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Detecting Atrial Fibrillation and Atrial Flutter in
Daily Life Using Photoplethysmography Data
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Abstract—Objective: Photoplethysmography (PPG) en-
ables unobtrusive heart rate monitoring, which can be used
in wrist-worn applications. Its potential for detecting atrial
fibrillation (AF) has been recently presented. Besides AF,
another cardiac arrhythmia increasing stroke risk and re-
quiring treatment is atrial flutter (AFL). Currently, the knowl-
edge about AFL detection with PPG is limited. The objective
of our study was to develop a model that classifies AF, AFL,
and sinus rhythm with or without premature beats from
PPG and acceleration data measured at the wrist in daily
life. Methods: A dataset of 40 patients was collected by
measuring PPG and accelerometer data, as well as electro-
cardiogram as a reference, during 24-hour monitoring. The
dataset was split into 75%–25% for training and testing a
Random Forest (RF) model, which combines features from
PPG, inter-pulse intervals (IPI), and accelerometer data,
to classify AF, AFL, and other rhythms. The performance
was compared to an AF detection algorithm combining
traditional IPI features for determining the robustness of
the accuracy in presence of AFL. Results: The RF model
classified AF/AFL/other with sensitivity and specificity of
97.6/84.5/98.1% and 98.2/99.7/92.8%, respectively. The re-
sults with the IPI-based AF classifier showed that the ma-
jority of false detections were caused by AFL. Conclusion:
The PPG signal contains information to classify AFL in
the presence of AF, sinus rhythm, or sinus rhythm with
premature contractions. Significance: PPG could indicate
presence of AFL, not only AF.

Index Terms—Photoplethysmography, Accelerometer,
Atrial Fibrillation (AF), Atrial Flutter, Random Forest.
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I. INTRODUCTION

A TRIAL fibrillation (AF) is a cardiac arrhythmia that has
been estimated to affect approximately 3% of the adult

population, the prevalence increasing at older age [1], [2]. The
arrhythmia is associated with increased morbidity, such as stroke
and heart failure [3], [4]. Therefore, a timely diagnosis and
start of the treatment of AF is essential, and new solutions for
unobtrusive, low-cost, and possibly prolonged monitoring are
increasingly studied. Especially solutions for long-term moni-
toring that work in daily life are needed for detecting intermittent
episodes of AF that may be missed if monitoring period is
short.

Another cardiac arrhythmia causing a similar stroke risk as
AF, but is less common, is atrial flutter (AFL) [5], [6]. In AFL the
atrial rhythm is regular and the ventricular rate is dependent on
atrioventricular conduction and on whether the flutter is typical
or atypical. The guidelines for anticoagulation and aims for
AFL management are similar as for AF [4]. In addition, many
patients with AFL develop later AF [7] or both arrhythmias may
coexist [6]. Although the aims in management are similar, the
treatment strategies for the two arrhythmias differ. AF is more
often treated with medication whereas cardiac ablation is more
common in treating AFL [4], [5], the success rate of ablations for
a specific type of AFL being 90–95% [4]. Rate control in AFL is
often more difficult to achieve than in AF [4] and antiarrhythmic
therapy of AF may also cause AFL [5]. Knowing the type of
arrhythmia causing the stroke risk is therefore important as
antiarrhythmic therapies differ.

Photoplethysmography (PPG) is an optical measurement
modality that can be used in physiological measurements, such
as heart rate monitoring [8], [9]. Reflective PPG is often used
for wearable solutions, e.g. wristband devices. The potential
of using PPG measured at the wrist to detect AF has been
investigated in several studies with promising results [10]–[23].
Most of the approaches have focused on discriminating AF from
normal sinus rhythm (NSR) [10]–[12] or, more in general, non-
AF rhythms without further dividing the rhythms into different
classes [13]–[21]. For classification of multiple rhythms, Corino
et al. [22] proposed a method to classify the rhythms into AF,
NSR, and other arrhythmias, whereas the approach of Fallet
et al. [23] focused on classifying AF, NSR, and ventricular
arrhythmias. Furthermore, the potential of using PPG signals
to classify multiple cardiac rhythms has been studied with PPG
measured with smartphones [24]–[26].

While AF detection with PPG has been widely studied, the
literature about using PPG signals to classify AFL is limited. In
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the study of Corino et al. [22], the class for other arrhythmias
included 9 subjects having either AFL, ventricular premature
beats (VPB), atrial tachycardia, and variable conduction. The
sensitivity and specificity for this class were 75.8% and 76.8%,
respectively. In other studies in which AFL is mentioned to
appear in the dataset, the data has been often either excluded [16],
[17], [21], [27] or it has been included in the group of non-AF
rhythms [20]. Kashiwa et al. [21] excluded continuous AFL, but
did not distinguish short AFL episodes among AF episodes. The
approaches that included AFL in a different class than AF, were
based on the information obtained from the inter-pulse intervals
(IPIs) [20], [22]. From electrocardiography (ECG) studies we
know that rhythm irregularity is not specific for AF, but occurs
also during AFL [28]. Therefore, analysis on IPI irregularity
patterns may not be sufficient for an accurate classification of
these two arrhythmias. AFL can also manifest as a very regular
rhythm, which can be a challenge when distinguishing from
sinus rhythm. Adding additional information, e.g. from the PPG
waveform, may be helpful in detecting different rhythms.

The objective of our study was to develop a classifier for
classification of AF, AFL, and other rhythms, using PPG and
acceleration data measured at the wrist in daily life. The category
other rhythms included NSR and sinus rhythm accompanied
with premature beats originating either from the atria or the
ventricles. First, we developed an AF classifier based on rhythm
irregularity, derived from the IPIs with commonly used features
for AF detection, to benchmark the classification performance.
This was done in three different ways: by considering AFL as a
non-AF rhythm together with sinus rhythm and premature beats,
considering AFL with AF because of the similar stroke risk, and
by excluding AFL completely. Second, we added new features,
such as features from the PPG waveform, to improve the clas-
sification performance and provide sufficient information for
classifying multiple rhythms, i.e. AF, AFL, and other.

II. METHODS

A. Data

The dataset for this study consisted of simultaneous ECG,
PPG, and accelerometry measurements in 40 patients undergo-
ing a 24-hour Holter measurement as part of routine clinical care.
The patients were contacted by a cardiologist and given at least
one week to consider their participation in the study. Before
the start of the measurements, the participants gave written
informed consent. The study (NL53827.100.15) was approved
by the medical ethical committee MEC-U (Medical Research
Ethics Committees United) in the Netherlands, and the data was
collected in the Catharina Hospital, Eindhoven, the Netherlands.

The ECG was measured with a 12-lead Holter monitor (H12+,
Mortara, Milwaukee, WI, USA). The PPG and 3-axis accelerom-
eter measurements at the non-dominant wrist were made with a
data logging device equipped with the Philips Cardio and Mo-
tion Monitoring Module (CM3 Generation-3, Wearable Sensing
Technologies, Philips, Eindhoven, the Netherlands). The PPG
sensor was based on reflective mode using two green LEDs.
The sampling frequency of both PPG and accelerometry was
128 Hz and the dynamic range of the accelerometer was ±8 g.

TABLE I
RHYTHM TYPE DISTRIBUTIONS IN THE TRAINING AND TEST SETS

NSR = normal sinus rhythm, SVPB = supraventricular premature beat,
VPB = ventricular premature beat, AFL = atrial flutter, AF = atrial
fibrillation.

The accuracy of heart rate measurement when using the same
PPG-sensor has been previously reported in [29].

The ECG data were visually analyzed by a clinical expert
using an automated rhythm detection software (Veritas, Mortara,
Milwaukee, WI, USA). The software extracted beat times from
the ECG and identified every beat either as normal, supraven-
tricular premature beat (SVPB), VPB, AF, paced, artifact, or
unknown. The rhythm was then confirmed or corrected by the
expert. The software labeled also atrial flutters as AF, which
were corrected after the visual inspection by the expert.

Out of the 40 patients, 14 had continuous AF during the
recording period, 20 had normal sinus rhythm with premature
contractions, 4 had continuous atrial flutter, 1 had continuous
atrial flutter with atrial tachycardia, and one patient had a very
noisy ECG reference. The patient with the very noisy ECG ref-
erence was excluded from the analysis, because no classification
could be made based on the reference data.

For developing the classification models, the dataset was
divided into two parts: a training set and a test set. The training
set was used for training of the model and the test set was kept
as unseen data to test the classification performance. The split
was made by assigning 75% of the patients to the training set
and 25% to the test set based on the rhythm, with the aim to have
similar rhythm distributions in both datasets. These are presented
in Table I based on the percentage of beats in every class and the
number of patients having that rhythm. The atrial tachycardia
was included in the class of AFL. The patient characteristics in
both datasets are presented in Table II.

B. Preprocessing and Pulse Detection

The raw PPG data was uploaded from the data logging device
and processed offline. As a preprocessing step prior to pulse de-
tection, the PPG signal was downsampled from 128 Hz to 64 Hz
and bandpass filtered to range from 0.3 to 5 Hz. The pulses were
detected by identifying the fiducial points, i.e. the troughs, in
the waveform by detecting the local minima. The time difference
between two consecutive fiducial points was calculated to obtain
the IPIs. The IPI time series were used to match the pulses to the
labeled ECG beat times. The method for detecting the pulses and
synchronizing the PPG and ECG beat information is described
more in detail in [17]. Examples of 30-second segments of the
PPG waveforms and the corresponding IPIs for different rhythm
types are presented in Fig. 1 and Fig. 2. Fig. 2 shows differences
in the rhythm characteristics between different AFL subjects.
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Fig. 1. PPG waveforms and the corresponding IPIs of sinus rhythm
(A), sinus rhythm with SVPBs (B), and atrial fibrillation (C).

Fig. 2. PPG waveforms and the corresponding IPIs from three different
atrial flutter subjects (I-III).

TABLE II
PATIENT CHARACTERISTICS

The values are presented as mean ± standard deviation over subjects.
AF = atrial fibrillation, AFL = atrial flutter, HR = heart rate.

C. Modeling Architecture

In this study, two models were developed: an AF classification
model based on the traditionally used IPI variability patterns
(benchmark model), and a multi-rhythm model to classify AF,
AFL, and other rhythms. Fig. 3 shows the block diagram of the
two models. The benchmark model takes as input only features
computed from IPI series, whereas the multi-rhythm model uses
the IPI series, PPG waveform, and accelerometer data as input
for the feature computation.

The PPG, accelerometer, and IPI time series data were seg-
mented in 30-second non-overlapping windows for comput-
ing the features and every window was labeled based on the
rhythm. The beat labels from ECG were used as the ground
truth. When the majority of beats were AF, the window was
labeled as AF. This was the same for AFL. When there were
any SVPBs in the window, and no AF or AFL, the window
was labeled as SVPB, and the same for VPB. The windows
were labeled as sinus rhythm when they did not contain any
of the previously mentioned rhythms. If more than half of the
beats were labeled as artifact, the window was discarded from
the analysis.

For binary classification, which was done with the bench-
mark model ((1) in Fig. 3), the classification was performed
in three different ways. First, all the windows labeled as AF
were considered as one class, and AFL, NSR, SVPB, and VPB
together as another class, i.e. non-AF rhythms. Second, AFL
was considered as the same class with AF, and finally, AFL was
completely removed from the analysis. For the multi-rhythm
classification ((2) in Fig. 3), AFL was separated as its own class,
and NSR, SVPB, and VPB, treated as one class to which we
refer as ’other’. Premature beats were not separated as their own
class because there where too few examples compared to AF,
AFL, and NSR. In addition, they usually are not considered to
require medical treatment.

D. Features

The features to be used for the classification were calcu-
lated for every 30-second window in two stages: first for the
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Fig. 3. Block diagram of the workflow for (1) the benchmark AF classifier and (2) the multi-rhythm classifier.

TABLE III
FEATURES FOR RHYTHM CLASSIFICATION

*From the norm of the accelerations on the three axis.
IPI = inter-pulse intervals, PPPI = pulse-to-pulse-to-pulse interval.

benchmark AF classifier using only IPI-features, and second for
the multi-rhythm classifier with the aim of improving overall
accuracy and classify both AF and AFL separately. All the
features used in the analysis are summarized in Table III.

Prior to the feature computation, IPIs that were shorter than
200 ms and longer than 2200 ms were excluded from the
analysis. This was done because pulses could be sometimes
falsely detected or missed, leading to incorrect IPIs. For more
robust feature calculation, the features were calculated only if
the window contained 20 or more IPIs.

For the benchmark AF classifier, six features characterizing
the variability or entropy of the IPI series, which have been used
for AF classification in the literature [22], [24], [30], [31], were
computed:

� Shannon Entropy (ShEn)
� Normalized Root Mean Square of Successive Differences

(nRMSSD)
� pNN40 and pNN70
� Sample Entropy (sampEn)
� Coefficient of Sample Entropy (CoSEn)

We have previously studied the discriminative power of these
features individually for AF detection with PPG and compared
that to ECG [17]. In the current paper, these features were used
to build the first model to classify AF either with or without
AFL.

For the multi-rhythm classifier, additional features were cal-
culated in order to improve the detection accuracy and enable
separate AFL classification. The features were derived either
directly from the PPG waveform, from the IPI series, or from
the accelerometer data. The features of the PPG waveform were
computed from the signal segments after subtracting the mean
value and dividing by its standard deviation. The new feature set
consisted in total of 16 features, which will be described here.

One category consists of features that have been considered to
measure the signal quality of PPG. A feature that has been used
for motion artifact detection is kurtosis [32]. It is a statistical
measure describing the tails of the distribution defined as

K =
E(x− μ)4

σ4
, (1)

where μ and σ are the mean and standard deviation of x,
respectively, and E(n) is the expected value of the quantity n.

In the PPG analysis domain, Hjorth descriptors called mo-
bility and complexity [33], H1 and H2, have previously been
used for analyzing the quality of the signal [34]. The descriptors
have initially been developed for electroencephalogram (EEG)
analysis [33] and represent the mean frequency and half the
bandwidth, respectively. The descriptors are calculated from
spectral moments of the signal, the nth order spectral moment
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being defined as

ω̄n =

∫ π

−π

ωnS(ejω)dω, (2)

where S(ejω) is the power spectrum. From the moments with
different orders, H1(n) is defined as

H1(n) =

√
ω̄2(n)

ω̄0(n)
, (3)

and H2(n) as

H2(n) =

√
ω̄4(n)

ω̄2(n)
− ω̄2(n)

ω̄0(n)
. (4)

The spectral moments were implemented in this work in the time
domain according to [35].

A similar feature to H2(n), which also has its origin in EEG
analysis, is Spectral Purity Index (SPI) [35], [36]:

SPI(n) =
ω̄2
2(n)

ω̄4(n)ω̄0(n)
. (5)

Later SPI has been used also for ECG analysis in detecting false
alarms of ventricular tachycardia and fibrillation/flutter [37],
[38]. Recently, the method was also applied to PPG signals in
order to distinguish ventricular arrhythmias from sinus rhythm
and AF [23]. In addition, it has been considered as a signal
quality metric for PPG [14].

Shannon Entropy in the time domain was included as a feature
in the first stage to study the variability of the IPI series, but it
can be also extended to the frequency domain. Spectral Entropy
(SE) [39] measures the spectral complexity of the time series
and can be calculated as

SE =
∑
f

pf log

(
1

pf

)
, (6)

where pf is the power spectral density normalized with the total
spectral power. Previously, Fallet et al. [23] have studied SE for
discrimination of AF and ventricular arrhythmias from PPG.

In addition to the features from the frequency domain, ad-
ditional IPI features were introduced. Modeling RR intervals
as a Markov process has been used for AF detection initially
by Moody and Mark [40]. In the model, each RR interval was
considered to be either short, regular, or long. When every RR
interval was assigned to one of these states, transitions between
states and transition probability matrices for different rhythms
could be calculated. From the transition probabilities, a score
that represents the likelihood of the rhythm can be derived. With
a similar approach having more states, a good performance in
detecting AF from the IPI series has been recently shown [16].
In the current paper, the Markov model was used in order to
distinguish between AF and AFL.

The transition probability matrices to model the Markov
process were calculated for AF and AFL from the IPI series.
These gave the score S that indicates whether the rhythm is

more likely to be AF than AFL:

Sij = log

(
pAFL
ij

pAF
ij

)
, (7)

where pAFL
ij is the probability that after an interval belonging to

state i, an interval belonging to state j occurs during AFL, and
pAF
ij is the same for AF.
In addition, as a new feature, the same procedure was used to

calculate a score when using pulse-to-pulse-to-pulse intervals
(PPPI) instead of IPIs. PPPIs were calculated as the time dif-
ference between two fiducial points by skipping one pulse in
between, the length of the interval corresponding to the sum of
two consecutive IPIs. The patterns formed by PPPIs are different
from IPIs and this can be especially helpful for distinguishing
when irregularity is due to an alternating IPI-pattern, such as
during AFL, instead of due to AF. Both IPI and PPPI series were
normalized and the scores filtered according to [40], having as
the coefficientk = 0.25. The number of states for the used model
was 12. Because a score is produced for every interval, a mean
of the scores in the window was taken.

To include information reflecting the heart rate, the maxi-
mum, minimum, median, and standard deviation of the IPIs
were included as features. In addition, from the PPG waveform,
maximum, minimum, mean, and standard deviation of the pulse
amplitude, i.e. the difference between the peak and the onset of
the pulse, were calculated.

Finally, from the accelerometer data the norm of the accel-
erations on the three axis was calculated. From the norm, the
standard deviation and the maximum absolute value in each
window were included to the feature set.

E. Feature Selection

Feature selection was employed to select the optimal set of IPI
variability features for the benchmark AF classification models.
Based on our previous work [17], all the six features reflecting
variability or entropy of the IPI sequence have individually
a strong discriminative power in AF classification. Moreover,
all these features try to capture relatively similar information
and could be redundant. Therefore, the Minimal-Redundancy-
Maximal-Relevance (mRMR) criterion [41] was selected as the
method to rank the features.

The mRMR method tries to find features that maximize the
mean value of mutual information between all individual fea-
tures and the target class, i.e. the maximal relevance. However,
it is likely that these features have a large dependency on each
other. Therefore, the minimal redundancy criterion is added, and
it is based on the mutual information between the individual
features. The balance between the two criteria is optimized
by finding the set that maximizes the difference between the
maximal relevance and minimal redundancy.

The calculations were made with the implementation pro-
vided by the authors of [41] on [42]. The method requires
discretization of the features and that was made by having three
states when using thresholds at mean ± standard deviation [42].
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F. Classifiers

The benchmark AF classifier (Fig. 3 (1)) for the binary classi-
fication using the selected IPI-features as input was a generalized
logistic regression model. The probability for the 30-second
window to contain AF was given by the function:

yAF (t) =
eX(t)·b

1 + eX(t)·b , (8)

where t is the index of the window, X(t) a vector containing
the feature values for the window at time t, and b a vector of the
model coefficients.

The threshold for the probability was selected as the one that
maximizes Youden index J [43] defined as

J =
TP

TP + FN
+

TN

TN+ FP
− 1, (9)

where TP are true positives, FN false negatives, TN true nega-
tives, and FP false positives.

The multi-rhythm classifier (Fig. 3 (2)) to perform the classi-
fication into AF, AFL, and other, was a Random Forest (RF)
model [44] taking as input the selected IPI-features and the
additional 16 PPG, IPI, and accelerometry features. RFs are
ensembles of decision trees that are grown in parallel by se-
lecting a random subset of features to grow each tree. The
final classification is based on a majority vote given by the
classifications of each individual tree. RFs have a few beneficial
characteristics, such as that they are relatively robust to noise
and outliers, and can give useful internal estimates about the
error and importance of the variables. The latter is an advantage
with the small dataset because performing a feature selection for
the multi-class problem is more challenging than for the binary
case.

G. Cross-Validation

For selecting the number of features for the benchmark AF
classifier, leave-one-subject-out cross-validation with the train-
ing set was used. The performance was calculated by using the
data of one subject for testing and the data of the remaining
subjects for training. The number of features went from one to
six by adding the features in the order given by the mRMR. The
number of features reaching the highest accuracy was selected.

The multi-rhythm classifier was also evaluated with the train-
ing set by using 10-fold cross-validation. In order to maintain an
equal distribution of the three classes in every fold, the dataset
was divided in 10 sets of equal size that were stratified by
the classes but not by patients because of the number of AFL
patients. The training and testing was performed 10 times with
each of the 10 sets serving as a test set once.

III. RESULTS

A. Training Set

The mRMR selection method on IPI features was used for
each of the three class divisions. For AF vs. non-AF classifica-
tion gave the following ranking independent whether AFL was
included in non-AF rhythms or completely excluded from the

Fig. 4. Receiver Operating Characteristics of the binary classification
models with three IPI-features. The square depicts the operating point
defined by the Youden index.

Fig. 5. The distributions of the rhythm classes of the false positive AF
detections (left) and false negative AF and AFL detections (right) with
IPI-models in the training set.

analysis: pNN70, sampEn, ShEn, CoSEn, pNN40, nRMSSD,
starting from the most relevant one. When AF and AFL vs. other
classification was considered, only pNN70 and pNN40 switched
order with each other in aforementioned ranking. Based on the
leave-one-subject-out cross-validation, the best accuracy was
obtained by combining the first three features. The Receiver
Operating Characteristics (ROC) curve of the models combining
these three features are presented in Fig. 4 when AFL is either
included in or excluded from non-AF rhythms, or completely
excluded from the analysis. The results are calculated with
43.6% of the data after the windows not containing a sufficient
number of IPIs or the reference was labeled as artifact were
excluded. The median (lower - upper quartiles) coverage per
patient was 47.0% (29.6 – 56.2)%.

Fig. 4 shows the operating points for the three binary AF
classifiers selected by maximizing J . The model AF vs. AFL
and other had sensitivity of 93.6% and specificity of 88.2%.
Misclassification of AF occurred primarily in presence of SVPB,
and AFL, i.e. other arrhythmia generated from the atria, as shown
in Fig. 5 on the left. The presence of VPB caused relatively little
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TABLE IV
CONFUSION MATRIX OF THE CLASSIFICATIONS WITH THE MULTI-RHYTHM

CLASSIFIER OF THE TRAINING SET

TABLE V
CLASSIFICATION PERFORMANCE OF THE MULTI-RHYTHM CLASSIFIER

WITH THE TRAINING SET

TABLE VI
CONFUSION MATRIX OF THE CLASSIFICATIONS WITH THE MULTI-RHYTHM

CLASSIFIER OF THE TEST SET

false detections of AF. The model that classified AF and AFL vs.
other had better sensitivity and specificity (95.2% and 90.4%).
With this model the false negative classifications were mainly
due to AFL, as shown on the right of Fig. 5. The best performance
for binary classification with sensitivity of 98.2% and specificity
of 90.9%, was obtained when AFL was not present in the data.

The multi-rhythm classifier was a RF model consisting of
100 trees and classified the 30-second windows into AF, AFL,
or other rhythm. The results calculated with cross-validation are
listed in Tables IV and V. Table IV is the confusion matrix of
the classifications and in Table V the results are presented as one
class vs. all the rest in terms of sensitivity, specificity, positive
predictive value (PPV), and accuracy.

B. Test Set

The results of the test set were first calculated with the
benchmark AF models. The test set had a coverage of 41.6%,
with the remaining windows excluded due to insufficient IPIs or
the ECG reference being labeled as artifact. The median (lower –
upper quartiles) proportion of windows included for each subject
was 42.2% (31.1–50.1)%.

For AF vs. AFL and other classification, the sensitivity and
specificity were 96.1% and 96.2%, respectively. When AF and
AFL were included in the same class against the rest, the
sensitivity decreased to 58.9% and specificity to 92.5%. The
best classification performance was again obtained when AFL
was completely excluded from the analysis, the sensitivity being
99.1% and specificity 95.4%.

The results of the multi-rhythm model are presented in Ta-
bles VI and VII. The sensitivity and specificity for detecting

TABLE VII
CLASSIFICATION PERFORMANCE OF THE MULTI-RHYTHM

CLASSIFIER WITH THE TEST SET

AF were 97.2% and 98.2%, respectively. AF and other rhythms
were rarely detected as AFL, and the specificity for AFL was
99.7%. The most false detections are with AFL detected as other
rhythm.

IV. DISCUSSION

This is the first study showing that both AF and AFL detec-
tion is possible from PPG data in daily life. We demonstrated
that many of the false positive classifications of a benchmark
AF classification model were due to instances of AFL. When
considering AFL to be classified with AF as the same class,
it was often missed by the benchmark model. The presented
multi-rhythm classification algorithm showed much improved
performance, particularly making less false positive AF detec-
tions, when trained to classify both AF as well as AFL. As
the results with the benchmark AF models show, the rhythm
characteristics when using the IPI-features did not belong to
either of the binary classes, i.e. AF and other, and decreased
the classification performance. Therefore, considering AFL as
a separate class can be beneficial also in terms of improving AF
detection and not only for giving classification for the rhythm
type itself.

Combining information from the PPG signal, IPIs, and ac-
celerometer improved the classification accuracy and enabled
discrimination of AFL from AF and the other rhythm types.
Adding features from the PPG waveform helped in detecting
AFL compared to using only IPI-information. In previous work,
a comparison of PPG pulses gave different results in a patient
suffering from a regular form of typical AFL than in patients
with AF or other rhythms [45]. Moreover, some of the features
derived from the PPG waveform have been used to discriminate
ventricular arrhythmias [23]. The PPG waveform characteristics
have been also studied in the context of force-interval relation-
ship during AF [46] and mechanical alternans [47]. This could
indicate that the PPG waveform itself contains information about
different rhythms and cardiac function.

Discriminating AFL from AF has been also possible based
on RR interval series when a multilevel model of the atrioven-
tricular node was used [48]. In the current paper, we included
the Markov model approach to process the IPI and PPPI series
in order to classify these two rhythms. Thus, the RR intervals
or IPIs also contain valuable information when processed in an
adequate manner.

The validity of the windows to be analyzed was judged based
on the number of pulses detected in that window, but no further
signal quality analysis was made. The method detecting the
pulses already considers the body acceleration and therefore the
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number of pulses indirectly already reflects this. In addition,
some of the features included in the RF model have been
developed or used previously for PPG signal quality assessment,
and information of the body acceleration was also given as an
input. This may have improved the classification of the more
noisy segments.

The study suffers from some limitations. In the dataset, all
the patients that suffered from AF, had it continuously. For
datasets with intrapatient rhythm variability, data measured be-
fore and after electrical cardioversion have been used in different
studies to investigate AF detection with PPG. This reflects a
hospital setting but not ambulatory monitoring, which is where
the wrist-worn applications can really add value. Studies that
show AF detection with PPG in ambulatory setting are very
few. Shen et al. [49] had measurements from 3 to 8 hours and
mention subjects with rhythms that change over time. However,
these include AF and eight other rhythms and the proportion of
paroxysmal AF remains unclear. Sološenko et al. [20] presented
in their study a dataset measured for approximately 22 hours per
subject in cardiac rehabilitation. Similarly to our study, all the
AF subjects had continuous AF.

The number of AFL subjects in the dataset was less compared
to the other groups. AFL can have different rhythm character-
istics depending on the type and therefore can vary between
subjects. The results between the training set and test set in AFL
classification differ slightly due to the different types of AFL
cases, e.g. very regular AFL being misclassified as other rhythm
in the test set. Yet, the results remain relatively similar when
compared to the benchmark AF models.

Premature beats were not separately classified in this work
because of the small number compared to other beat types
nor were they suppressed in order to reduce false positive
detections. Furthermore, the classification was done in windows
which makes identifying individual beats difficult. As Fig. 5
shows, premature beats had an impact on false positives when
only IPI-based features were used in the classification. Adding
PPG-waveform and accelerometry features helped in improving
specificity by also reducing false positives caused by premature
beats and not only by AFL. Understanding the effect on the
classification accuracy caused by higher burden of premature
beats and variability in their beat patterns between patients
remains for future research.

The dataset was divided into training and test set in order
to leave some of the recordings untouched while developing
the models. The split was done by patients and no data from
a patient assigned to the training set ended up in the test
set. Therefore, it was not possible to match the rhythm class
distributions completely between the two sets. The character-
istics of the sets may, therefore, not be entirely comparable,
which is reflected especially in the results of the benchmark
AF model.

The choice to use RF was made because of the class dis-
tribution and the ability of RF to give information about the
feature importance. The model has many advantages, but one
drawback is poor interpretability. For clinical applications, more
transparent options of models may be more suitable when larger
datasets are available.

The selected approach was based on calculating the features in
30-second non-overlapping windows. The features based on the
IPIs require a sufficient amount of data for the calculations, and
missed pulses caused the data to be discarded, thereby reducing
coverage to approximately 45%. The coverage of our approach
could be improved by reducing the number of IPIs required
per window or by using overlapping windows. However, the
effects on the classification performance should be studied.
Sološenko et al. [20] used an approach to classify every beat
separately, which resulted in a higher coverage (89.2%) during
24-hour measurements. However, the sensitivity for AF with this
coverage was only 72.0%. When 50% of the data was judged
as analyzable, the sensitivity increased to 97.2% and specificity
was 99.6%.

V. CONCLUSION

In this study, we demonstrated that PPG and acceleration
measurements at the wrist can be used to discriminate between
AF, AFL, and other rhythms in daily life. We showed that with an
AF vs. non-AF model and AF and AFL vs. other rhythms model
that used only information derived from inter-pulse intervals,
the false detections were for a large part caused by AFL. The
multi-rhythm model included more information from the wrist
measurement, such as features from the PPG waveform and
accelerometer data. This model was not only able to improve the
overall performance of AF detection, but could also classify AFL
with high accuracy. The results of this study indicate that the
PPG signal contains sufficient information, derived both from
the waveform and IPIs, to accurately classify between AF, AFL,
and other rhythms. Thus, PPG could provide promising means
to detect AFL along with AF.
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