
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 24, NO. 3, MARCH 2020 885

Measuring Saccade Latency Using
Smartphone Cameras

Hsin-Yu Lai , Student Member, IEEE, Gladynel Saavedra-Peña , Student Member, IEEE,
Charles G. Sodini , Fellow, IEEE, Vivienne Sze , Senior Member, IEEE,

and Thomas Heldt , Senior Member, IEEE

Abstract—Objective: Accurate quantification of neurode-
generative disease progression is an ongoing challenge
that complicates efforts to understand and treat these
conditions. Clinical studies have shown that eye movement
features may serve as objective biomarkers to support
diagnosis and tracking of disease progression. Here, we
demonstrate that saccade latency—an eye movement mea-
sure of reaction time—can be measured robustly outside
of the clinical environment with a smartphone camera.
Methods: To enable tracking of saccade latency in large
cohorts of patients and control subjects, we combined a
deep convolutional neural network for gaze estimation with
a model-based approach for saccade onset determination
that provides automated signal-quality quantification and
artifact rejection. Results: Simultaneous recordings with a
smartphone and a high-speed camera resulted in negligible
differences in saccade latency distributions. Furthermore,
we demonstrated that the constraint of chinrest support
can be removed when recording healthy subjects. Repeat
smartphone-based measurements of saccade latency in
11 self-reported healthy subjects resulted in an intraclass
correlation coefficient of 0.76, showing our approach has
good to excellent test–retest reliability. Additionally, we
conducted more than 19 000 saccade latency measure-
ments in 29 self-reported healthy subjects and observed
significant intra- and inter-subject variability, which high-
lights the importance of individualized tracking. Lastly, we
showed that with around 65 measurements we can estimate
mean saccade latency to within less-than-10-ms precision,
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which takes within 4 min with our setup. Conclusion and
Significance: By enabling repeat measurements of saccade
latency and its distribution in individual subjects, our
framework opens the possibility of quantifying patient state
on a finer timescale in a broader population than previously
possible.

Index Terms—Eye tracking, convolutional neural net-
works, health monitoring, saccade latency, mobile imaging.

I. INTRODUCTION

OBJECTIVE and accurate tracking of neurodegenerative
disease progression remains an ongoing challenge. Clin-

ical examinations are typically spaced out across intervals over
which the functional decline might be subtle, especially early in
the disease process, and consequently difficult to ascertain using
standard clinical tools. Patient assessment also relies on testi-
mony from patients, family members or care-providers, which
is subjective and prone to recall bias. Blood or cerebrospinal
fluid sampling for determination of biomarker levels is inva-
sive, and repeat imaging studies are costly. Finally, standard
neurocognitive and neuropsychological test batteries require a
trained observer to administer and score the test, demand signif-
icant patient time and cooperation, and can suffer from re-test
variability and methodological limitations that may mask signs
of the underlying disease progression [1]–[3].

The lack of objective and accurate assessment tools to quan-
tify disease state and precisely track disease progression not
only limits routine clinical assessments but also hinders the de-
velopment and validation of novel treatment strategies. Since
the quest for disease-modifying therapies in neurodegenerative
diseases is increasingly focusing on the early or even prodromal
stages of the disease process, the need for accurate and precise
measures of disease progression and response to treatment has
become urgent [4], [5]. It has been suggested that laboratory-
based functional assessments, especially of eye movement pat-
terns, may prove to be useful and informative adjuncts to the
standard neurocognitive assessment tools in routine clinical care
and clinical trials and may therefore help address this critical
need [6]–[9].

Registration and analysis of eye movement patterns have
attracted significant attention in neurophysiology, clinical
medicine and —more recently—human-computer interfacing
and gaming [10]–[13]. In the context of aiding in the differ-
ential diagnosis and tracking of neurocognitive diseases, rapid
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shifts in gaze (so-called saccades or saccadic eye movements)—
whether spontaneous, volitional, or reflexive— have been of
particular interest, especially in response to suddenly appear-
ing visual stimuli [6], [14], [15]. Such visual reaction tasks
require attention to and continual analysis and evaluation of the
environment as well as appropriate decision-making and exe-
cution of oculomotor responses once a stimulus is registered.
This stimulus-response paradigm therefore probes cognitive and
oculomotor function, either or both of which can be impaired
in neurocognitive diseases [6]. Saccadic eye movements also
provide for a very rich set of features to analyze. A commonly
studied feature is saccade latency, which is the time elapsed
between the appearance of a visual stimulus and the begin-
ning of the eye movement either toward (pro-saccade) or away
from (anti-saccade) the stimulus [13]. An increase in saccade
latency has been reported in Parkinson’s disease [16]–[18], de-
mentia with Lewy bodies [16], Huntington’s disease [19], and
Alzheimer’s disease [14], [20]–[23]. Evidence that analysis of
saccadic eye movement patterns may indeed be informative and
add diagnostic value has also been reported for the differential
diagnosis between Parkinson’s disease and atypical parkinso-
nian syndromes [24], [25]. Additionally, differences in saccade
latency and peak saccade velocity between horizontal and ver-
tical shifts in gaze have shown to be particularly prominent
in patients with progressive supranuclear palsy [14]. The error
rates and types of errors committed in visual reaction tasks can
also provide important disease-related information [6]. In Hunt-
ington’s disease, for example, anti-saccade error rate has been
found to increase with increased predicted (pre-Huntington’s)
or actual (Huntington’s) disease burden [26].

Even though eye movement patterns provide useful quantita-
tive information about a patients disease state, clinical studies of
eye movement disturbances in neurodegenerative diseases have
largely been based on cohort studies with comparatively small
numbers of patients. This might, in part, be related to the need
for special eye tracking equipment and a controlled environment
within which to conduct eye tracking studies. Consequently,
these studies require patients to visit the clinic or laboratory to
participate in the measurement sessions. An alternative to this
approach could be afforded by performing eye movement track-
ing and analysis at the convenience of the patient on consumer-
grade electronic devices such as cell phones, tablets or laptop
computers with user-facing cameras. In fact, the use of such
“digital biomarkers” has recently attracted significant attention
in neurology [27]–[29].

Here, we demonstrate that measurements of saccade latency
can be made robustly using smartphone cameras. We propose
a model-based approach to saccade-onset detection that allows
for automated flagging and rejection of eye-movement traces
that might be of questionable quality. We evaluate the resulting
saccade latency measurements under a variety of environmental
conditions and assess the intra- and inter-subject variability in
saccade latency in self-reported healthy subjects. Finally, we
determine the re-test variability of cell-phone based saccade la-
tency measurements. The work opens the possibility for broader
eye-movement measurements to be conducted on consumer-
grade devices thus enabling tracking of such digital biomarkers

Fig. 1. Diagram of the video recording set-up. A subject is seated facing
an iPhone, (in some experiments) a high-speed camera, and a laptop
displaying the visual stimulus task. A synchronized monitor behind the
subject also displays the visual stimulus task so the cameras capture the
eye movements and the visual task simultaneously.

on a much finer timescale (e.g. daily) than is currently possible
with laboratory-based eye-movement assessment and thereby
potentially aiding the characterization of disease progression
and quantification of patient state. A preliminary version of this
work has been reported in [30] and [31].

II. MATERIALS

A. Video Recordings

Video recording of volunteers was approved by MIT’s Com-
mittee on the Use of Humans as Experimental Subjects, and
informed consent was obtained from each participant prior to
recording. Subjects were seated centrally in front of a laptop at
a distance of about 1 m, with their chin placed comfortably on
a soft chinrest to minimize head movements (Fig. 1). The se-
quence of visual stimuli were presented on the laptop screen. A
second monitor was placed behind the subject’s head, facing and
mirroring the laptop screen. An iPhone 6 was placed centrally
between the subject and the laptop screen at a distance of about
0.5 m from the subject and with the rear-facing (non-selfie)
camera facing the subject. The laptop position was chosen to
generate eye movements of 10◦ amplitude, and the camera po-
sition was chosen to capture the subject’s face and the mirrored
screen during the task, thus capturing the eye movement and the
visual stimulus sequence in the same recording. Video record-
ings were made in slow-motion mode, resulting in recordings
at 240 frames per second (fps) and a resolution of 1280× 720
pixels. In a subset of recordings, we additionally and simulta-
neously collected reference videos with a high-speed camera
(Phantom v2511) at 500 fps and a resolution of 1280× 720 pix-
els (see Table I). The distance from the high-speed camera to
the subject was about 0.9 m; the camera lenses focused on the
subject’s eyes. Most recordings were acquired under fluorescent
lighting. To understand the robustness of the recordings to re-
alistic variations in ambient conditions, we collected a separate
set of recordings while varying the lighting conditions with the
help of LED panels, and subjects were recorded with and with-
out glasses. In this work, all video recordings were processed
offline.
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TABLE I
CAMERA & RECORDING SPECIFICATIONS

Fig. 2. (a) Example of the visual tracking task during a saccade-latency
measurement. The tasks consisting of a fixation period (F), a gap (G),
and the appearance of the stimulus (S). Only the final 200 ms of the fix-
ation period are shown. (b) The corresponding horizontal eye movement
trace.

B. Task Design

We used the Psychophysics Toolbox 3 for Matlab [32] to im-
plement the visual fixation/stimulus task presented to participat-
ing subjects on the laptop screen. A single saccade task started
with a fixation period in which three squares were presented on
the screen, arranged horizontally, against a black background,
a green square at the center of the laptop screen and two white
squares arranged at a horizontal distance on either side (Fig. 2a).
Subjects were asked to fix their gaze on the green square. After
1000 ms of fixation, all three squares disappeared. Following
a 200 ms gap, the two lateral squares reappeared in their orig-
inal position, with one of them bounded by a yellow square
(the stimulus). Subjects were tasked with moving their eyes to
– and subsequently keeping their gaze fixed on – the stimulus
(Fig. 2b). After the stimulus disappeared, subjects returned their
gaze back to the centrally located green square. This task was
repeated 40 times per trial, with a total of 20 stimuli appear-
ing on the right and 20 on the left in randomized order. Each
recording session consisted of three such trials conducted in
close succession, resulting in 120 saccade tasks per session and
taking about ten minutes to complete (including breaks between
trials).

III. METHODS

The two principal steps in determining saccade latency are (1)
eye tracking to extract the eye position from each frame in a
video sequence, and (2) saccade-onset detection to determine
when the eyes begin to move (Fig. 3). In this section, we dis-
cuss how each step is performed within our signal-processing
pipeline.

A. Eye Tracking Algorithm

Several algorithms have been proposed to estimate gaze on
portable devices [33]–[35]. Here, we first discuss our use of

Fig. 3. Pipeline for automated saccade-latency measurement, consist-
ing of eye tracking and saccade-onset detection. The time difference be-
tween the stimulus presentation time (blue line) and the saccade onset
(red line) is the saccade latency.

Fig. 4. Convolutional neural network architecture used by iTracker and
iTracker-face [33]. iTracker processes the face grid and the eye and face
layers (gray and blue), while iTracker-face only processes the face layers
(blue). See [33] for details.

iTracker [33], a pre-trained convolutional neural network (CNN)
previously designed for gaze estimation on smartphones, for
tracking the eye position as a function of time. We then propose
iTracker-face, a subset of the iTracker neural net, for eye tracking
and saccade-onset detection.

To estimate where a user is looking on a screen, iTracker was
trained on static images taken with the front-facing (selfie) cam-
era of an iPhone or iPad. These images were collected through
an iOS application named GazeCapture, which includes built-in
iOS face and eye detectors. The inputs to iTracker include a
face grid that indicates the location of the face within the image,
a cropped image of the face and cropped images of the right
and left eye (Fig. 4), where the cropped face and eyes were
determined by the iOS detectors and were resized to 224× 224
pixels.

Since we did not collect our data through an iOS application,
we manually annotated six anatomical landmarks on the first
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Fig. 5. Manual eye crops and face crops for input to iTracker. The
corners of the eyes and the mouth are manually determined on the first
frame. The bounding boxes show the regions of eye and face crops
derived from these fiducial markers.

frame of each video clip: the two corners of each eye and the
two corners of the mouth. To crop each eye region, in accor-
dance with [36], we determined the midpoints of the inner and
outer corners of each eye and surrounded these midpoints with
squares of width 1.5 times the distance between the corners
(Fig. 5). We also computed the centroid of the six annotated
landmarks and determined the face-crop region likewise as the
square of width 1.5 times the largest distance of any two of
the six landmarks, centered at the centroid location. All im-
ages are fed into iTracker at a resolution of 224× 224 pixels,
which means they undergo resizing from the original resolution.
The eye crops are upsampled, while the face crop is downsam-
pled with an anti-alias filter, using the imresize function in
Matlab. We then apply iTracker to each frame in the video se-
quence, and the x-coordinate of the estimated gaze location over
time is taken as the horizontal eye-movement trace.

While iTracker is designed to operate on video sequences of
30 fps, a temporal resolution above 50 fps is required for clinical
applications [37]. Thus for this work, we used the rear-facing
camera of the phone in slow-motion mode, which results in a
frame rate of 240 fps and corresponding temporal resolution of
approximately 4 ms. However, the higher frame rate also results
in poorer image quality compared to 30 fps due to the reduction
in exposure time. Recordings taken at 240 fps are dimmer than
recordings taken at 30 fps. (This is not an issue with high-end
image sensors such as those found in the Phantom high-speed
camera. Phantom v2511 for example supports larger ISO (see
Table I). Although there may be a trade-off between ISO and
digital noise, Phantom v2511 also has a larger pixel size, which
allows Phantom to produce less-noisier images even at higher
ISO.) We discovered that in some challenging scenarios (e.g.
the illumination was low or the subject was wearing glasses),
the variations in the output of iTracker can be so large that the
saccade onset becomes ambiguous.

To further understand the source of the variations, we tested
the output of iTracker when fixing the face grid input and two
of the other three inputs (left eye crop, right eye crop, and face
crop) to be the first frame of the video. We discovered that
the variations in the output will be the smallest when we only

Fig. 6. The same sample eye-movement trace from (a) iTracker and
(b) iTracker-face.

changed the input to the face layers. Since the receptive field
in the cropped eye only contains parts of the eye, one potential
explanation for the observation could be that the eye layers may
be trained to learn detailed features in the eyes to fine-tune
the gaze estimation. On the contrary, the receptive field in the
cropped face may contain a full eye. That is, the face layers
may be trained to learn more global features in the eyes. When
the image becomes blurrier, the detailed eye features will be
replaced by noise, which causes the eye layers more sensitive to
noise than the face layers.

To address the comparatively low image quality at high frame
rate, we propose the iTracker-face algorithm, for which we only
use the face-related convolutional layers of iTracker (Fig. 4
blue layers). Although this choice does degrade the accuracy
of the gaze estimation as discussed in [33], our objective is
to determine if the gaze changes. Fig. 6 shows a sample eye-
position trace using the iTracker and iTracker-face algorithms.
In our application, iTracker-face generally has higher signal-to-
noise ratio than iTracker.

B. Modeling Horizontal Eye-Movement Traces

To calculate saccade latency, it is necessary to determine the
onset of the eye movement toward the target. In prior work,
the saccade onset has commonly been defined as an increase
in eye velocity above a predefined threshold [20], [37], such
as 30 ◦/s, where the velocity is commonly determined through
numerical differentiation and subsequent filtering of the raw eye-
position tracing [38]. Such saccade-onset determination requires
accurate measurement of gaze and is prone to significant error
at low sampling rates [39].

Here, we instead propose to model the eye-position trace
during a saccade task as a hyperbolic tangent of the form

x̃(t) = A + B · tanh
(

t − C

D

)

and fit the model to the the eye-position tracing from 100
ms before to 500 ms after the stimulus presentation (Fig. 7).
The fitting was performed using the nonlinear least-squares
solver lsqcurvefit in Matlab to estimate the model param-
eters A,B,C,D. Using these optimal model parameters, we
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Fig. 7. Eye position as estimated by the iTracker-face algorithm (gray)
and hyperbolic tangent fit (black). The dashed line at 0 s indicates the
moment of stimulus presentation. The saccade onset is determined by
an increase in saccade amplitude above 3% of the target saccade am-
plitude.

determine the saccade onset as the time when the best-fit solu-
tion exceeds 3% of the maximal saccade amplitude, which is
independent of the velocity of the saccade.

In addition to generating well-behaved velocity tracings, this
model-based approach has the benefit of providing a goodness-
of-fit metric on the basis of which the reliability of saccade
tracings can be evaluated in an automated manner, as the nor-
malized root-mean-squared error (NRMSE) between the model
fit and the eye-position trace quantifies the residual discrep-
ancy between the two. Here, the normalization was done to the
saccade amplitude (10◦ in our experiments). Measurements con-
taminated by excessive noise, artifact, or eye movements in the
wrong direction typically result in a high NRMSE value while
reliable measurements result in a low NRMSE. Thresholding
the NRMSE allows for automated rejection of recordings in
which the saccade onsets might have been erroneously detected
or the measurements are subject to excessive variability, noise
or artifact. After evaluating the sensitivity and specificity of sac-
cadic eye-movement traces across a range of candidate NRMSE
thresholds, we selected the NRMSE threshold and included in
our analysis traces for which the optimal model fit resulted in a
NRMSE< 0.1 (see Section IV-B for more details).

IV. ALGORITHM EVALUATIONS

A. Robustness of Eye Tracking Algorithms

To determine the robustness of iTracker and iTracker-face
under a variety of environmental conditions that may be en-
countered outside the well-controlled clinical setting for eye-
movement measurements, we compared the performance of the
algorithms on video sequences of subjects with and without
glasses and under various ambient lighting conditions. Two
illumination-adjustable LED panel lights were used to vary the
illumination during the recording sessions. In total, four distinct
lighting conditions were tested: (1) room light switched on in
addition to the panel lights set to high (278 Lux); (2) room light
switched on without additional lighting support from the LED
panels (220 Lux); (3) room light switched off and the panel
lights set to medium (54 Lux); and (4) room lights switched
off and the panel lights set to low (26 Lux). Illuminance was

Fig. 8. A sample frame from each video taken under four distinct light-
ing conditions. From left to right, the pictures are arranged from the
highest illuminance (278 Lux) to the lowest (26 Lux).

measured at the participant’s face using an LT40 LED Light
Meter (Extech Instruments). Figure 8 shows how the lighting
conditions affect image brightness. Five subjects contributed
120 saccade tasks under each of the four lighting conditions
with and without glasses, for a total of eight test conditions per
subject.

The video sequences were processed with both iTracker and
iTracker-face, and the 9,600 resultant eye-movement traces were
each reviewed by two annotators. Each annotator independently
determined if a trace represented a horizontal saccade movement
and had sufficiently high signal-to-noise to allow for credible
saccade-onset determination. Traces that met these criteria were
labeled ‘good’; all other traces were labeled ‘bad’. Traces la-
belled as ‘bad’ were typically interrupted by blinks, initially
directed toward the opposite direction of stimulus presentation,
or had a low signal-to-noise ratio. To assess the annotator agree-
ment, we computed both the accuracy (fraction of annotations
in which both annotators agreed) and Cohen’s kappa coefficient
(κ). The algorithm with the highest fraction of ‘good’ saccade
traces, as judged by both annotators, across the different envi-
ronmental conditions was deemed the more robust algorithm.

Figure 9 reports the inter-rater annotation accuracy, broken
down by ‘agreed good’ and ‘agreed bad’, for both algorithms
and each of the eight environmental conditions tested. The av-
erage annotation accuracy was 94.1% for eye-movement traces
generated by iTracker-face and 86.8% for iTracker, with cor-
responding Cohen’s κ values of 0.802 and 0.730, respectively.
These results indicate excellent inter-rater agreement for the
overall annotation task, which means that their judgment can be
used as a benchmark. Their annotations also reveal that impor-
tant trends exist between algorithms and across environmental
conditions. The inter-rater agreement is lower when participants
wear glasses and tends to decline with decreasing illuminance.
For example, at the lowest illuminance level (26 Lux) and with
participants wearing glasses, the annotators agreed in their label
of ‘good’ in over 40% of the traces generated by iTracker-face.
In contrast, their agreement of what constitutes a good saccade
trace was less than 8% of the traces generated by iTracker. Ob-
viously poor illumination conditions result in image sequences
with lower contrast which makes it harder to detect eye features
and subtle eye movements. A closer inspection of the video se-
quences also revealed that glasses, especially those with dark
rims, tend to cast shadows that can obscure the eye regions.
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Fig. 9. Annotation accuracy broken down for each of the eight environmental conditions tested per algorithm. The accuracy (or percentage of
agreed annotations) is additionally broken down into the fraction of agreed-good and agreed-bad eye-movement traces between two annotators.

Additionally, some glasses have lenses with high reflectivity that
make the eyes even less visible and therefore difficult to track.

Across all eight conditions tested, the average fraction of
traces judged as good by both annotators was consistently
and significantly higher for traces generated by iTracker-face
(78.9%) than for those generated by iTracker (50.7%). We con-
clude from this analysis that across all environmental conditions
tested, iTracker-face is the more robust algorithm of the two and
therefore formed the basis of all subsequent results reported
here.

B. Automation of Saccade-Onset Detection

Annotation of the 9600 eye-movement traces took each anno-
tator about 12 hours to complete. Since our goal is to leverage
smartphones to make eye-movement recordings and analyses
widely available and ubiquitous, visual inspection of individ-
ual tracings is not an option. Having identified iTracker-face as
the more robust of the two algorithms for iPhone-based eye-
movement tracking, we applied the tanh model to the resultant
eye-position traces to estimate saccade onset. To evaluate the
usefulness of the NRMSE as an automated metric to flag bad
saccades, we used the expert-annotator labels as the ground
truth for all iTracker-face derived traces described in the pre-
vious section and swept the NRMSE threshold to generate a
receiver-operating characteristic (ROC) curve. By separately
considering each annotator’s judgment as the ground truth, we
obtained two ROC curves (Fig. 10), one for each annotator, and
generated associated 95% confidence intervals (CI) for the true
positive rate by stratified bootstrapping over 2000 replicates at
fixed false positive rate [40]. The two resultant ROCs tracked
each other closely and achieved an area under the curve (AUC)
of 0.923 (95% CI: 0.913 – 0.932) and 0.933 (95% CI: 0.923 –
0.943), respectively. If we consider all traces with a NRMSE<
0.1 as ‘good’ saccades, we achieve average true positive rates of
0.87 and 0.86 and average false positive rates of 0.20 and 0.16

Fig. 10. Performance of model-based fitting in classifying saccades.
The adjudications of two annotators were taken as the ground truth, with
the solid lines being the corresponding mean ROC curves. The shaded
areas indicate the confidence intervals for the true positive rate. The
parentheses mark the 95% confidence intervals for the areas under the
curves.

for the first and second annotator, respectively. In the following,
we selected an NRMSE of 0.1 as the threshold.

C. Comparison Across Cameras

To verify that recordings from consumer-grade cameras can
lead to similar saccade-latency statistics as those obtained from
recordings of high-end, research-grade cameras, we took simul-
taneous recordings on four subjects using a low-cost, consumer-
grade camera (iPhone 6) and a research-grade camera (Phantom
v2511, see Table I for their specifications).

Fig. 11 shows the resulting saccade-latency distributions ob-
tained using the iTracker-face algorithm and the model-based
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Fig. 11. Saccade-latency distributions from four subjects obtained from video recordings using (a) the iPhone 6 and (b) a Phantom v2511
high-speed camera.

onset detection. The inclusion of the high-speed camera in
the recording set-up resulted in increased distances between
the subject and the cameras, as well as between the subject
and the laptop’s screen. The increased distances result in a
smaller horizontal eye movement, which in turn produce slightly
noisier, but acceptable, eye movement traces. Fig. 11 demon-
strates that the distributions from both cameras are consistent,
with negligible differences in the mean saccade-latency values
and associated standard deviations between the two recording
systems.

D. Face-Crop Automation

To fully automate the signal-processing pipeline of Fig. 3,
we replaced the manual face annotation and cropping (Fig. 5)
with an automated face-detection step. As mentioned in
Section II, with the head supported by the chinrest, we can ex-
pect the position of the face to remain relatively stable through-
out a sequence of saccade tasks and the manually determined
face region to remain valid throughout the subsequent frames
of a video recording. To automate the face-region determina-
tion, we used the Viola-Jones face detector [41] and evaluated
the changes in the estimated saccade latencies after this au-
tomation on 158 sessions of recordings. The mean absolute
differences in the mean per-session saccade latencies with an
NRMSE< 0.1 was 1.10 ms with an associated standard de-
viation of 1.24 ms (Fig. 12). We therefore conclude that au-
tomating the face-detection step does not materially affect the
saccade-latency determination in normal subjects. This result
may be understood by considering that the convolutional layers
in iTracker are trained to properly adjust gaze estimation under
translation and scaling differences in the cropped face. As a re-
sult, the shape of the resulting eye-movement traces are hardly
changed given slight differences in the cropped regions of the
face.

Fig. 12. The absolute difference in mean saccade latencies between
face crop based on manual face annotation and automated face detec-
tion using the Viola-Jones algorithm [41].

E. Chinrest Dependence

Ideally, we would like to enable eye-movement capture and
analysis without the need for restraining the head. Without
the chinrest in place, the assumption of limited head move-
ment throughout the (approximately) two-minute 40-saccade
sequence is bound to be violated. However, the assumption
might still be reasonable over the course of a single saccadic
eye movement, of which we typically analyze 600 ms (from
100 ms before till 500 ms after stimulus presentation). To test
this hypothesis, we conducted two sessions of video recordings
in four subjects each with and without the participants’ heads
resting on the chinrest (16 sessions in total). We applied the
Viola-Jones face detector to the first frame of each individual
saccade tracing and used the detected face region from the first
frame and applied it to every subsequent frame. If there had been
any significant head movements within a single saccade trial,
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Fig. 13. Two examples of saccadic eye-movement traces in the same
subject. (a) Recording with chinrest, and (b) recording without chinrest.
They have a comparable signal-to-noise level.

we would have expected the tanh model to no longer attain low
NRMSE fits. When the Viola-Jones face detector was applied
to iTracker-face derived eye-movement traces on recordings ob-
tained with and without chinrest, most of the traces have com-
parable signal-to-noise (Fig. 13). After confirming that the null
hypothesis of normally distributed mean saccade latency cannot
be rejected at the 0.05 level (using the Anderson-Darling test),
we performed a formal analysis of variance (ANOVA) to assess
whether a significant difference existed between mean saccade
latencies measured with and without chinrest. The ANOVA null
hypothesis of a significant difference was rejected (p = 0.59).
We therefore conclude that in our cohort of self-reported healthy
volunteers, the chinrest is not essential to obtaining recordings
of sufficient quality for saccade-onset detection and saccade-
latency determination.

The selection of iTracker-face to generate the eye-movement
tracings, the NRMSE threshold value of 0.1 to select traces
for inclusion in our analysis, and the Viola-Jones algorithm for
automated face detection on the first frame of each saccade
task video sequence completes the automation of the saccade-
latency determination pipeline of Fig. 3. In the next section, we
apply this pipeline to determine the intra- and inter-subject vari-
ability in saccade-latency measurements obtained from video
sequences of self-reported healthy subjects, and explore the sta-
tistical modeling of the saccade-latency distributions.

V. DATA ANALYSIS

A. Saccade-Latency Determination in Healthy
Individuals

We recorded 19 200 saccadic eye movements across 160 ex-
perimental sessions in 29 self-reported healthy subjects (20
males, 9 females; median age: 27 years; age range: 22–64 years),
including five or more repeat recording sessions in a subset of
eleven subjects. In two recording sessions, the Viola-Jones al-
gorithm failed to detect the face of the subject, so the results
presented here are based on 158 experimental sessions in 29
subjects.

Applying the NRMSE< 0.1 criterion to accept saccadic eye
movements for analysis resulted in an average retention rate of

Fig. 14. Breakdown of over 19,000 saccade measurements by sac-
cades initiated into the wrong direction, noisy saccades, potentially pre-
dictive/express saccades, and good saccades.

Fig. 15. Distribution of the mean saccade latencies from 29 self-
reported healthy individuals, including one subject whose mean saccade
latency is 290 ms.

82.3% (100 of the 120 saccadic eye movements per experiment).
Consistent with prior work [16], [37], [42],we further excluded
from our analysis saccade latencies of 80 ms or less. This cen-
soring excludes anticipatory eye movements but also removes
possible express saccades [13], [43]. With this additional exclu-
sion criterion in place, the average fraction of good saccades
per recording session was 77% with an associated standard de-
viation of ± 19% (see Fig. 14). Of the 17.7% of eye-movement
recordings rejected from analysis due to NRMSE≥ 0.1, 27.1%
were initiated into the wrong direction and represent an error
rate that by itself might carry pathognomonic information [6].
The remaining 72.9% of the rejected eye movement had gen-
erally low signal-to-noise. Thus, overall, only about 13% of
all saccadic eye movements were rejected because of excessive
noise.

When we aggregated the saccade latency measurements
greater than 80 ms and NRMSE< 0.1 for each subject, the
mean latencies across the 29 subjects typically ranged from
120 ms to 200 ms (Fig. 15), with one subject having a mean
saccade latency of 290 ms. (Review of the latter subject’s video
sequences, eye-movement traces, and health questionnaire did
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Fig. 16. Saccade latency distributions for five self-reported healthy individuals. μ is the sample mean, σ is the associated sample standard
deviation, and n is the total number of observations. Saccade latencies below 80 ms were censored. The estimated log-normal probability density
functions are shown in red.

not provide a credible reason to exclude this subject from our
analysis.) While it is common practice in clinical studies to only
report the population mean or median saccade latency, such ag-
gregation results in loss of information encoded in each subject’s
full saccade latency distribution.

Fig. 16 shows normalized saccade-latency distributions for
five subjects, selected to illustrate the range of intra- and inter-
subject variation among our study cohort. The distributions
show variable degrees dispersion and skewness, with some sub-
jects having a significant fraction of latencies above 200 ms.

It has been suggested that reaction times follow log-normal
distributions [44]. We tested this hypothesis on our recordings
by fitting a log-normal distribution to the saccade latency dis-
tributions of the individual recording sessions, and also to the
saccade latency distribution of each subject for which we aggre-
gated each subject’s measurements across recording sessions.
The log-normal distributions were truncated at 80 ms to reflect
the censoring we imposed on the minimum saccade latency. The
Kolmogorov-Smirnov test was used with the significance level
set to 0.05 to test the null hypothesis that the saccade-latency
distributions can be described by a truncated log-normal distri-
bution. Of the 158 individual saccade-latency distributions (one
for each recording session) across all subjects, 155 (or 98.1%)
distributions were not significantly different from a log-normal
distribution (p < 0.05). When the data from across different
recordings sessions were aggregated into a single distribution
for each subject, 26 out of the 29 (89.7%) distributions were not
significantly different from a log-normal distribution (p < 0.05).

B. Test-Retest Reliability

If the subject condition is stable (healthy subjects, for exam-
ple), we want our saccade-latency measurement to be consis-
tent across sessions. To assess the test-retest reliability of our
approach to saccade-latency determination, we computed the
intraclass correlation coefficient (ICC) of the per-session mean
saccade latency in eleven subjects that participated in at least
five repeat recording sessions. As in the previous section, indi-
vidual saccadic eye movements were included in the analysis if
the associated NRMSE < 0.1 and the measured saccade latency
exceeded 80 ms.

As suggested in [45], we used a repeated-measure, two-way
ANOVA approach in which subject identity and session number
were used as categorical variables, and the outcome variable
was the mean (per-session) saccade latency. The effect of repeat
experimental session turned out to be non-significant (p = 0.78),
suggesting that no significant trend existed across sessions that
ought to be accounted for. Using the psych library in R [46],
we computed the ICC (ICC 3,1 in the Shrout and Fleiss [47]
convention) of the mean saccade latency for each of the five
sessions in the eleven subjects. The resultant ICC value was
0.76 (95% CI: 0.55-0.92), generally indicating good [48] to
excellent [49] test-retest reliability.

To put this ICC value into further context, it is informative
to compare it to the values reported in the literature for pro-
saccade tests using specialized eye tracking equipment. Using
the Eye trac Model 210 (ASL, Waltham, MA, USA), Roy-Byrne
et al. [50] report ICC values between 0.61 and 0.75 for mean
latency for a visually guided saccade task in healthy subjects.
Blekher and co-workers [51] likewise used an infrared illumi-
nation based eye tracking system (EyelinkII, SR Research Ltd.,
Ontario, Canada) in a case-control study of subjects at risk of
Huntington’s disease. For the control arm of the study, the au-
thors report an ICC of 0.71 (95% CI: 0.55-0.97) for a visually
guided gap pro-saccades task. The test-retest reliability of our
approach to saccade-latency determination using a consumer-
grade camera therefore compares very favorably to the reliability
reported using specialized eye tracking equipment.

C. Sample-Size Considerations

We initially designed our experimental session, consisting
of three consecutive 40-saccade trials, on the basis of a trade-
off between session duration and number of saccade latency
measurements acquired. Each 40-saccade trial takes about two
minutes to perform. Each experimental session takes between
six and ten minutes, depending on how much time a subject
would like to take between consecutive trials. Assuming that
the saccade latency of healthy subjects is sampled from static
underlying distributions, like the ones in Fig. 16 for example,
we can conduct a bootstrapping exercise to determine how many
individual saccade latency measurements ought to be taken per
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Fig. 17. Bootstrap determination of mean saccade latency (solid black
line) and associated 95% CI of the mean (dashed lines) as a function
of number of samples drawn from a subject’s full saccade latency dis-
tribution. The ground truth mean saccade latency is shown in red. The
mean and 95% CI at each sample number are based on 4000 bootstrap
realizations.

session to obtain a reasonably accurate estimate of mean sac-
cade latency. We conducted such bootstrapping exercise on the
aggregated saccade latency distributions in each of the ten sub-
jects for which we had at least ten recording sessions. Fig. 17
shows a representative example in which the mean saccade la-
tency and associated 95% confidence interval were determined
as a function of number of samples drawn from the subject’s
full saccade latency distribution.

On average, single experimental session with about 50 good
saccadic eye movement measurements allows for accurate and
precise (to within less than 10 ms in 95% of the cases) determi-
nation of mean saccade latency. Such precision may be required
to differentiate normal saccade latency from the increased la-
tencies reported in Alzheimer’s disease [37], for example. Tak-
ing into account our result that on average only about 77% of
the tracking tasks result in good saccadic eye movement mea-
surements, we arrive at around 65 individual tracking tasks to
include in a single experimental session, or about half of the
number of saccadic eye movements currently included in our
session design.

Reducing the number of visual tracking tasks per session to
65 also reduces the total recording length per session to slightly
more than three minutes, which is less than the average length
of a typical Youtube video [52]. This recording length is not an
onerous imposition on a subject’s time and is eminently compat-
ible with subjects providing one or two such recordings per day
thus aiding our goal of bringing high-accuracy determination
and longitudinal tracking of saccade latency to a broad patient
population through the use of smartphone technology.

For disease tracking, another consideration is how many daily
recordings should be aggregated to balance averaging of ran-
dom variations with detecting neurocognitive decline. Among
the dementias, for example, the prion diseases have one of the
fastest rates of decline, with the timespan from initial disease
diagnosis to death sometimes only covering a few months to
a year [53]. Aggregating seven consecutive daily recordings of

65 saccade measurements each, for example, and advancing the
averaging window one day at a time in a sliding manner, would
result in around 350 good saccade measurements to determine
a personalized saccade latency distribution while maintaining
a temporal resolution that would allow for disease tracking of
even the fastest neurodegenerative diseases. Longer averaging
times can be considered for more slowly progressing neurode-
generative diseases to allow for more averaging of day-to-day
variation in eye movement features.

VI. DISCUSSION

The successful execution of an eye movement relies on a com-
plex interplay of cognitive and motor function. Neurodegener-
ative diseases affect the neural circuits responsible for these
functions, altering several eye movement features during neu-
rocognitive decline. In this work, we developed and validated
an approach for assessing one such feature, saccade latency,
without the need for specialized equipment (such as infrared
illumination, chinrest and research-grade cameras) or specific
environmental conditions. This approach enables measurement
and analysis of saccade latency outside of the clinical environ-
ment, hence, paving the way for large-scale data collection.

A. Method Development

Several technological challenges needed to be overcome to
allow for repeat saccade latency measurements outside a spe-
cialized clinical environment. Among these technological chal-
lenges were the reliability on infrared (IR) light to estimate
the position of the eye and the use of research-grade cameras
that yield distinct images of the eyes. Here, we demonstrated
the feasibility of deriving saccade latency from consumer-grade
cameras, such as smartphones, along with a model-based ap-
proach to determining the onset of the saccade that provides a
metric for automated rejection of eye-movement traces of poor
quality. To extract the position of the eye from each frame in a
video sequence, we proposed iTracker-face, a modified version
of a deep convolutional neural network for gaze estimation on
smartphones that does not rely on IR illumination. In our appli-
cation, iTracker-face is more robust to lower image quality than
iTracker, providing eye-movement traces with a higher signal-
to-noise ratio. Once the eye-movement traces are extracted with
iTracker-face, our eye movement model is fitted to the individ-
ual traces to determine the onset of the eye movement toward
the target. This model-based approach has the added benefit
of providing a goodness-of-fit metric that allows for automated
rejection of unreliable data, an instrumental contribution to-
ward making saccade latency determination broadly available
as large cohorts of patients and self-reported healthy subjects
start recording saccadic eye movements on a continuous basis.

B. Method Evaluation

Because the environmental conditions outside of a typical
clinical setting are variable, the evaluation of the robustness
of our eye tracking algorithm is paramount and strengthens
our ability to measure saccade latency in complex real-world
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scenarios. Our robustness evaluation shows that iTracker-face
was consistently and significantly more robust than iTracker
across all testing conditions, as ascertained by two annotators
that manually reviewed 9600 eye-movement traces. Because
the agreement between annotators was high (as given by the
accuracy and Cohens kappa coefficient), their annotations were
used to determine an optimal threshold value for the NRMSE
that automatically eliminates eye-movement traces that provide
unreliable saccade latency estimates. Our evaluation of the sen-
sitivity and specificity of this approach suggests very high sensi-
tivity and specificity for automated signal quality determination
compared against human annotators, and in a variety of envi-
ronmental conditions that are expected to be encountered in
everyday recordings.

One important contribution to this field is our demonstrated
ability to obtain essentially the same recording quality with and
without chinrest support during the video recordings. A formal
ANOVA test confirmed that there are no significant differences
between saccade latencies measured with and without a chin-
rest. The removal of the chinrest further enhances the flexibility
of our system and eliminates the need for specialized equip-
ment to measure saccade latency. While this result might hold
more generally for self-reported healthy subjects, further image
processing techniques might be required for certain neurode-
generative diseases, such as Parkinson’s disease, that are known
to lead to tremors. Our decision to include the Viola-Jones face
detector to our signal-processing pipeline might help mitigate
this effect, but this remains to be seen. Finally, we evaluated the
test-retest reliability of our proposed approach to determining
saccade latency and compared it to the reliability reported us-
ing specialized eye tracking equipment, showing that our system
achieves comparable results. A high reliability demonstrates that
our low-cost approach to saccade-latency determination yields
consistent results over time in self-reported healthy subjects –
a desired attribute for a system built to track the progression of
neurodegenerative diseases.

C. Intra- and Inter-Subject Variability

In order to use saccade latency to track neurodegenerative
disease progression, it is important to understand the intra- and
inter-subject variability among self-reported healthy subjects to
put into context the changes seen in patients with neurodegen-
erative disease. In our work, we measured more than 19 200
saccade latencies in 29 subjects (Fig. 15), a significantly larger
number compared to the values reported in clinical studies,
ranging from 8 – 30 saccade latencies [14], [21], [37], [54].
These recordings were enabled by the accessible nature of our
measurement system that allows for 120 saccade measurements
in less than ten minutes. Considering the criteria to reject cer-
tain saccade latencies, we are still able to retain, on average, a
sizable amount (77%) of data per session across subjects. With
this amount of data, we observed that the intra- and inter-subject
variability in saccade latency are quite substantial, with mean
saccade latencies ranging from 120 ms to 290 ms (Fig. 15)
and standard deviations from 26 ms to 52 ms (Fig. 16). Prior
clinical studies comparing saccade latency measurements from

patients with neurodegenerative diseases to those obtained in
age-matched health control subjects have reported differences
in group means or medians between 16 ms and 200 ms [16],
[37]. The approach to saccade latency measurements developed
here allow us to resolve such differences.

The rich information regarding the distinctive shape and pa-
rameters of the individual distributions is lost when saccade
latency values are pooled. As seen in Fig. 16, some individuals
have a tendency to make more saccades with shorter laten-
cies and others to make more saccades with longer latencies.
In combining all the data into a single distribution, these indi-
vidual characteristics – that have been linked to specific brain
pathologies [55], [56] – are lost. Saccade latency intra-subject
variability is also lost when data is pooled. If instead the infor-
mation regarding this variability were preserved, it could be used
as a feature to assess the cognitive state of a subject. For exam-
ple, some studies suggest that intra-subject variability is larger
in some conditions compared to normal subjects [42], [57]. Our
accessible, low-cost measurement system enables widespread
data collection and hence avoids having to combine data from
different subjects, allowing us to preserve the distinctive infor-
mation in each individual saccade latency distribution (Fig. 16).

In addition to the large intra- and inter-subject variability, we
observed that the saccade latency distribution of the majority of
the subjects may be modeled as a log-normal distribution. This
observation is consistent with [58], in which neural mechanisms
are discussed that might give rise to log-normally distributed re-
action times. It might therefore be sufficient to characterize indi-
vidual saccade-latency distributions using the two parameters of
a log-normal distribution (log−μ and log−σ) and analyze how
these parameters change through time. Lastly, we performed a
bootstrapping experiment to determine what is the minimum
number of saccade latencies that are needed to obtain a rea-
sonable estimate of mean saccade latency and discovered that
around 65 measurements allow us to estimate the mean saccade
latency with a within-10-ms precision. This suggests that we
can minimize the recording time in a data collection session to
about four minutes and still have sufficient precision to distin-
guish between healthy subjects and patients. Four minutes per
day is a negligible amount of time, which we believe will incen-
tivize frequent measurements and enable longitudinal tracking
of saccade latency.

For disease tracking, another consideration is how many
recordings should be aggregated to balance averaging of ran-
dom variations with detecting neurocognitive decline. Unfortu-
nately, there are few studies that track the longitudinal changes
in saccade latency among patients [19], [59], especially within
the same cohort. Because the data in these studies was collected
in clinical environments and the analyses usually involved man-
ual removal of outliers, longitudinal measurements are sparse
(typically with a >= 6-month interval), which limits the types
of diseases they can track. For example, among the dementias,
the prion diseases have one of the fastest rates of decline, with
the timespan from initial disease diagnosis to death sometimes
only covering a few months to a year [53]. Current methods
cannot render a sufficiently timely assessment on patient state.
With our approach, however, around 350 good saccades can be
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measured over a week with a less-than-4-minute recording each
day. These saccades may provide an adequate characterization
of a personalized saccade latency distribution. By analyzing how
this distribution changes over weeks, we may be able to track
the progression of prion diseases. Longer averaging times can
be considered for more slowly progressing neurodegenerative
diseases to allow for more averaging of day-to-day variation in
eye movement features.

D. Limitations and Future Work

The limitations of this work include the fact that our current
recording setup requires a laptop that shows the visual task and
an additional display to calculate saccade latency. Currently, we
are implementing the visual task on the iPhone itself, therefore
minimizing the required equipment to this single device and
reducing saccade latency delays introduced by the two-display
set-up. For patient privacy reasons, our long-term goal is to per-
form all the data analysis directly on the iPhone, which requires
us to build an energy-efficient version of iTracker-face that runs
smoothly on devices that are power and memory constrained.

Another venue of future exploration is our ability to measure
a richer set of eye movement features, such as, for example,
the gain and the peak velocity of a saccade. These features have
proven to be significantly different between healthy subjects and
patients afflicted with neurodegenerative diseases [6]. To mea-
sure the gain, we need to confirm the accuracy of the estimated
gaze position in iTracker-face. Accurate velocity measurements
depend on the accuracy in measuring the gain. Incorporating
these and other eye movement measurements into our system
and signal processing pipeline will enhance our ability to track
neurocognitive decline and help with the differential diagnosis
of neurodegenerative diseases.

VII. CONCLUSION

Our work here presents a method to measure saccade latency
outside of the clinical environment using a consumer-grade cam-
era. A thorough algorithm evaluation showed that iTracker-face,
along with the tanh model for saccade-onset determination, is
robust to varying recording conditions, allows for automated
outlier rejection, and produces saccade latency distributions that
are very similar to those obtained from a high-end, high-speed
reference camera. Furthermore, our implementation of the tanh
model allows for automated rejection of bad saccades and there-
fore enables efficient large-scale data analysis. Because of this
efficiency, we collected over 19 000 saccade latency measure-
ments across 29 self-reported healthy volunteers and observed
that their saccade-latency distributions have distinctive shapes,
with different means and standard deviations. A deeper under-
standing of these differences is essential to put into perspective
the saccade-latency changes seen in patients with neurocog-
nitive disease. An evaluation of the test-retest reliability of our
system showed that our approach is capable of determining con-
sistent saccade latency values over time in self-reported healthy
subjects. These contributions pave the way to expanding sac-
cade latency measurements to a broad population for tracking
of neurologic and neurodegenerative disease progression.
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