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Abstract—Current practice for diabetic foot ulcers (DFU)
screening involves detection and localization by podiatrists.
Existing automated solutions either focus on segmentation
or classification. In this work, we design deep learning meth-
ods for real-time DFU localization. To produce a robust deep
learning model, we collected an extensive database of 1775
images of DFU. Two medical experts produced the ground
truths of this data set by outlining the region of interest
of DFU with an annotator software. Using five-fold cross-
validation, overall, faster R-CNN with InceptionV2 model
using two-tier transfer learning achieved a mean average
precision of 91.8%, the speed of 48 ms for inferencing a
single image and with a model size of 57.2 MB. To demon-
strate the robustness and practicality of our solution to real-
time prediction, we evaluated the performance of the models
on a NVIDIA Jetson TX2 and a smartphone app. This work
demonstrates the capability of deep learning in real-time
localization of DFU, which can be further improved with a
more extensive data set.

Index Terms—Diabetic foot ulcers, deep learning,
convolutional neural networks, DFU localization, real-time
localization.

I. INTRODUCTION

D IABETIC foot ulcers (DFU) that affect the lower extrem-
ities are a major complication of Diabetes. According to

the global prevalence data of International Diabetes Federation
in 2015, annually, DFU develop in 9.1 million to 26.1 million
people with diabetes worldwide [1]. It has been estimated that
patients with diabetes have a lifetime risk of 15% to 25% in
developing a DFU, with 85% of lower limb amputations oc-
curring due to an infected DFU that did not heal [2], [3]. In a
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more recent study, when additional data is considered, the risk
is suggested to be in-between 19% to 34% [4].

Due to the proliferation of Information Communication Tech-
nology, the intelligent automated telemedicine systems are often
tipped as one of the most cost-effective solutions for remote de-
tection and prevention of DFU. Telemedicine systems along
with current healthcare services can integrate with each other
to provide more cost-effective, efficient and quality treatment
for DFU. In recent years, there has been a rapid development
in computer vision, especially towards the difficult and vital is-
sues of understanding images from different domains such as
spectral, medical, object detection [5] and human motion anal-
ysis [6]. The computer vision and deep learning algorithms are
extensively used for the analysis of medical imaging of various
modalities such as MRI, CT scan, X-ray, dermoscopy, and ultra-
sound [7]. Recently, computer vision algorithms are extended
to assess different types of skin condition such as skin cancer
and DFU [8], [9].

From a computer vision and medical imaging perspective,
there are three common tasks that can be performed for the
detection of abnormalities on medical images, which are 1)
Classification 2) Localization 3) Segmentation. These tasks on
DFU are illustrated by Fig. 1. Various researchers have made
contributions related to computerised methods for the detection
of DFU. We divided these contributions into four categories:

1) Algorithms development based on basic image process-
ing and traditional machine learning techniques

2) Algorithms development based on deep learning tech-
niques

3) Research based on different modalities of images
4) Smartphone applications for DFU

Several studies suggested computer vision methods based on
basic image processing approaches and supervised traditional
machine learning for the detection of DFU/wound. Mainly,
these studies have performed the segmentation task by extract-
ing texture descriptors and color descriptors on small patches
of wound/DFU images, followed by traditional machine learn-
ing algorithms to classify them into normal and abnormal skin
patches [11]–[14]. In conventional machine learning, the hand-
crafted features are usually affected by skin shades, illumina-
tion, and image resolution. Also, these techniques struggled
to segment the irregular contour of the ulcers or wounds. On
the other hand, the unsupervised approaches rely upon image
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Fig. 1. Examples of three common tasks for inspection of abnormalities on a DFU image. (a) Classification, (b) localization, and (c) segmentation
of DFU (green) and surrounding skin (red) [10].

processing techniques, edge detection, morphological opera-
tions and clustering algorithms using different color space to
segment the wounds from images [15]–[17]. Wang et al. [18]
used an image capture box to capture image data and deter-
mined the area of DFU using cascaded two-stage SVM-based
classification. They proposed the use of superpixel technique
for segmentation and extracted the number of features to per-
form two-stage classification. Although this system reported
promising results, it has not been validated on a more substantial
dataset. In addition, the image capture box is very impractical
for data collection as there is a need for the patient’s barefoot to
be placed directly in contact with the screen of image capture
box. In healthcare, such setting would not be allowed due to the
concerns regarding infection control.

The majority of these methods involve manually tuning of
the parameters according to different input images and multi-
stage processing which make them hard to implement in clinical
settings. These state-of-the-art methods were validated on rel-
atively small datasets, ranging from 10 to 172 images. Current
state-of-the-art methods based on basic image processing and
traditional machine learning techniques are not robust, due to
their nature of reliance on specific regulators and rules, with
certain assumptions.

In contrast to traditional machine learning, deep learning
methods do not require such intense assumptions and have
demonstrated superiority in DFU localization and segmentation
of DFU, which suggests that the robust fully automated detec-
tion of DFU may be achieved, by adopting such approach [9],
[10], [19]. In the field of deep learning, several researchers made
contributions on the classification and segmentation of DFU.
Goyal et al. [9] proposed a new deep learning framework called
DFUNet which classified the skin lesions of the foot region into
two classes, i.e. normal skin (healthy skin) and abnormal skin
(DFU). In addition, they used deep learning methods for the
semantic segmentation of DFU and its surrounding skin with a
limited dataset of 600 images [10]. Wang et al. [19] proposed
a new deep learning architecture based on encoder-decoder to
perform wound segmentation and analysis to measure the heal-
ing progress of wound. To date, this paper is the first attempt to
develop deep learning methods for the DFU localization task.

Then, in a separate study from computer vision techniques,
van Netten et al. [20] proposed the detection of DFU using a
different modality called infra-red thermal imaging. They found
that there is a significant temperature difference between the

DFU and the surrounding healthy skin of the foot. Hence, they
used this considerable temperature difference on a heat-map to
detect the DFU. Liu et al. presented a preliminary case study to
evaluate the effectiveness of infra-red dermal thermography on
diabetic feet soles to identify pre-signs of ulceration [21]. Hard-
ing et al. [22] performed a study to assess the infra-red imaging
for the prevention of secondary osteomyelitis. Similarly, infra-
red thermography has been used in various studies to detect the
complications related to the DFU [23], [24].

Health applications on the smartphone are fast becoming pop-
ular in monitoring essential aspects of the human body. Yap et al.
[25], [26] developed an app called FootSnap, which is used to
produce the standardized dataset of the DFU images. This ap-
plication used basic image processing techniques such as edge
detection to provide the ghost images of the foot which is use-
ful to monitor the progress of DFU. Since this was designed
to standardise image capture conditions, it did not perform any
automated detection function. Recently, Brown et al. [27] de-
veloped a smartphone application called MyFootCare, which
provides useful guidance to the DFU patients as well as keep
the record of foot images. In this application, the end-users need
to crop the patch of the captured image, and with basic color
clustering algorithms, it can produce DFU segmentation. But,
previous research [10] has already shown that the basic cluster-
ing algorithms are not robust enough to provide accurate DFU
segmentation on full foot images.

The major challenges of DFU localization task are as follow:
1) Expensive in data collection and expert labelling on the DFU
dataset; 2) High inter-class similarity between the DFU lesions
and intraclass variation depending upon the classification of
DFU [29]; and 3) Lighting conditions and patient’s ethnicity. In
this work, we provide a large-scale annotated DFU dataset and
propose an end-to-end mobile solution for DFU localisation.
The key contributions of this paper include:

1) We present one of the largest DFU dataset, which consists
of 1775 images with annotated bounding box indicating
the ground truth of DFU location. To date, the largest
dataset we encountered is of 600 DFU images, where it
was used for the semantic segmentation of DFU and its
surrounding skin [10].

2) We propose the use of convolutional neural networks
(CNNs) to localize DFU in real-time with two-tier
transfer learning. To our best knowledge, this is the first
time CNNs are used for this task. Since our main focus is
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Fig. 2. Illustration of high-resolution full feet images of our DFU dataset.

on mobile devices, we emphasize on light-weight object
localization models.

3) Finally, we demonstrate the application of our proposed
methods on two types of mobile devices: Nvidia Jetson
TX2 and an android mobile application.

II. METHODOLOGY

This section describes the preparation of the dataset and ex-
pert labeling of the DFU on foot images. The description of
CNNs for DFU localization is detailed. Finally, the performance
metrics used for validation are reported.

A. DFU Dataset

We received NHS Research Ethics Committee approval with
REC reference number 15/NW/0539 to use the foot images
of DFU for our research. Foot images with DFU were col-
lected from the Lancashire Teaching Hospitals over the past
few years. Our dataset has a total of 1775 foot images with
DFU. There were three cameras mainly used for capturing
the foot images, Kodak DX4530, Nikon D3300 and Nikon
COOLPIX P100. Whenever possible, the images were acquired
with close-ups of the full foot with the distance of around
30–40 cm with the parallel orientation to the plane of an ul-
cer. The use of flash as the primary light source was avoided,
and instead, adequate room lights are used to get the consis-
tent colors in images. The sample foot images in the dataset
are shown in the Fig. 2. To test the specificity measure for the
algorithms, we have included 105 healthy foot images in the
DFU dataset from the FootSnap application [26].

In this dataset, the size of images varies between 1600× 1200
and 3648 × 2736. We resized all the images to 640 × 640 to
improve the performance and reduce the computational costs.
We used Hewitt et al. [28] annotation tool for producing the
ground truths in the form of bounding box as shown in Fig. 3.

Fig. 3. Example of delineating ground truth on DFU dataset using Brett
et al. annotation tool [28].

Fig. 4. Comparison of Size of DFU against the size of image.

The ground truth was produced by two healthcare professionals
(a podiatrist and a consultant physician with specialization in
the diabetic foot) specialized in diabetic wounds and ulcers.
When there was disagreement, the final decision was mutually
settled with the consent of both. In the DFU dataset, there is
only one bounding box in approximately 90% of the images,
two bounding boxes in 7% and finally, more than two bounding
boxes in the remaining 3% images of the whole dataset. The
medical experts delineated a total of 2080 DFUs (some images
with more than one ulcer) using an annotator software. As shown
in the Fig. 4, approximately 88% DFU have the size less than
10% of the actual size of an image. The size varied considerably
across the DFUs in the dataset.

B. Conventional Methods for DFU Localization

In this section, we assessed the performance of conventional
methods for the localization of DFU. For traditional machine
learning, we delineated 2028 normal skin patches and 2080
abnormal skin patches for feature extraction and training of
classifier using 5-fold cross-validation [9]. We also used data-
augmentation techniques such as flipping, rotation, random
crop, color channels to make a total of 28392 normal and 29120
abnormal patches. 80% of the image data is used to train the
classifier and remaining 20% of the data is used as test im-
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ages. Since these two classes of skin (normal and abnormal)
have significant textural differences amongst them, we investi-
gated various feature extraction techniques including low-level
features such as edge detection, corner detection [30], texture
descriptors such as Local Binary Patterns (LBP) [31], Gabor
filter [32], Histogram of Oriented Gradients (HOG) [33], shape
based descriptors such as hough transform [34] and color de-
scriptors such as Normalized RGB, HSV, and L*u*v features
[35]. With exhaustive feature selection technique, we settled
with LBP, HOG, color descriptors to extract features from skin
patches of both normal and abnormal classes. For a single patch,
209 features were extracted with above mentioned feature ex-
traction techniques. After the feature extraction from images,
we used Quadratic support vector machine [36] as a classifier
for the classification task. Then, to perform DFU localization
task with multiple scales, we used the sliding window approach
to mask each box if the corresponding patch is detected as ulcer
by trained classifier.

This technique has achieved a good score in evaluation met-
rics, 70.3% in Mean Average Precision. The conventional ma-
chine learning methods require a lot of intermediate steps like
pre-processing of images, extracting hand-crafted features and
multiple stages to get the final results which makes them very
slow. Whereas, deep learning provides the faster end-to-end
models on various computing platforms which simply take im-
ages as input and provide the final localization results as output.

C. Deep Learning Methods for DFU Localization

CNNs proved their superiority compared to the conventional
machine learning techniques in image recognition tasks such as
ImageNet [37] and MS-COCO challenges [38]. They are very
capable of classifying the images into different classes of objects
from both non-medical and medical imaging by extracting the
hierarchies of features. One of the important tasks in computer
vision is object localization where algorithms need to localize
and identify the multiple objects in an image. Mainly, object
localization networks consist of three stages as described in the
following subsections.

1) CNN as Feature Extractor: In Stage 1, the standard CNN
such as MobileNet, InceptionV2, the convolutional layers ex-
tract the features from input images as feature maps. These
feature maps are used to identify the objects in the image with
particular attention focused on DFU regions as shown in the
Fig. 5. These feature maps serve as input for the later stages
such as generation of proposals in the second stage and classi-
fication and regression of RoI in the third stage.

2) Generation of Proposals and Refinement: In Stage 2, the
network scans the image in a sliding-window fashion and finds
specific areas that contain the objects using the feature map ex-
tracted in Stage 1. These areas are known as proposals which
have different boxes distributed over the image. In general,
around 200,000 proposals of different sizes and aspect ratios are
found to cover as many objects as possible in the image. With
GPU, Faster-RCNN produces these much anchors in 10 ms [39].
Stage 2 generates two outputs for each proposal:

Fig. 5. Stage 1: The feature map extracted by CNN that acts as back-
bone for object localization network. Conv refers convolutional layer.

Fig. 6. Stage 2: Detected proposal boxes with translate/scale operation
to fit the object. There can be several proposals on a single object.

� Proposal Class: It can be either foreground or background.
The foreground class means there is likely an object in that
proposal and it is also known as a positive proposal.

� Proposal Refinement: A positive proposal might not be
perfectly captured the object. So the network estimates a
delta (% change in x, y, width, height) for refinement of
the proposal box to center the object better as illustrated
in Fig. 6.

3) RoI Classifier and Bounding Box Regressor: Stage 3 con-
sists of the classification of RoI boxes provided by Stage 2 and
further refinement of the RoI boxes as shown in the Fig. 7. First,
all RoI boxes are fed into the RoI pooling layer to resize them
into fixed input size for classifier as RoI boxes can have different
sizes. Similar to Stage 2, it generates two outputs for each RoI:

� RoI Class: The softmax layer provides the classification
of regions to specific classes (if more than one class). If
the RoI is classified as background class, it is discarded.

� Bbox Refinement: Its purpose is to refine the location of
RoI boxes.

We considered three types of object localization networks to
perform on the DFU dataset. First is Faster R-CNN [39], which
is a successor of Fast R-CNN [40] for object localization in
terms of speed. It consists of all three stages of object local-
ization network as shown in the Fig. 8. It has two-stage loss
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Fig. 7. Illustration of Stage 3: The classification and further box refinement of RoI boxes from the second stage proposal with softmax and Bbox
regression. Where FC refers to Fully-connected layer.

Fig. 8. Faster R-CNN architecture for DFU localization which consists
of all three stages discussed earlier.

Fig. 9. R-FCN architecture which considers only the feature map from
the last convolutional layer which speeds up the three stage network.

function whereas first stage loss function that consists of the pa-
rameters such as space, scale and aspect ratio of the proposals.
Then, second stage loss function re-runs the crops of proposal
produced by the second stage with feature extractor to produce
more accurate box proposals for classification.

Dai et al. [41] proposed the Region-based Fully Convolu-
tional Networks (R-FCN) to produce faster box proposals by
considering the crops only from the last layer of features with
comparable accuracy as Faster R-CNN which crop features from
the same layer where region proposals are predicted as shown
in the Fig. 9. Due to cropping limited only to the last layer, it
minimizes the time to get the box refinement.

Single Shot Multibox Detector (SSD) [42] is a new architec-
ture for the object localization which uses a single stage CNN
to predict classes directly and anchor offsets without the need of

Fig. 10. The architecture of Single Shot Multibox Detector (SSD). It
considers only two stage by eliminating the last stage to produce faster
box proposals.

second stage proposal generator unlike Faster R-CNN [39] and
R-FCN [41] as shown in the Fig. 10. The SSD meta-architecture
produces anchors much faster than other object localization net-
works, which makes it more suitable for the mobile platforms.

There are six popular state-of-the-art object localization mod-
els which are based on these three region based detector meta-
architectures i.e. Single Shot multibox detector [42], R-FCN
[41] and Faster R-CNN [39]. These three meta-architectures
used the state-of-the-art classification algorithms like Mo-
bileNet [43], InceptionV2 [44], ResNet101 [45], Inception-
ResNetV2 [46] to get the anchor boxes from the features maps,
and finally, classify these anchors to different classes. Table I
summarises the size of models, speed (inference per image), and
accuracy (mAP) trained on MS-COCO dataset with 90 classes
[38], [47].

Since our work is limited by the hardware on mobile devices
and real-time prediction, we only considered lightweight models
(very small, low latency) in terms of size of the model and in-
ference speed. We used the first three models (SSD-MobileNet,
SSD-InceptionV2 and Faster R-CNN with InceptionV2) for the
DFU dataset as illustrated in Table I. These small models are
specifically chosen to match the resource restrictions (latency,
size) on mobile devices for this application. To evaluate the
performance of DFU localization using heavy model, we also
include R-FCN with ResNet101 to our experiment.

Inception-V2 is a new iteration of the original inception ar-
chitecture called GoogleNet with new features such as fac-
torization of bigger convolution kernels to multiple smaller
convolution kernels and improved normalization. For the first
time, this network used depth-wise separable convolutions to
reduce the computations in the first few layers. They also in-
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TABLE I
PERFORMANCE OF STATE-OF-THE-ART OBJECT LOCALIZATION MODELS ON MS-COCO DATASET [38]

troduced batch normalization layer which can decrease internal
covariate shift, also combat the gradient vanishing problem to
improve the convergence during training [44].

MobileNet is a recent lightweight CNN which uses depth-
wise separable convolutions to build small, low latency models
with a reasonable amount of accuracy that matches the limited
resource on mobile devices. The basic block of depth-wise sepa-
rable convolution consists of depth-wise convolution and point-
wise convolution. The 3 × 3 depth-wise convolution is used to
apply a single filter per each input channel whereas pointwise
convolution is just simple 1 × 1 convolution used to create the
linear combination of the depth-wise convolution output. Also,
it uses both batchnorm layers as well as RELU layers after both
layers [43].

ResNet101 is one of the residual learning networks which
won the first place on ILSVRC 2015 classification task [45]. As
suggested by the name, ResNet101 is a very deep network con-
sists of 101 layers which is about 5 times much deeper than VGG
nets but still having lower complexity. The core idea of ResNet
is providing shortcut connection between layers, which make it
safe to train very deep network to gain maximal representation
power without worrying about the degradation problem, i.e.,
learning difficulties introduced by deep layers.

D. The Transfer Learning Approach

CNNs requires a considerable dataset to learn the features
to get the positive results for detection of objects in images
[5]. It is vital to use transfer learning from massive datasets
in non-medical backgrounds such as ImageNet and MS-COCO
dataset to converge the weights associated with each convolu-
tional layers of network [10], [48], [49] for training the limited
dataset. The main reason for using two-tier transfer learning
in this work is because, the medical imaging datasets are very
limited. Hence, when CNNs are trained from scratch on these
datasets, they do not produce useful results. There are two types
of transfer learning i.e. partial transfer learning in which only
the features from few convolutional layers are transferred and
full transfer learning in which features are transferred from all
the layers of previous pre-trained models. We used both types
of transfer learning known as two-tier transfer learning [10]. In
the first tier, we used partial transfer learning by transferring the

features only from the convolutional layers trained on most sig-
nificant classification challenge dataset called ImageNet which
consists of more than 1.5 million images with 1000 classes
[37]. In the second tier, we used full transfer learning to transfer
the features from a model trained on object localization dataset
called MS-COCO that consists of more than 80000 images with
90 classes [38]. Hence, we used the two-tier transfer learning
technique to produce the pre-trained model for all frameworks
in our DFU localization task.

E. Performance Measures of Deep Learning Methods

We used four performance metrics i.e. Speed, Size of the
model, mean average precision (mAP), and Overlap Percent-
age. The Speed determines the time model takes to perform
inference on single image whereas Size of the model is the to-
tal size of the frozen model that is used for the inference of
test images. These are crucial factors for the real-time predic-
tion on mobile platforms. The mAP has an ”overlap criterion”
of intersection-over-union greater than 0.5. The mAP is an im-
portant performance metric extensively used for the evaluation
of the object localization task. The prediction by model to be
considered a correct detection, the area of overlap Ao between
the bounding box of prediction Bp and bounding box of ground
truth Bg must exceed 0.5 (50%) [50]. The last evaluation metric
is called Overlap Percentage, which is mean average of inter-
section over union for all correct detection.

Ao =
area(Bp ∩ Bg )
area(Bp ∪ Bg )

(1)

III. EXPERIMENT AND RESULT

As mentioned previously, we used the deep learning mod-
els based on three meta-architectures for the DFU localization
task. Tensorflow object detection API [47] provides an open
source framework which makes very convenient to design and
build various object localization models. The experiments were
carried out on the DFU dataset and evaluated with 5-fold cross-
validation technique. First, we randomly split the whole dataset
into 5 testing sets (20% each) for 5-fold cross validation. This
is to ensure that the whole dataset was evaluated on testing sets.
For each testing set (20%), the remaining images was randomly
split into 70% for training set and 10% validation set. Hence,
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for each fold, we divided the whole dataset of 1775 images into
approximately 1242 images in training set, 178 in validation set
and 355 in testing set. This was repeated for 5-fold to ensure the
whole dataset was included in testing set.

a) Configuration of GPU Machine for Experiments: (1) Hard-
ware: CPU - Intel i7–6700 @ 4.00 Ghz, GPU - NVIDIA TITAN
X 12 GB, RAM - 32 GB DDR4 (2) Software: Tensor-flow [47].

We tested four state-of-the-art deep convolutional networks
for our proposed object localization task as described in
Section III B. We trained the models with input-size of 640
× 640 using stochastic gradient descent with different learning
rate on Nvidia GeForce GTX TITAN X card. We initialised the
network with pre-trained weights using transfer learning rather
than randomly initialized weights for the better convergence of
the network. We tested the multiple learning rates by decreasing
the original learning rates with the 10 and 100 times as well as
multiplication factor from 1 to 5 to check the overall minimal
validation loss. For example, if the original Inception-V2 learn-
ing rate was set at 0.001. Then, for training on DFU dataset,
we used 10 learning rates of 0.0001, 0.0002, 0.0003, 0.0004,
0.0005, 0.00001, 0.00002, 0.00003, 0.00004, 0.00005.

We used 100 epochs for training of each reported model,
which we found are sufficient to train the DFU dataset as both
training and validation loss finally converge to optimal lowest.
We selected the models on the basis of minimum validation
losses for the evaluation. We tried different hyper-parameters
such as learning rate, number of steps and data augmentation
options for each model to minimize both training and valida-
tion losses. In next section, we report the different network
hyper-parameters and configurations for each model used for
evaluation on the DFU dataset.

We set the appropriate hyper-parameters on the basis of meta-
architecture to train the models on DFU dataset. For SSD, we
used two CNNs, MobileNet and Inception-V2 (both of them
use depth-wise separable convolutions), we set the weight for
l2_regularizer as 0.00004, initializer that generates a
truncated normal distribution with standard deviation of 0.03
and mean of 0.0, batch_norm with decay of 0.9997 and ep-
silon of 0.001. For training, we used a batch size of 24, optimizer
as RMS_Prop with a learning rate of 0.004 and decay factor
of 0.95. The momentum optimizer value is set at 0.9 with a
decay of 0.9 and epsilon of 0.1. We also used two types of
data augmentation as random horizontal flip and random crop.
For Faster-RCNN, we set the weight forl2_regularizer as
0.0, initializer that generates a truncated normal distribution with
standard deviation of 0.01, batch_normwith decay of 0.9997
and epsilon of 0.001. For training, we used a batch size of 2,
optimizer as momentum with manual step learning rate with an
initial rate as 0.0002, 0.00002 at epoch 40 and 0.000002 at epoch
60. The momentum optimizer value is set at 0.9. For training
RFCN, we used same hyper-parameters as Faster-RCNN with
only change in the learning rate set as 0.0005. For data aug-
mentation, we used only random horizontal flip for these two
meta-architectures.

In Table II, we report the performance evaluation of object
localization networks for DFU dataset on 5-fold cross valida-
tion. Overall, all the models achieved promising localization

results with high confidence on DFU dataset. Few instances of
accurate localization by all trained models are demonstrated by
the Fig. 11. SSD-MobileNet ranked first in the Size of Model
and Average Speed performance index. This is mainly due to
the simpler architecture to generate anchor boxes in SSD [42].
Whereas in Ulcer mAP and Overlap Percentage, R-FCN with
ResNet101 and Faster R-CNN with InceptionV2 were almost
equally competitive in these performance measures. In Ulcer
mAP, Faster R-CNN with InceptionV2 ranked first with overall
mAP of 91.8%, just slightly better than R-FCN with ResNet101
with mAP of 90.6%. But, in Overlap Percentage, R-FCN-
Resnet101 achieved a score of 96.1%, which was slightly better
than Faster R-CNN with Inception. SSD-InceptionV2 ranked
third in both of these performance measure categories with dif-
ference of 4.6% in Ulcer mAP and 3.5% in Overlap Percentage
from the first position. In performance measures, overall Faster
R-CNN with InceptionV2 was the best performer, and the most
lightweight SSD-MobileNet emerged as the worst performer
in terms of accuracy. Finally, we tested models on the dataset
of 105 healthy foot images for specificity measure. None of
the above-mentioned models produce any DFU localization on
these healthy images.

A. Inaccurate DFU Localization Cases

In this work, we explored different object localization meta-
architectures to localize DFU on full foot images. Although
the performance of all models is quite accurate as shown in
the Fig. 11, this section explores inaccurate localization cases
by trained models on DFU dataset in 5-fold cross-validation
as shown in the Fig. 12. We found that trained models were
struggled to localize the DFU of very small size and that has
the similar skin tone of the foot especially, SSD-MobileNet and
SSD-InceptionV2. There are cases of DFU that have very subtle
features, not even, most accurate models such as Faster-RCNN
with InceptionV2 and R-FCN with ResNet101 were able to
detect these conditions.

IV. INFERENCE OF TRAINED MODELS ON NVIDIA
JETSON TX2 DEVELOPER KIT

Nvidia Jetson TX2 is the latest mobile computer hardware
with an onboard 5-megapixel camera and a GPU card for the
remote deep learning applications as shown in the Fig. 13. How-
ever, it is not capable of training large deep learning models.
We installed tensor-flow specifically designed for this hardware
to produce inference from the DFU localization models that
we trained on the GPU machine. Jetson TX2 is a very com-
pact and portable device that can be used in various remote
locations.

b) Configuration of Jetson TX2 for Inference: (1) Hardware:
CPU - dual-core NVIDIA Denver2 + quad-core ARM Cortex-
A57, GPU - 256-core Pascal GPU, RAM - 8 GB LPDDR4 (2)
Software: Ubuntu Linux 16.04 & Tensor-flow.

We did not find any difference in the prediction of the models
on Jetson TX2 hardware and the GPU machine; the only let-off
is the slow inference speed on the Jetson TX2. It is obviously
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TABLE II
PERFORMANCE MEASURES OF OBJECT LOCALIZATION MODELS ON THE DFU DATASET

Fig. 11. The accurate localization results to visually compare the performance of object localization networks on the DFU dataset. Where SSD-
MobNet is SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2 is Faster R-CNN with InceptionV2, and RFCN-Res101 is R-FCN with
ResNet101.

due to limited hardware compared to the GPU machine. For
example, the speed of SSD-MobileNet was 70 ms per infer-
ence on Jetson TX2 as compared to 30 ms on GPU machine.
Also, for real-time localization, models can produce the visu-
alization of maximum 5 fps using the on-board camera with
lightweight model. Fig. 14 demonstrates the inference using
Jetson TX2.

V. REAL-TIME DFU LOCALIZATION WITH

SMARTPHONE APPLICATION

Training and inference of the deep learning frameworks
on smartphone are challenging tasks due to limited resources
of a smartphone. Hence, we trained these object localization
frameworks on the desktop with a GPU card. We utilized the
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Fig. 12. Incorrect localization results to visually compare the performance of object localization networks on DFU dataset. Where SSD-MobNet is
SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2 is Faster R-CNN with InceptionV2, and RFCN-Res101 is R-FCN with ResNet101.

Fig. 13. Nvidia Jetson TX2.
Fig. 14. DFU localization on Nvidia Jetson TX2 using Faster R-CNN
with InceptionV2 on tensor-flow.
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Fig. 15. Real-time localization using smartphone android application. In the first row, images are captured by default camera. In the second row,
the snapshot of real-time localization by our prototype android application.

whole dataset of 1775 DFU images for further experiments by
randomly splitting 90% data in the training set and remain-
ing 10% in the validation set. We trained only Faster R-CNN
with InceptionV2 on this dataset because of the best trade-off
between the accuracy and the speed. With android studio and
tensor-flow deep learning mobile library, we deployed these
models on Samsung A5 2017 (Android Phone) to create the real-
time object localization for DFU. As mentioned in the previous
section, we finalized Faster R-CNN with InceptionV2 model for
the prototype android application.

We tested our prototype application for the real-time appli-
cation in real-time healthcare settings as shown in the Fig. 15.
We tested this application on 30 people in this preliminary test
in which 10 people were with DFU. Out of 10 people with
DFU, our application detected 8 DFU and out of 20 people with
normal foot, our application did not detect any false detection.
Furthermore, more user-friendly features, care, and guidance
will be added to this application to make it a complete package
of DFU care for diabetic patients.

VI. DISCUSSION AND CONCLUSION

Diagnosis and detection of DFU by the computerized method
has been an emerging research area with the evolution of com-
puter vision, especially deep learning methods. In this work, we
investigated the use of both conventional machine learning and
deep learning for the DFU localization task. We achieved rel-
atively good performance using conventional machine learning
technique. But, due to multiple intermediate steps, this approach
is very slow for the DFU localization task. In deep learning,
we used different object localization meta-architectures to

train the end-to-end models on the DFU dataset with different
hyper-parameter settings and two-tier transfer learning to
localize DFU on the full foot images with high accuracy. As
shown in the Fig. 11, these methods are capable of localizing
multiple DFU with high inference speed. We also found that
though SSD meta-architecture produced fastest inference due
to the two-stage architecture, Faster R-CNN produced the most
accurate results in our task. Then, we demonstrated how these
methods can be easily transferred to a portable device, Nvidia
Jetson TX2, to produce inference remotely. Finally, these deep
learning methods were used in an android application to provide
real-time DFU localization. In this work, we developed mobile
systems that can assist both medical experts and patients for
the DFU diagnosis and follow-up in the remote settings.

In the present situation, manual inspection by podiatrists re-
mains the ideal solution for the diagnosis of DFU. However,
Netten et al. [51] claimed that human observers achieved low
validity and reliability for remote assessment of DFU. There-
fore, computerized method could be used as a tool to improve
human performance. Developing the remote, computerized and
innovative DFU diagnosis system according to the medical clas-
sification systems and exactness accomplished by the podiatrist,
it demands a significant amount of research. To assist podiatrist,
foot analysis with computerized methods in the near future, the
following issues need to be addressed.

1) The detection of DFU on foot images with computer-
ized methods is a difficult task due to high inter-class
similarities and intra-class variations in terms of color,
size, shape, texture and site amongst different classes of
DFU. Although, detection and localization of DFU on full
foot images is a valuable study, further analysis of each
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DFU on foot images is required according to the medical
classification systems followed by podiatrists such as
the Texas Classification of DFU [29] and the SINBAD
Classification System [52]. Most of the state-of-the-art
computerized imaging methods rely on the supervised
learning. Hence, there is a need for laborious manual an-
notation by medical experts according to these popular
classification systems. For example, the Texas classifi-
cation system classifies DFU into 16 classes depending
on conditions of DFU based on ischemia, infection, area
and depth. These methods can be extended to produce
localization of DFU and determine the outcome of DFU
according to the Texas classification system with sub-
stantial image data belonging to each class and expert
annotations.

2) Deep learning methods require a considerable amount of
data to learn features of abnormality in medical imaging.
To achieve accurate DFU detection according to differ-
ent classification systems, multiple images of same DFU
covering key specific conditions such as lighting condi-
tions, the distance of image capture from the foot and
orientation of the camera relative to the foot. To our best
knowledge, there are no publicly available standardized
DFU dataset with descriptions and annotation. Hence,
there is a requirement for a publicly available annotated
DFU dataset with essential diagnostic capability in this
regard. The standardized dataset can help to produce even
more accurate results with these methods.

3) Early detection of key pathological changes in the dia-
betic foot leading to the development of a DFU is really
important. Hence, the time-line dataset of patients with
early signs of DFU till the diagnosis is required to achieve
this objective. With these methods and time-line dataset,
the early prediction, healing progress and other potential
outcomes of DFU could be possible.

4) The combination of image features and diagnosis features
such as patient’s ethnicity, the presence of ischemia, depth
of DFU to the tendon, neuropathy would aid to a more
robust DFU diagnosis system.

5) The DFU diagnosis system should be scalable to multiple
devices, platforms and operating systems.

With limited human resources and facilities in healthcare sys-
tems, DFU diagnosis is a significant workload and burden for
the government. The computer-based systems have huge poten-
tial to assist healthcare systems in DFU assessment. The new
technologies like the Internet of Things (IoT), cloud comput-
ing, computer vision and deep learning can enable computer
systems to remotely assess the wounds, provide faster feedback
with good accuracy. But, this integrated system should be tested
and validated rigorously by podiatrists and medical experts, be-
fore it is implemented in the real healthcare setting and deployed
as a mobile application.
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