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Abstract—The advent of next-generation sequencing
(NGS) machines made DNA sequencing cheaper, but also
put pressure on the genomic life-cycle, which includes
aligning millions of short DNA sequences, called reads,
to a reference genome. On the performance side, efficient
algorithms have been developed, and parallelized on
public clouds. On the privacy side, since genomic data
are utterly sensitive, several cryptographic mechanisms
have been proposed to align reads more securely than the
former, but with a lower performance. This paper presents
DNA-SeAl a novel contribution to improving the privacy ×
performance product in current genomic workflows. First,
building on recent works that argue that genomic data
needs to be treated according to a threat-risk analysis, we
introduce a multi-level sensitivity classification of genomic
variations designed to prevent the amplification of possible
privacy attacks. We show that the usage of sensitivity
levels reduces future re-identification risks, and that their
partitioning helps prevent linkage attacks. Second, after
extending this classification to reads, we show how to
align and store reads using different security levels. To
do so, DNA-SeAl extends a recent reads filter to classify
unaligned reads into sensitivity levels, and adapts existing
alignment algorithms to the reads sensitivity. We show
that using DNA-SeAl allows high performance gains whilst
enforcing high privacy levels in hybrid cloud environments.

Index Terms—DNA, privacy, sensitivity.

I. INTRODUCTION

DNA sequencing and the alignment of sequences are at the
heart of applications such as precision medicine, forensics,
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medical or anthropological research [1], [2], to name a few.
Next-generation sequencing (NGS) machines greatly improved
the throughput of human DNA sequencing and thereby reduced
the costs of DNA analysis to almost 1000$ per genome. Widely
deployed sequencing machines (e.g., from Roche or Illumina)
produce short sequences of nucleotides ranging from 30 to 100
base pairs (bp) with error rates around 0.1% [3]. A simplified
genomic workflow can be presented as follows. First, the raw
sequences of nucleotides that sequencing machines produce,
called reads, are aligned to a reference genome to obtain their
location in the genome. Then, aligned reads are used as input
of the variant calling step, which identifies the donor’s genomic
variations (i.e., her/his genotype). Finally, subsequent research
or medical applications compare a subject’s genotype with other
genotypes, or simply study it at a given locus.

On the one hand, data leaks threaten the privacy of human
genomes. For example, not only do genomes uniquely iden-
tify their owner but they also reveal information about his/her
relatives. In addition, once a genome has been revealed, its pri-
vacy cannot be recovered, as a subject’s genome barely evolves
during his life. As multiple studies have shown, anonymizing
human genomes, or creating aggregates, cannot fully enforce
privacy. To name a few, published privacy attacks included re-
identification attacks [4], and disease-revealing attacks [5]. It
has also been shown that leaking raw reads can expose their
donors to data identity leakage [6]. Consequently, besides stan-
dard encryption-based solutions, several works have been pub-
lished to protect the advanced uses of genomic data: masking
information in aligned reads [7], creating privacy-preserving re-
leases of aggregated data [8], classifying raw genomic data as
sensitive or non-sensitive [9].

On the other hand, efficient workflows are required, due to the
decrease of the sequencing prices that has led to larger data pro-
ductions and processing workloads. Anticipating this, several
works [10]–[12] argued for distributed and high-performance
environments to host genomic workflows. Global Alliance [13]
developed an ecosystem of worldwide databases that can be
remotely accessed. Despite these efforts, patient-derived health
data are not widely shared [14]. Recently, several ecosystems
addressing the privacy and performance challenges of accessing
genomic data in the cloud have been developed. For example,
NGS-Logistics [15] allows researchers to analyze rare genomic
variants while preserving the privacy of donors. In particular, it
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relies on different levels of access rights for better protection of
the data. However, concerning the processing of genomic data,
scientist are considering the use of clouds [16], even though
practical privacy-preserving processing of early genomic data
has not been defined.

To summarize, privacy attacks on genomic data alerted about
the need to incorporate security measures into existing ge-
nomic workflows. However, existing cryptographic solutions
cannot sustain the high throughput of modern sequencers. Con-
sequently, the status quo is still to rely on plaintext methods,
preferentially on private clouds but also on public clouds, such
as Amazon AWS.1 For genomic processing workflows to rely on
the cheap, widely available and highly efficient public clouds,
there is a need for mechanisms that establish a stronger balance
between privacy and performance. Indeed, bullet-proof security
does not exist, and public clouds may suffer from data leaks
caused by internal or external adversaries [17], [18].

In this work, we focus on protecting sensitive genomic data
as soon as they are produced by an NGS machine, i.e., before
the genomic variations they contain have been determined, and
continue to do so throughout the alignment step. As previous
works [15] argued, classifying genomic data as either sensitive
or not sensitive at all is not sufficient. Some studies support
the need for sensitivity degree classifications for genomic and
clinical data [19]. Building on this fact, we remarked that a finer
grained sensitivity classification of raw reads combined with
alignment algorithms that have different privacy guarantees and
efficiencies, has the potential to improve the performance and
overall privacy of alignment.

As such, DNA-SeAl makes the following contributions:
� We present a classification of raw reads into sensitivity

levels, based on qualitative and quantitative characteris-
tics of genomic variations. These sensitivity levels are
then further partitioned in such a way that an adversary
observing a part of the reads of a given sensitivity level,
thanks to a successful attack, is not able to infer any more
sensitive information from it. We disconnect sensitivity
levels, based on the linkage disequilibrium (LD) of ge-
nomic variations, and on MaCH [20], a state-of-the-art
haplotype inference software.

� Building on previous work, namely [9], we propose to
use a detection method based on Bloom Filters (BFs) to
efficiently classify raw reads into partitions of sensitivity
levels. In particular, we show how to preserve the discon-
nection property of sensitivity levels when Bloom filters
produce false positives among the same or different sen-
sitivity levels.

� We show that given a realistic heterogeneous and dis-
tributed environment, one can rely on the diversity of the
existing alignment procedures to optimize the privacy ×
performance product of the read alignment step.

Whenever a public cloud is available, and is at least as pow-
erful as the private infrastructure, our performance evaluation
shows that DNA-SeAl requires on average 0.29 CPU seconds and
only 1.6 KB of data transfer to securely align a read. Compared

1See https://aws.amazon.com/solutions/case-studies/illumina/.

to a exclusive public cloud approach, this represents a 106-fold
reduction of the computing time and 107-fold reduction of the
amount of data transferred to the cloud.

I. Related Works

The publication of privacy attacks [6], [21] and the use of pub-
lic cloud environments for biomedical data analysis has raised
security concerns. The most widely known privacy attacks per-
form re-identification of donors, relying on inference techniques
and different kinds of personal information [4], [5]. It has also
been shown that partial genomic data leaks may enable trail
attacks [22], which identify an individual thanks to his unique
distinguishing features.

Protecting biomedical data is now a priority challenge
for the biomedical community [23]. In order to address this
challenge, the biomedical community invested on strategies to
protect genomic data privacy and defined three categories of
protection: data de-identification [22], data augmentation [24],
and cryptographic-based methods [25]. Data de-identification
methods remove personal identifiers, such as names and social
security numbers, from genomic data, for example through
pseudonymization [26]. However, these methods used alone
have been shown not to be sufficient to prevent re-identification
attacks [22]. Second, data augmentation methods rely on gener-
alization to achieve privacy protection, basically making records
more similar to each other. These methods achieve protection
at the price of a lower data utility. Finally, cryptographic-based
methods allow users to maintain data utility while protecting
the data privacy [25], but they are of limited applicability.

Efficient plaintext alignment methods have been developed,
and can be used in parallel in public clouds (either with or
without encrypting the data transfers) to study large amounts of
data. However, these highly optimized methods, which include
CloudBurst [27] and DistMap [28], are not privacy-preserving.
Secure alignment algorithms have also been developed, for ex-
ample using garbled circuits [29] or homomorphic encryption
schemes [30], however, they suffer from poor performance. Fi-
nally, recently, researchers have been searching for approaches
that combine high performance and privacy. Chen et al. [31]
proposed a seed-and-extend alignment method, where the seed-
ing step is executed in a public cloud based on keyed-hashes,
and the extension step runs in a private cloud. Differently, Bal-
aur [32] makes use of Locality Sensitive Hashing (LSH), secure
k-mer voting, and a MinHash algorithm, and Maskal [33] relies
on a read filter and Intel SGX enclaves.

Ayday et al. [7] proposed to store encrypted reads in a biobank
that enables classified people (e.g., data analyst in a hospital) to
retrieve a subset of the reads from a biobank to perform genetic
tests while keeping the nature of the tests private. In this ap-
proach, the biobank masks parts of the reads, for example, those
located outside the request range, or those that the patient did
not agree to share. Filtering approaches that identify potential
genomic variations at the reads or at the nucleotides level have
been described [9], [34]. However, contrary to DNA-SeAl, those
approaches do not support sensitivity levels. Concurring with
our position, of classifying genomic data into sensitivity levels,
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Dyke et al. [19] proposed a Data Sharing Privacy Test to distin-
guish degrees of sensitivity for the GA4GH Beacon Project to
facilitate data sharing.

Several works [35], [36] determined panels of less than 100
common SNPs, which are sufficient to uniquely identify a sub-
ject with very high probability. These panels are often popula-
tion specific, and made of SNPs carefully selected, for example,
based on their minor allele frequency, or linkage disequilib-
rium (LD). Our method is particularly effective in this situation,
where there is an obvious and known sensitivity differential.
Considering the inevitable risk residing in use of public clouds,
and given the purpose of reducing the risk as much as possible,
we introduce a methodology which can be parameterized by:
(i) protecting the collections of SNPs that reveal the most in-
formation, to a higher standard; (ii) further including the SNPs
used in those critical panels in the highest sensitivity levels, to
further complicate re-identification.

II. METHODS

A. Data, System and Threat Model

1) Data: We build the sensitivity levels based on the
genomes of the 1000 Genomes Project [37], and recombine
genomic variations with the reference genome GRCh38.p11 to
create sensitive sequences that are used to initialize read fil-
ters [9], and classify reads into sensitivity levels. We analyse the
sensitivity of reads of 100 and 1,000 bases. These two lengths
were selected as representative lengths for short and long reads,
accordingly to the existing sequencing machines [38]. We also
evaluate the genomic privacy metric on the sensitivity levels us-
ing genomes from the 1000 Genomes Project. To study linkage
risks, we measure Likelihood Ratio values based on the 2017
iDASH contest dataset2, which contains vcf files for 1,000 case
and 1,000 control individuals, with 5,511,698 distinct SNPs
from chromosome 1.

2) System Model: We consider a biocenter whose task is to
generate reads from an individual, and to align those reads to
a reference genome in a privacy-preserving manner. To do so,
the biocenter can rely on a private cloud, and on several public
clouds, which receive an equal random proportion of the reads
contained in a sensitivity level. We assume that the sequencing
machine and the private cloud are secure. However, we consider
a private cloud expensive to maintain, which encourages the use
of public clouds even though we assume that the user does not
have a complete control over its own data (i.e., which machines
are used, etc.) in public clouds. Finally, we consider that all
parties rely on encrypted communications.

3) Threat Model: We assume an honest-but-curious adver-
sary, who tries to observe sensitive genomic information during
the alignment of reads. In particular, the adversary is able to ob-
serve raw reads in the public cloud if they are used in plaintext
alignment algorithms. However, we assume that no more than
f = 1 public clouds can be compromised, so that privacy guar-
antees increase with N/f , where N is the total number of clouds

2http://www.humangenomeprivacy.org/2017/

used. We also assume that the adversary has access to a refer-
ence genome, is able to align raw reads to obtain the biological
insights they contain, and has access to the statistical relation-
ships between genomic variations. Obtaining such refined data
can then potentially enable existing privacy attacks during fu-
ture uses of data (e.g., if allele frequencies in a case population
are publicly released). To limit the risk that an adversary obtains
sensitive information, while obtaining high performance using
cleartext alignment, we use a risk-threat approach to protect the
reads.

4) Privacy Goals and Amplification Attack: In addition, as
perfect security does not exist, in case a successful attack hap-
pens, where an adversary would be able to observe raw reads,
DNA-SeAl aims at preventing this attack from being extended to
data that could not be observed directly during the attack (e.g.,
because it is more protected, or used in a different location). We
call this an amplification attack. First, the possible presence of a
rare allele for a given locus cannot be inferred from the observa-
tion of a single common allele in a compromised cloud, since at
most one public cloud is assumed to be compromised, and could
therefore host a second common allele. Then, we use Linkage
Disequilibrium (LD) measurements, and MaCH [20], a state-of-
the-art haplotype inference software, to make sure that an adver-
sary is never able to execute such amplification attacks. Overall,
our approach complicates future re-identification attacks, since
significant information is harder to obtain, as measured through
the genomic privacy metric, and we show that linkage attacks
are prevented when levels are splitted across several clouds.

B. Sensitivity Levels

We now describe how to create the different sensitivity levels
to prevent privacy leak amplifications, namely using promotions
of genomic variations across levels.

1) Qualitative and Quantitative Sensitivity Levels: In this
manuscript we propose the creation of sensitivity levels that
allow the differentiation of genomic data and basically can be
a combination of two different methods: manual declaration
(qualitative), or based on frequencies in a reference population
(quantitative). In the first case, a system administrator defines
the sensitivity levels based on how he perceives the sensitivity
of the information a variation reveals. Sensitive levels based on
frequencies, as we propose in this manuscript, are built on the
fact that a rare disease/genetic variation should be considered
more sensitive than a common one, since they concern a smaller
subset of the population. In particular, alleles whose frequencies
are lower than 0.05 should always be considered highly sensi-
tive, since they can lead to a restricted group of individuals [39].

Figure 1a shows, as an example, a distribution of genomic
variations in three sensitivity levels, based on the frequency of
the alleles in the genome. In this figure, level 1 contains the
alleles whose frequency goes up to 0.05, level 2 is composed
of the alleles whose frequency is comprised between 0.05 and
0.2, and level 3 holds the remaining more common alleles.
Later in the results section, we discuss the distribution of the
alleles among different possible sensitivity levels. Differently,
Figure 1b presents three sensitivity levels based on information
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Fig. 1. Initial sensitivity levels based on: (a) alleles frequency
(quantitative classification); and (b) manual declarations (qualitative
classification).

Fig. 2. Alleles promotion across sensitivity levels based on linkage
disequilibrium (LD).

coded in the genome and their severity when leaked. For level 1
we consider information such as disease genes, ethnicity-related
variants and other regions that can lead to individual’s re-
identification. In this article, we focus on quantitative levels,
and leave the implementation of qualitative levels for future
work.

2) Sensitivity Level Promotion Through LD Connections:
Linkage disequilibrium (LD) describes the non-random trans-
mission of genomic variations. These non-random associations
have been used in privacy attacks [6]. We compute the LD be-
tween two genomic variations if they are located at a maximum
distance of 1000 bases. Figure 2a illustrates how we prevent
adversaries from using LDs to infer genomic variations through
sensitivity levels. As an example, we show a variation 1 linked
with variation 3, which is in turn linked to variation 6. In this
case, we have direct inference connections between all the three
sensitivity levels. For example, an adversary obtaining the varia-
tion 3 would be able to infer the variations 1 and 6. To avoid such
an attack, we promote variations 3 and 6 to level 1 (represented
by the green arrows), which prevent the attacker from obtaining
all the variations (1, 3, and 6). Following this procedure, we also
promote variations 5 (linked to variation 2) and variations 7 and
8 (linked to variation 4) to level 2.

3) Sensitivity Level Promotion Through Haplotypes Infer-
ence: To ensure that sensitivity levels are completely dis-
connected, we also use a haplotype inference software (e.g.,
MaCH [20]). Figure 2b shows how we processed in the case
of inference relations between variations. We run MaCH on the
SNPs from one sensitivity level to determine which SNPs can be
inferred with an r2 value higher than 0.3 (as recommended by

MaCH’s authors) from higher sensitivity levels. The example in
the figure shows that an adversary obtaining the variations 9 and
10 would be able to infer variation 4. Therefore, to prevent it we
promote variations 9 and 10 to the same level of variation 4. The
software receives as input two sets: (i) a list of the biomarkers
and the SNPs information of a reference population; and (ii) a
list of the biomarkers and the SNPs information the adversary
can observe.

We perform the following steps for each sensitivity level:
Step 1: We start by creating sets of four files based on all sub-

sets of 20k SNPs from Chr. 1, available in the 1000 Genomes
Project. We believe this number to be large enough, since the
correlation of SNPs decreases with their distance. The first two
files details the set of genotypes the adversary uses as refer-
ence. The second set of files details the genomic variations the
adversary can observe at a given sensitivity level (through an
hypothetic attack) and does not contain the more sensitive SNPs,
which would be located in a secure environment.

Step 2: We run MaCH with the input files, and obtain a list
of SNPs that can be inferred by an adversary with the provided
sets, i.e., masked SNPs that MaCH is able to discover with good
accuracy. We focus on the inference of more sensitive SNPs,
thus we ignore those that are inferred and belong to the same
sensitivity level. This step assesses the information that can be
inferred in case of information leakage from a sensitivity level.

Step 3: From each of the inferred SNPs, we compute the top
10 most connected SNPs (through LD) that the adversary can
observe. We therefore remove at most 10 SNPs per inferred SNP
at each iteration.

Step 4: We remove the 10 most related SNPs from the initial
adversary set, and move then to the higher sensitivity level,
since they allow the inference of more sensitive SNPs. We then
reiterate the whole process, starting from Step 1 using the newly
obtained input files, until no more inferences are possible, or
their number stabilizes.

Figure 2b provides an illustration of the inference iteration
process using MaCH after alleles in strong direct LD have been
promoted. In this example, from the genomic variations con-
tained in sensitivity level 3 (created during step 1), MaCH tries
to infer more sensitive genomic variations (step 2). After in-
ference, MaCH infers that the genomic variation numbered 4,
which is in level 2, can be inferred with good accuracy from
those in level 3. Our code would then identify that the genomic
variations numbered 7 and 8 in level 3 are strongly associated
with the one numbered 4 in level 2 (Step 3). Those two genomic
variations would then be promoted to level 2 (Step 4), before
iterating the inference process.

C. Classifying Sensitive Reads and Adapted Treatment

In this section, we first recall how sensitive reads (i.e., reads
that carry sensitive personally identifiable information (PII))
can be detected thanks to a filtering method first presented by
Cogo et al. [9]. We then extend this method to classify reads
into several sensitivity levels depending on the magnitude of
the impending privacy risk – the probability of an adversary
extracting PII, and the resulting negative impact. Finally, we



FERNANDES et al.: DNA-SeAl: SENSITIVITY LEVELS TO OPTIMIZE THE PERFORMANCE OF PRIVACY-PRESERVING DNA ALIGNMENT 911

explain how to solve possible detection conflicts when using
several filters.

1) Reads Filter: We briefly introduce the reads filtering
method [9], [34] and how we can use it to classify reads into
a scale of sensitivity levels. The reads filters are implemented
using Bloom filters, which are high throughput data structures
that can produce false positives, but never false negatives. In
addition, the filters are not a bottleneck when used in combi-
nation with sequencing machines, as they are always at least
40 times faster than current NGS machines, and they are par-
allelizable. The filters are initialized from a database of reads
known to carry sensitive information. This sensitive information
includes, but is not limited to, all existing data that have been
used in the literature that describe attacks to re-identify subjects
of experiments. Such attacks have been based on three kinds of
sensitive sequences: (i) genomic variations (including SNPs and
SVs), (ii) disease genes and (iii) short tandem repeats (STRs) –
a known small string that appears several times contiguously in
a subject’s DNA, and whose repetition numbers vary among a
population.

2) Classification Into Sensitivity Levels: We use one short
read filter per sensitivity level that we have previously identi-
fied, to prevent amplification attacks. To build the dictionary of
sensitive levels, we collect all genomic variations in the corre-
sponding disconnected sensitivity levels, and create all possible
short genomic sequences that contain them, relying on the ge-
nomic variations database and the reference genome. Each of
those sequences is then finally inserted into a Bloom filter, which
is then ready to filter sequences. Figure 3 illustrates our filtering
approach, which classifies reads according to their sensitivity
level. The filtering approach is done in two steps: sensitivity-
aware filtering, and conflict management, which is required
when a read matches in several filters. After the sequencing
step, the reads are given as input to the sensitivity-aware filtering
step, made of Bloom filters initialized with several disconnected
groups of genomic variations. Finally, the conflict management
step combines the output of the filters to determine the sensi-
tivity of reads. It is then possible to adapt the storage, compu-
tation, and use of a read according to the security it requires.
As represented in Figure 3, storage costs and access limitations
per read tend to increase with the sensitivity of reads, while
alignment performance tends to decrease. Specific numbers de-
pend on the available infrastructures and on design choices.
To prevent the linkage of a set of reads to a disease, we ran-
domly distribute the reads of each sensitivity level among several
clouds.

3) Filters Conflict Management: Bloom filters may produce
a controlled number of false positives, which in our case may
cause privacy leaks if they are not correctly managed. Handling
false positives is part of the conflict management step repre-
sented on Figure 3, and works as follows. If a read matches in
several sensitivity level filters, we set its sensitivity to the level
of the most sensitive filter it matches to.

D. Read Alignment: Performance × Privacy Optimization

We finally show that the performance × privacy product
of reads alignment is improved when adapting the alignment

Fig. 3. Classification of reads in sensitivity levels and adjusted storage,
algorithms, and access control per sensitivity level.

algorithms used, along with their execution environment, de-
pending on the detected sensitivity of the reads as soon as the
public cloud is at least as powerful as the private cloud. More
specifically, to align reads depending on their detected sensi-
tivity levels, DNA-SeAl aligns the most sensitive reads in the
private cloud (using CloudBurst [27]), and the least sensitive
reads in the public cloud (using CloudBurst [27]). Depending
on the scenario studied, possibly remaining reads can be aligned
either in the private cloud (using CloudBurst [27]) or in the pub-
lic cloud (using Chen et al.’s protocol [31]), depending on which
cloud finishes first.

We study the resulting performance improvement of our ap-
proach over standard alignment strategies:

� Private clouds only: A biocenter relies entirely on its pri-
vate secure infrastructure to align reads using unsecure
algorithm.

� Public clouds only: Alignment is performed in a non-
secure environment where an adversary may observe un-
encrypted computations and communications. Therefore,
sensitive reads are aligned with proven or believed secure
algorithms, while more efficient algorithms are used with
low sensitivity reads.

� Sensitivity-adapted private and public clouds alignment:
High-sensitivity and low-sensitivity reads are aligned
in private and public clouds, respectively. This sce-
nario makes a rational usage of a biocenter’ computing
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Fig. 4. Evolution of the sensitivity levels through the alleles promo-
tions: (a) Initial proportion of an individual genomic variations (GVs) per
sensitivity level; (b) Proportion of an individual GVs per sensitivity level
after promotions; (c) Proportion of 100-bases reads per sensitivity level;
(d) Proportion of 1000-bases reads per sensitivity level.

TABLE I
NUMBER OF INFERRED SNPS PER INFERENCE AND PROMOTION

resources for the sensitive computations, extended by a
secure usage of public clouds.

III. RESULTS

A. Sensitivity Levels Statistics

We studied the average proportion of a subject’s SNPs in
each sensitivity level before and after SNPs promotion through
haplotype inference. Figure 4a represents the proportion of ge-
nomic variations of a subject in each sensitivity level before the
promotions. Level 1 contains a minority of alleles (3%), level 2
contains only 2% of the alleles, and the remaining 95% lies in
level 3. The genomic variations promotion slightly change the
distribution among the sensitivity levels, as Figure 4b shows. In
this case level 1 is the smallest one with 3%, level 2 slightly in-
creases with now 7% of the alleles, and the last, level 3, contains
90% of the alleles.

B. SNPs Promotion Across Sensitivity Levels

After one iteration, we promoted 1.6% of the SNPs of level
3 to level 2, and 18% of the SNPs of level 2 to level 1. Overall,
we promoted 1.5% of all SNPs from one level to a more sen-
sitive one. We summarize the proportion of inferred SNPs per
sensitivity level after various rounds of promotion iterations, in
Table I. The promotions are made using the method described
in section II-B. After one inference iteration with MaCH, very
few genomic variations could still be inferred (e.g., less than
5 SNPS with level 3). These inferences are due to the limited
number of genomes used in the 1000 Genomes project, and to
specific individuals who had unique combinations of statisti-
cally unlinked SNPs (since they can still be inferred after more
iterations). We are confident that inferring those few SNPs in a

Fig. 5. Genomic privacy per sensitivity level for individual HG03556.

larger population would not be possible because the number of
unique combinations of several SNPs would be rarer.

C. Reads Classification in Sensitivity Levels

Figure 4c shows the classification of 100-bases reads in each
sensitivity level. This distribution is somewhat different from
the distribution of the genomic variations. Level 1, which is the
most sensitive level, only contains 5% of the reads, while level
2 contains 23% of the reads, and the remaining 72% of the reads
are classified into level 3. Level 3 continues to hold the majority
of the information which support the performance and privacy
optimization we discuss in next section. Figure 4d shows that
60% of the 1000-bases reads are classified into level 3, while
14% are in level 2, and the remaining 26% are in level 1. The
overall sensitivity of long reads is higher, since, on average, they
contain more SNPs.

D. Privacy Evaluation

We evaluated the increased privacy protection that the use of
sensitivity levels can bring to genomic data using two met-
rics: the genomic privacy metric, and the Likelihood Ratio
(LR) value. Genomic privacy represents the weighted risk of
re-identification based on adversary estimates for the minor al-
lele of observed SNPs. For this metric, low values indicate high
privacy [40]. The LR value represents the upper bound power
for the detection of an individual in a case group [41].

Figure 5 shows the genomic privacy values for individual
HG03556 computed on its alleles for each sensitivity level and
per chromosome. The most sensitive level (red line) has high
genomic privacy values for all chromosomes (mainly between
7.5 × 104 and 7.5 × 105), and it represents the largest contri-
bution to an individual’s genomic privacy value. The values
for the intermediary level (orange line) are comprised between
3.0 × 104 and 2.0 × 105 , and the least sensitive level (blue line)
is evaluated at less than 105 . This experiment shows that the
SNPs increasingly participate in the genomic privacy metric as
they are classified more sensitive. We observed the same pattern
on the complete 1000 Genomes Project population.
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Fig. 6. Distribution of the LR-test values per sensitivity level subsets.

We then evaluated the LR-test metric on the case and control
individuals considering 2,014,777 SNP sites. Overall, depend-
ing on the subject, level 1 contained 130,000–158,000 alleles,
level 2 contained 111,000–125,000 alleles, and level 3 con-
tained 1,733,000–1,773,000 alleles. We randomly partitioned
each sensitivity level such that no individual could be identi-
fied as being part of the case population from any partition’s
subset. Our experiments indicate that splitting levels 1 and 2 in
half (i.e., 50% subsets), and level 3 in five (i.e., 20% subsets)
would prevent any successful linkage. We ran each experiment
20 times with all 1,000 case and 1,000 control genomes.

Figure 6 shows the distribution of the LR-test values for the
full sensitivity levels and for random subsets of the sensitivity
levels. In this figure, we denote the case population as ca and the
control population as co. The numbers in the figure represent
the proportion of case individuals that can be identified without
false positives. Using the full genomic information, 31.3% of
the case individuals could be linked with the disease. Based on
the full sensitivity levels, 32.9% (i.e., 329 individuals), 6.2% and
3.7% of the case individuals could be linked with the disease
based on the information contained in levels 1, 2 and 3, respec-
tively. We then partitioned the per-subject levels until no case
individual could be linked with the disease based on any parti-
tion subset. Dividing levels 1 and 2 in half (50%) was sufficient
to achieve this goal, while level 3 required to be partitioned in
five (20%). This result experimentally shows that randomly par-
titioning levels of reads allows the processing of sets of variants
while preventing linkage attacks.

E. Performance × Privacy Product Optimization

Aligning reads in a cloud implies assuming that the cloud
provider is trustful, and that the cloud will not be attacked.
We do not make these risky assumptions, and therefore rely on
the following three categories of alignment algorithms, which
we previously introduced in Section I, to optimize the perfor-
mance × privacy product using sensitivity levels. Category (i) –
non-secure but fast algorithms: we use Cloudburst [27], which is

TABLE II
PRIVACY, PERFORMANCE AND COMMUNICATION OVERHEADS OF THE

ALIGNMENT ALGORITHMS WE USE

TABLE III
OVERHEADS OF EXISTING PRIVACY-PRESERVING ALIGNMENT APPROACHES

COMPARED TO DNA-SeAl’S, DEPENDING ON THE RATIO OF
PUBLIC/PRIVATE CLOUDS

an unprotected method, and requires 0.4 CPU seconds, respec-
tively 0.41 CPU seconds if reads are encrypted for the transfer
to the cloud server. Category (ii) – secure but slow crypto-
graphic algorithms: we use a homomorphic encryption based
approach [42], which requires 22 CPU days. Category (iii) – al-
gorithms providing an intermediate level of protection: we use
a protocol based on hashing k-mers presented in [31], which is
much more efficient, requiring only 1.3 CPU seconds. However,
it may leak information about equal k-mers and has not been
formally proven secure. Table II summarizes our analysis of the
privacy level, computation cost (CPU hours) and communica-
tion (bytes) cost of aligning a single 100 base-pairs read to the
full human genome, using a single core.

Table III lists situations with different relative proportions of
public cloud’s computing power over the private cloud com-
puting’s power. For example, configuration 1/10 means that the
public clouds are 10 times more powerful than the private cloud.
Under each configuration we evaluate the performance of a read
alignment for the three possible cases: (i) on the public cloud
only (using 5PM [42]); (ii) on the private cloud only (using
CloudBurst [27]); or (iii) on both the private cloud for sensi-
tive reads (using CloudBurst [27] and on the public clouds for
non-sensitive reads (using 5PM [42]).

Overall, we can draw the following conclusions about
privacy-preserving alignment of a read: (i) it is not practical
to rely only on a public cloud to align reads with cryptograph-
ically secure algorithms (3 × 108 seconds per CPU per read);
(ii) relying on a private cloud with cleartext alignment is the
fastest solution (0.41 seconds per CPU), but it does not scale;
(iii) by classifying reads as either sensitive or non-sensitive, per-
formance can be improved whenever a public cloud, assumed to
be as least as powerful as the private cloud, is available (starting
at 0.29 s with [9]); and (iv) our approach, relying on more than
two sensitivity levels, further improves performance on hybrid
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clouds (down to 0.019 s with a public cloud ten times more pow-
erful than the private cloud). Similar conclusions can be taken in
terms of memory consumption. To summarize our approach, in
a nutshell, and compared to previous works, by using sensitivity
levels to align reads, we remove computational tasks from the
secure alignment performance bottleneck (i.e., the private cloud
alignment), and execute them securely in public clouds.

IV. DISCUSSION

In this manuscript we presented DNA-SeAl, which makes the
following contributions:

� We proposed a methodology to create sensitivity levels
for unaligned reads. Our methodology allows sensitive
levels to be defined based on both qualitative and quanti-
tative aspects. The levels declared qualitatively are based
on the biological insights a sequence reveals, while the
levels declared quantitatively are based on the frequency
of carried genomic variations in a population. We based
our experiments on quantitative levels only, for simplicity,
since qualitative levels are both subjective and of relatively
small size.

� We found out that leakage across levels exist due to haplo-
type inference (using LD relations), and showed that pro-
moting groups of linked genomic variations to the highest
of their sensitivity levels prevent such leakages.

� We extended the short reads filter proposed by Cogo
et al. [9] to automatically classify reads into the multiple
sensitivity levels (i.e., not just based on a binary answer).

� We defined a read alignment method that relies on a
classification of reads into sensitivity levels, which im-
proves over the state-of-the art alignment methods in
terms of performance while providing adequate security
guarantees.

Filtering limitations: The filter cannot detect genomic varia-
tions it was not initialized with (e.g. de novo SNPs).

However, new genomic variations are now more rarely dis-
covered [9], which limits the residual risk of not detecting sensi-
tive nucleotides. Moreover, the filters can be very easily updated
to include newly discovered genomic variations. In a production
system, this would be as straight forward as anti-virus update
schemes today.

Parameters: We define three sensitivity levels, however, this
number can be extended as more diverse algorithms and execu-
tion environments are available. Relying on more levels can in-
crease: i) performance while maintaining a given security; or ii)
security while maintaining a given performance. We made prac-
tical choices concerning the parameters of our methods. During
the SNP promotions based on LD, we used 20,000 as a max-
imal distance between SNPs during LD computations, which
provides a good accuracy, since most of the reported haplotype
blocks in humans are smaller than 20Kbases [43]. During the
inference step, which relies on MaCH, we promoted, during
each inference iteration, the 10 SNPs the most connected to an
inferred SNP. Promoting less SNPs per iteration would result in
less promotions overall but would take a larger number of iter-
ations. In future work, we will consider refining the sensitivity
levels based on ethnicities.

V. CONCLUSION

In this manuscript, we proposed a novel approach to classify
genomic data in multiple incremental sensitivity levels. We ex-
plained how to disconnect these levels based on LD relations,
and how to prevent attacks amplification. We showed that such
classification leverages the complementary characteristics of
different alignment algorithms, if selectively applied to subsets
of the data reads, guided by such a risk-aware sensitivity classi-
fication, taking the best of each algorithm (performance or secu-
rity). Our approach, DNA-SeAl, improves on the state of the art
in terms of privacy × performance product, taking into account
the computation time and communication cost to the clouds.
Furthermore, DNA-SeAl is suitable for different levels and dif-
ferent algorithms, even as new algorithms appear. We presented
an implementation with multiple filters that efficiently and auto-
matically classify unaligned reads in privacy-sensitivity levels.
This filtering approach allows adjusting the protection of reads
of different levels, with incremental performance gains resulting
in an optimized and stable privacy × performance product. We
show that the filtering approach can be combined with existing
alignment methods (either cleartext, hybrid, cryptographic). We
believe DNA-SeAl to be timely, presenting a necessary tradeoff
between perfect security and performance, since the growth in
genomics data production pushes biocenters to rely on public
clouds, and since the performance of cryptographic approaches
is not sufficient to be massively used. Finally, DNA-SeAl’s clas-
sification reduces the future re-identification risks and the par-
tition of the levels prevents linkage attacks.
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