis-
tribution data than other classifiers [42]. SVM classifier also
showed a better classification performance in compensation
detection in our previous study [19]. Thus, a SVM classifier
was employed to recognize compensatory patterns in patients
with stroke in this study. We trained an SVM classifier with a
radial basis kernel function using LIBSVM in MATLAB [43].
The extracted features from pressure distribution data of all the
participants in Group 1 were combined in a random order, and
leave-one-subject-out (LOSO) cross validation was employed
to evaluate the classification performance. With LOSO cross
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TABLE Il TABLE IV
OFFLINE CLASSIFICATION PERFORMANCE IN RECOGNIZING OFFLINE CLASSIFICATION PERFORMANCE IN THREE TYPES OF REACHING
COMPENSATORY PATTERNS
- — B-F S-S U-D  Average

Classifier P‘%S{‘;re Prgg;g’“ 1(‘)69";‘}11 F(l) o Precision 0.974 0988 099  0.984
- TR 0.990 1.000 0.995 SVM Recall 0.972 0.991 0.992 0.985

NC 0.998 0.970 0.984 B-F = Back-and-forth reaching, S-S = Side-to-side reaching, U-D = Up-and-down

validation, a model was trained on data from all subjects except
one, who was “left out”, and the data from the one subject was
used as a test dataset. The process was repeated until the data
from each subject was used as a test dataset, and can find the
average recognition rate of the model. During online detection
of compensation, the SVM classifier trained by using Datasetl
was applied to detect compensatory patterns of participants (P7,
P8) based on the aforementioned pressure features.

E. Statistical Analysis

Statistical analyses were performed using SPSS 24.0 software
(IBM Corp., Armonk, NY, USA). The descriptive statistics were
used for means and standard deviations. The Kolmogorove-
Smirnov test was used to confirm the normality of the distri-
bution of the data, prior to selection of appropriate statistical
tests. Friedman nonparametric tests were employed to analyze
whether there were any significant differences in classification
performance. When the test statistic was significant, Bonfer-
roni post hoc tests were performed to determine if differences
between each two conditions were significant. Wilcoxon rank
sum test was used to analyze whether there were any significant
differences in classification performance between patients with
left-sided hemiplegia and right-sided hemiplegia. Paired t-tests
were employed to analyze whether there were any significant
differences in compensatory motions between ReRobot _OFF
and ReRobot _ON conditions. Results were considered signifi-
cant at p < 0.05 for all analyses.

lll. RESuLTS

A. Classification Performance in Offline and Online
Detection of Compensation

Offline classification performance was assessed using
Datasetl by calculating precision, recall and F1 score. Precision
measures the proportion of predicted observations that were
correct while recall refers to how well the target objects are
detected without being missed. F1 score combines precision and
recall metrics and can be gained as:

F1 = (2 x Precision x Recall)/(Precision + Recall) (8)

The SVM classifier recognized compensatory patterns in pa-
tients with stroke with an average F1 score of 0.986 + 0.014.
As shown in Table III, TSE compensation was detected with
excellent performance (F1 score = 1.000), followed by TR
compensation (F1 score = 0.995), NC (F1 score = 0.984)
and TLF compensation (F1 score = 0.963). F1 scores across

reaching.

Noncompensation [0 Trunk-scapula elevation

I Trunk rotation B Trunk lean-forward
4.0

35
3.0
225
220
1.5

0.5

0.0

1 2 5 6

3 4
Rank-ordered participants

Fig. 2. Offline classification performance from the SVM classifier for all
classes and participants. Participants were rank ordered based on the
total value of the F1 score.

different compensatory patterns showed a significant difference
using the Friedman nonparametric test (p = 0.032). The post
hoc analysis indicated that classification accuracies of TSE,
TR and NC significantly outperformed of TLF compensation.
Good classification performance (average F1-score > 0.95) was
also achieved in detecting compensatory motions across B-F,
S-S and U-D reaching tasks, as shown in Table IV. The best
performance was obtained in U-D reaching, followed by S-S
reaching and B-F reaching. No statistical significant differences
were observed in the classification performance among different
reaching motions (p = 0.086). Wilcoxon rank sum test was
used to analyze whether there were any significant differences
in classification performance between patients with left-sided
hemiplegia and right-sided hemiplegia. There were no signif-
icant differences between these two conditions (p = 0.109).
Offline classification performance of every class using the SVM
classifier across all participants was shown in Fig. 2. The total F1
score of these four movement patterns in all participants ranged
from 3.798 to 4.000. The classification accuracies for 5 of the 6
participants were greater than 95%, indicating that SVM-based
pattern recognition could be a viable detector of compensation
in patients with stroke.

Online classification accuracy in categorizing compensatory
movements of each patients with stroke was evaluated using
Dataset2, as shown in Table V. The SVM classifier recognized
compensatory patterns in patients with stroke with an excellent
classification performance (average F1 score = 0.985). This
result indicates that the feasibility of applying compensation de-
tection can be tested online in individual patient with stroke. The
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TABLE V
ONLINE CLASSIFICATION PERFORMANCE IN RECOGNIZING
COMPENSATORY PATTERNS

Participant Posture  Precision Recall  F1 score
TLF 1.000 1.000 1.000
p7 TR 1.000 0.867 0.929
TSE 1.000 1.000 1.000
NC 0.957 1.000 0.978
TLF 1.000 0.967 0.983
P8 TR 1.000 1.000 1.000
TSE 1.000 1.000 1.000
NC 0.989 1.000 0.994

classification accuracy was higher than 95% for both P7 and PS.
Patients with stroke with high online classification accuracies
are believed to be able to use a compensation detection-based
control interface for rehabilitation training. Based on real-time
monitoring compensatory patterns, the ReRobot platform can
provide haptic feedback to patients with stroke and help them
reduce trunk compensation.

B. Reducing Trunk Compensation Based on Online
Detection and Assistance by ReRobot

Trunk compensation was represented by the angle of TLF («),
angle of TR (/3) and angle of TSE (7), as shown in Fig. 3. These
three angles of P7 and P8 in the ReRobot_OFF and ReRobot_ON
conditions were analyzed. ReRobot_OFF is condition in which
ReRobot was commanded to maintain the correct direction

during each reaching task. ReRobot_ON is the condition in
which ReRobot provided an assistive force as haptic feedback
to patients with stroke when compensation was detected. Mean
values of these three angles of 15 motions during each reaching
task were calculated and compared. Trunk movement angle
analysis during the reaching tasks showed that patients with
stroke moved their trunk significantly more in the ReRobot_OFF
condition than in the ReRobot_ON condition. For P7, in the
ReRobot_ON condition compared with the ReRobot_OFF con-
dition, the angles of TR, TLF and TSE were reduced by 48.6%,
35.7% and 23.6%, respectively. The maximum amount of reduc-
tion, which was 6.74°, was obtained in the S-S reaching task.
Similarly, P8 achieved a maximum reduction of 6.83° in the S-S
reaching task. For P8, in the ReRobot_ON condition compared
with the ReRobot_OFF condition, the angles of TR, TLF and
TSE were reduced by 45.3%, 29.0% and 23.9%, respectively.
As shown in Fig. 3, both patients reduced their compensa-
tion significantly in the ReRobot_ON condition compared with
the ReRobot_OFF condition. The patients’ trunk compensation
movements occurred with lower variability in the ReRobot_ON
condition, as demonstrated by small standard deviations. P7 and
P8 showed an average reduction of 5.28 £ 0.35° in the trunk
compensation angle o, 6.79 £ 1.20° in the trunk compensation
angle $ and 4.17 4+ 1.36° in the trunk compensation angle ~y
with the ReRobot_ON condition.

Paired t-tests were employed to analyze whether there were
any significant differences between ReRobot _OFF and ReR-
obot _ON in terms of the three angles, as shown in Fig. 4.
For P7, significantly lower peak trunk compensation angles
were reported in the ReRobot _ON condition with respect to
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Fig. 4. Trunk compensation angles of patients with stroke under ReR-
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the ReRobot _OFF condition (c, p < 0.0001; 3, p < 0.0001;
v, p < 0.0001). Similarly, P8 showed statistically signifi-
cantly lower peak trunk compensation angles in the ReRobot
_ON condition with respect to the ReRobot _OFF condition
(a, p < 0.0001; B, p < 0.0001; v, p=0.001).

IV. DISCUSSION

This section first presents the discussion of classification
performance in offline and online detection of compensatory
patterns based on the pressure distribution data of patients with
stroke. Subsequently, a discussion of real-time detection and
reduction of trunk compensation during robotic rehabilitation
therapy is provided. Finally, the advantages of integrating the
online detection of compensatory patterns into a rehabilitation
robot for reducing the trunk compensation of patients with stroke
are emphasized, and future work is discussed.

To the best of ourknowledge, this is the first study to use
machine learning methods for detection of compensations in
patients with stroke based on pressure measurement. The pres-
sure distribution-based system neither induced unnatural mo-
tions related to attached sensors like the sensor-based detection
systems nor caused discomfort of being monitored like the
camera-based detection systems. An SVM classifier was trained
on features from the pressure distribution data of three reaching
tasks (B-F reaching, S-S reaching and U-D reaching) that are
routinely performed by patients with stroke. Three types of
compensatory movements (TR, TLF and TSE) that are com-
monly utilized by patients with stroke and NC patterns were
detected and categorized by our classifier. Good classification
performance in offline and online detection of compensation
were achieved, which verified the feasibility of applying the
pressure distribution-based system in detecting compensatory
patterns in patients with stroke.

Classification accuracies for most participants and classes
were greater than 95%, indicating that the automatic detect-
ing compensation by using the SVM classifier from pressure
distribution data can be used as a viable monitoring system
for patients with stroke. By comparison with the classifica-
tion accuracies from wearable sensor data for B-F reaching

(F1 score = 0.857) and U-D reaching (F1 score = 1.000) tasks
in patients with stroke [18], our method exhibited an equal and
even higher accuracy, with an average F1 score of 0.963 for S-S
reaching and 1.000 for U-D reaching. Babak Taati et al. [12]
employed a camera-based system for real-time compensation
detection by a multiclass classifier and achieved an accuracy
of 86% in healthy participants. However, the classification per-
formance was worse in patients with stroke for TR (F1 score
= 0.27), TLF (F1 score = 0.17), and TSE (F1 score = 0.07)
[23]. Our classifier based on pressure distribution data achieves
abetter performance in recognizing compensatory motions, with
an average F1 score of 0.992 for TLF, 0.964 for TR, and 1.000
for TSE. These results validated that our method can adequately
recognize compensatory patterns and can be further applied in
a rehabilitation robot to encourage patients with stroke to move
into the correct pose when necessary.

In our previous work on healthy participants [19], fifteen
people without motor impairments simulated common compen-
satory movement patterns during reaching tasks, and pressure
distribution data were recorded. Classification algorithms were
applied to detect compensation, and the classification perfor-
mance was adequate for most participants (average F1 score >
0.9). Compared with the F1 scores in healthy participants, the
F1 scores in patients with stroke with our method were higher
(average F1 score > 0.95). This finding is consistent with the
results in previous research [18], [44] in which a sensor-based
system was developed to detect compensatory trunk movements
in healthy participants (average F1 score = 0.907) and patients
with stroke (average F1 score = 0.928). These results indicate
that classifiers trained on data simulated by healthy participants
also have the potential to be applied in detecting compensation
in patients with stroke.

Since the validity and reliability of online detecting compen-
sation movements in patients with stroke using our classifier
from the pressure distribution data has been verified, a reha-
bilitation robot was incorporated to reduce compensation. The
ReRobot provided an assistive force to patients with stroke as
haptic feedback when trunk compensation was detected during
reaching tasks. In terms of the trunk compensation angles, the
angles of trunk rotation, trunk lean-forward and trunk—scapula
elevation were reduced by 46.95%, 32.35% and 23.75%, re-
spectively. This result demonstrates that the trunk compensation
of patients with stroke can be decreased significantly by using
both real-time monitoring of compensatory motions and haptic
feedback provided by a rehabilitation robot.

Previous studies have shown that visual or auditory feedback
can provide compensation information to patients with stroke
and help them modify their movement patterns [45]-[49]. Little
attention has been given to the role of haptic feedback in the re-
duction of compensation; however, haptic feedback can directly
intervene in the physical movements of patients with stroke.
Bulmaro Adolfo Valdés et al. [50], [51] investigated whether
haptic feedback can reduce compensatory trunk movement and
examined whether haptic or visual feedback is more efficacious
in reducing compensation. Robot arms provided resistance to the
participant’s upper limb when anterior trunk displacement was
detected during a reaching movement. The authors reported that
trunk compensation was decreased based on haptic feedback,
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and no difference between haptic and visual feedback modalities
was obtained. Given that providing resistance to the participant’s
limb movements makes tasks more difficult or challenging,
providing assistive force instead of resistive force as feedback
can help patients with stroke to move their affected limbs in
desired patterns and reduce compensation more directly [28].
Meanwhile, actively assisted exercise is the primary control
strategy in robotic therapy development [52]. Therefore, this
study investigated whether compensation can be decreased by
providing assistive force as haptic feedback. The experimen-
tal results verified the feasibility and validity of the proposed
method, indicating its promising potential for reducing trunk
compensation in clinical rehabilitation and clinical rehabilitation
devices.

This study had several advantages. First, this study validated
the feasibility of detecting compensatory motions of patients
with stroke using pressure distribution data and a machine learn-
ing model. Second, both offline and online detection of compen-
satory patterns achieved excellent classification performance in
patients with stroke. Third, a rehabilitation robot provided haptic
feedback to patients with stroke and reduced compensation
significantly based on real-time detection of compensatory mo-
tions. It is important to emphasize that combined real-time mon-
itoring of compensatory motions and haptic feedback reduces
the trunk compensation of patients with stroke during robotic
rehabilitation therapy. Automated compensation detection has
the potential to augment robotic stroke rehabilitation therapy
and improve upper limb motor recovery.

This study is an early step in investigating the effects of real-
time detection and reduction compensatory patterns in patients
with stroke and there were several limitations in the current
pilot study. Firstly, there were only eight patients with stroke
participating in the current study. Though the results are well
aligned, large sample populations of patients with different
levels of upper limb impairment are needed in future research
to draw stronger conclusions about the effects of detecting and
reducing compensation using the proposed method. In addition,
while trunk compensation was reduced by combining the real-
time detecting of compensatory motions and haptic feedback
of a rehabilitation robot, longitudinal studies are required to
explore the long-term effects on patients with stroke. Clinical
outcome assessments indexes on stroke should be included in
the following studies. Finally, though we demonstrated that the
compensatory patterns of patients with stroke can be decreased
by providing real-time haptic feedback in form of assistive
force, this result is only based on a robot-assisted platform.
Considering that rehabilitation robots are relatively expensive
and complex for using in home setting, the effectiveness of
different types of feedback in reducing compensation will be
investigated. We will further examine whether haptic feedback
in form of assistive force is more effective than audiovisual
feedback in reducing compensation for patients with stroke.

V. CONCLUSION

In general, this study investigated both offline and online com-
pensatory pattern recognition analysis using an SVM classifier
and pressure distribution data of patients with stroke. Good

classification performance was achieved in the offline detec-
tion of compensation using leave-one-subject-out cross valida-
tion. Experiments on the real-time monitoring of compensation
were performed, and high accuracy was obtained in the online
detection of compensatory movements. These results verified
the feasibility of detecting compensatory patterns in patients
with stroke based on pressure distribution data. The method of
monitoring compensation based on pressure distribution data is
novel and has the advantages of being unobtrusive and easy
to use and delivering steady performance. Furthermore, this
method was integrated into a rehabilitation robot to reduce
compensation by providing haptic feedback to patients with
stroke. Trunk compensation was decreased significantly, which
verified the effectiveness of combining the real-time monitoring
of compensatory motions and haptic feedback of a rehabilitation
robot.
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