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Gaussian Processes for Personalized
Interpretable Volatility Metrics
in the Step-Down Ward

Glen Wright Colopy

Abstract—Patients in a hospital step-down unit require
a level of care that is between that of the intensive care
unit (ICU) and that of the general ward. While many patients
remain physiologically stabilized, others will suffer clinical
emergencies and be readmitted to the ICU, with a subse-
quent high risk of mortality. Had the associated physiolog-
ical deterioration been detected early, the emergency may
have been less severe or avoided entirely. Current clinical
monitoring is largely heuristic, requiring manual calcula-
tion of risk scores and the use of heuristic decision criteria.
Technical drawbacks include ignoring the time-series dy-
namics of physiological measurements, and lacking patient-
specificity (i.e., personalization of models to the individual
patient). In this paper, we demonstrate how Gaussian pro-
cess regression models can supplement current monitoring
practice by providing interpretable and intuitive illustrations
of erratic vital-sign volatility. These personalized volatility
metrics may provide significantly advanced warning of de-
terioration, while minimizing the false alarms that induce
so-called alarm fatigue. While many Al-based approaches
to healthcare are criticized for being uninterpretable “black-
box” methods, the cause of alarms generated from the pro-
posed methods are explicitly interpretable and intuitive.
We conclude that intelligent computational inference us-
ing methods such as those proposed can enhance current
clinical decision making and potentially save lives.

Index Terms—Precision medicine, forecasting, Gaussian
processes, patient monitoring, statistical learning, time se-
ries analysis.

|. INTRODUCTION

HE challenge to (i) identify a deteriorating hospital patient
and (ii) bring this information to a clinician’s attention is
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beset with clinical and technical challenges. In the hospital step-
down unit (SDU), where a patient’s intensity of care transitions
between the intensive care unit (ICU) and the general ward,
such alarms systems must be timely, interpretable, suitable for
application to a general heterogeneous patient population.

Current proposals to address these (or similar) clinical chal-
lenges may be either heuristic (e.g., Early Warning Scores -
EWS, such as the National EWS - NEWS or Modified EWS -
MEWS) or empirical (i.e., a score learned and validated from
data). Empirical alarm systems tend to focus on bringing a par-
ticular quantifiable facet of patient physiology to light (e.g., ab-
normally high or low physiological measurements, anomalous
trajectories, or deranged waveform morphology).

We propose to quantify erratic vital-sign volatility as one such
useful metric that may address the timeliness, transparency, and
generalizability criteria described earlier. The remainder of the
paper describes several methods by which to derive these volatil-
ity metrics. Empirical evaluations are given to demonstrate
why these volatility metrics may usefully supplement current
approaches to monitoring.

II. CLINICAL NEED
A. The Role of Step-Down Units in Healthcare

An SDU provides care intermediate between that of an ICU
and an in-patient ward. The SDU manages the recovery of stabi-
lized acutely-ill patients after discharge from the ICU; however,
the intensity of monitoring in the SDU is less than that of the
ICU in accordance with patient condition. The SDU may also
receive patients from the general ward who require an escala-
tion in care [1]. Patients admitted to the SDU may enter for a
variety of clinical conditions; monitoring techniques that can
generalize to a heterogeneous patient population are therefore
desirable for condition monitoring in the SDU.

B. Severity of Patients in the Step-Down Unit

Although SDU patients are physiologically stable in gen-
eral, a significant portion of SDU patients experience a clinical
emergency event, or require emergency re-admission to the ICU.
Bose et al. [2] and Yousef et al. [3] determined respectively that
31% and 34% of SDU patients on a single ward experienced car-
diorespiratory instability during their stay. Mortality rates were
2% and 3% respectively. Various studies across different hos-
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pitals have estimated ICU readmission rates (within the same
hospital stay) to be 3.9%-9% [4], 8.8% [5], and 0%-18.3% [6].

C. Severity of Readmitted ICU Patients

Readmission to the ICU has significant implications for pa-
tient outcomes: Campbell er al. [5] estimated mortality rates
of 40.2% for ICU patients readmitted within the same hospital
stay. Cooper et al. [4] estimated readmission mortality to be
24.7%, in contrast to 4.0% mortality of patients who were not
readmitted.

These high levels of mortality motivate the use of principled
methods to identify (and, ideally, predict) physiological deteri-
oration. We propose to implement such methods via intelligent
computerised inference to supplement the knowledge of clinical
staff.

D. The Clinical Value of Early Warning

Not all deaths after discharge from the ICU are preventable
[5]-[7] but there is evidence that earlier response can reduce
mortality rates [5], [8]. Hogan et al. [9] estimated that 5.2% (52
of 1000) of acute hospital deaths were preventable. Donaldson
et al. [10] identified over 2,000 preventable patient deaths over
29 months across the UK. Both [9] and [10] identified the pri-
mary cause of most of the preventable deaths to be undetected
early warning signs, and a failure to act on the evidence of dete-
rioration. Yousef et al. [3] reported ““a mean of 6.3 hours elapsed
between the onset of a clinically apparent cardiorespiratory in-
stability and the activation of our rapid response system”, with
early warning ranging from O to 15 hours.

These statistics suggest the presence of an observable period
of deterioration, prior to emergency readmission. That many
such periods of deterioration were observable but not acted
upon suggests that clinicians may be more apt to intervene from
alarms that are interpretable than for conventional systems of
alarms. We therefore wish to generate alarms whose cause may
be visualized and readily interpreted, as will be the approach
described in this paper.

[ll. REVIEW OF EARLY WARNING SYSTEMS

A multitude of patient monitoring systems are used in the
ICU, SDU, and other hospital wards. A useful distinction can be
drawn between (i) heuristic methods and (ii) empirical methods
which, broadly, describe the means by which clinical decision
criteria are derived. The methods employed, and the physiology
that is of interest, when detecting physiological deterioration
varies according to clinical context. We here examine some of
the various methods used for EWS systems.

A. Heuristic Early Warning Systems

Heuristic methods include the use of rule-based thresholds,
for example NEWS [11], MEWS [12], and the Acute Physi-
ologic Assessment and Chronic Health Evaluation (APACHE)
I-I1 [13], [14] which raise an alarm if a vital sign exceeds a pre-
specified threshold. These thresholds are usually set according
to expert clinical experience concerning a general population of

stable patients. A review of these single-parameter systems can
be found in [15], and of multi-parameter systems in its com-
panion article [16]. Typical critiques of such methods include
their lack of patient-specificity, arbitrary threshold values, dis-
regarding the presence of any trends that may exist over time,
and disregarding the history of vital-sign values preceding the
current set of observed values.

B. Empirical Early Warning Systems

Empirical approaches to patient monitoring learn explicit re-
lationships between physiological data (e.g., vital signs, lab-test
results) and clinical outcomes of interest (e.g., mortality, emer-
gency ICU readmission). Examples include regression-based
methods such as the Simplified Acute Physiology Score (SAPS)
II-1IT [17] and APACHE III-1V [18]. Novelty detection methods
[19], such as the Visensia EWS algorithm [20], are a popular
means of quantifying divergence from a class of interest.

Machine learning methods have also been proposed to as-
sist in clinical prognosis and diagnosis. Examples include the
use of support vector machines (SVMs) for sepsis classifica-
tion [21] and vital-sign time-series interpolation [22], neural
networks and autoencoders for gout and leukemia classification
[23], and vector autoregression for causal inference on time-
series. Applications of Gaussian process regression (GPR) to
patient monitoring is described in the next section

IV. GAUSSIAN PROCESSES FOR PATIENT MONITORING

GPR is a particularly popular model for patient monitoring
due to its probabilistic framework (to handle noisy measure-
ments) [24], flexibility to represent a wide range of functional
forms, and its ability to model time-series with irregularly-
spaced time-stamps [23]. Particularly relevant examples include
Durichen et al. [25] who used multi-task GPR to model the cor-
relation between nurse-recorded observations in heart rate, res-
piratory rate, and blood pressure to impute missing data values.
Wong et al. [26] used GPR to impute missing vital-sign values,
as well, to calculate EWSs. Pimentel ef al. [27] used multi-task
GPs to estimate and cluster vital-sign trajectories to distinguish
between deteriorating and non-deteriorating patients. Clifton
et al. [28] used GPs with extreme value theory (within what the
authors term to be extreme function theory) to perform novelty
detection in physiological time-series.

We propose to use GPR to derive personalized volatility met-
rics. As described above, the non-parametric flexibility of GPR
allows it to model a wide range of personalized time-series dy-
namics. The probabilistic framework of our approach allows it
to explicitly model measurement noise in physiological time-
series data. The Bayesian non-parametric framework allows the
GP to regularize its real-time inference over a small number of
interpretable hyperparameters. Finally, as shown in Figure 1,
the posterior estimates of the hyperparameters of a GP can
concisely and visually represent the model, thereby allowing
interpretability when presented to clinicians.
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Fig. 1. Gaussian process inference for deterioration detection. In (a) a
GP fits a patient’s time-series and identifies the sharp downward trend
in HR, and forecasts the probability that HR will fall below the 40 bpm
threshold within the next hour, which would trigger a clinical alarm. On the
same patient, this same GP fit and forecast can be used (b) to estimate
the probability of the HR achieving a particular NEWS early warning
score. On a different patient, in (c) the GP forecast may be used as a
step-change detector, to quantify the deviation of a patient’s vital-sign
trajectory from its expected trajectory. As an alternative to comparing
vital-signs at only a single point in time, in (d) a segment of the patient’s
time-series is compared to a dictionary of healthy patients’ time-series.

A. GP-Based Approaches to Detecting Deterioration

As illustrated in Figure 1, there are many possible warnings
that an intelligent computer system may bring to a clinician’s
attention via GP inference using vital signs.

For example, a GP can forecast the probability density of a
vital-sign time-series’ future values. This allows for the appli-
cation of probabilistic reasoning to questions such as whether
the vital-sign will 1(a) exceed the thresholds of a trigger system,
or 1(b) achieve a particular EWS, for example those defined by
the thresholds of the NEWS scoring system. Compared to spo-
radic monitoring of vital signs, the GP-based approach allows
for a transparent and principled method to handle the trends and
noisiness of vital-sign measurements. Both 1(a) and 1(b) use
GP modelling to infer a patient’s deviation from an aggregate
healthy population.

Alternatively, we may wish to 1(d) compare a segment of a
patient’s time-series to segments from a dictionary of healthy
patients. This method would incorporate both (i) magnitude of
values, like current systems, as well as (ii) time-series dynamics,
which are currently ignored.

Noting the homeostatis involved in physiology, in which the
body seeks to return to physiological normality, we may also
focus on 1(c) unusual dynamics. In particular, if we interpret
abnormally-rapid increases or decreases of a particular vital sign
as evidence of homeostatic reaction, then we may circumvent the
need explicitly to learn examples of vital-sign abnormality. That
is, we can use ‘“‘step-change” detection to identify departures
from physiological normality, rather than explicitly modelling
physiological abnormality. (This is advantageous, because we
tend to have many more examples of normality than abnormality
for patients; also, physiological abnormality will differ substan-
tially from patient to patient, and thus it can be very difficult to
model in explicitly in the patient-specific setting.)

B. Selection of GP-Based Step-Change Detection

The vital signs of deteriorating patients do not always de-
grade gradually into abnormality. This is, perhaps, unsurprising
in light of the large number of patient deteriorations that go unde-
tected in clinical practice. When these predictable degradations
do occur, they are typically too close in time to the emergency
event to provide actionable early warning. This suggests that GP
applications such as in Figure 1(a) and 1(b) are unlikely to gar-
ner significant gains in terms of early warning of deterioration,
since there is rarely a prolonged period of evidence for extreme
values before they occur.

The comparison of a current time-series to a dictionary of ref-
erence patients, as in Figure 1(d) can provide early warning gains
over currently available methods. Such a method may be thought
of as an expansion of the kernel density estimate (KDE) method
(discussed in Section VII) into the personalized probabilistic
time-series domain. Furthermore, the method is extensible (to
many or few time-series or non-time-series features) and trans-
parent in its decision criterion. Although time-series matching
can easily be run in real-time, it does require significant memory
to hold the reference dictionary.

This paper will focus on step-change detection methods, as
illustrated in Figure 1(c). Such methods are extensible (to many
or few time-series features) with minimal computational ef-
fort. This makes such a method a realistic contender for clin-
ical implementation across a variety of clinical environments
(e.g., both those with and without significant computational re-
sources). From a clinical standpoint, such methods are transpar-
ent and interpretable for real-time inspection by the clinician.
The technical details of GPR-based step-change detection (and
an SVM-based comparator) will be covered in a later section.

V. CLINICAL DATA

A data set comprising 333 adult patients was collected in
the surgical-trauma SDU at the University of Pittsburgh Med-
ical Center (UPMC) Presbyterian Hospital. The patients were
recorded as phase 1 of a 3-phase trial to optimise and validate
the efficacy of a KDE-based monitoring system described in
[20]. Phase 1 was designed to optimise the KDE-based sys-
tem’s clinical alarm threshold. (As described below, we will
use this KDE-based system as one of our baseline comparators
against GPR-based monitoring.)
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TABLE |
UNIVARIATE MET ALARM THRESHOLDS

\ | Lower Threshold | Upper Threshold |

HR (bpm) 40 140

RR (bpm) 8 36

SpO2(%) 85 -
SBP (mmHg) 80 200
DBP (mmHg) - 110

Each patient’s data record contains unique time-series for
each of five vital-signs: heart rate (HR), respiratory rate (RR),
SpOa,, systolic blood pressure (SBP), and diastolic blood pres-
sure (DBP), acquired by Phillips bedside monitors. The time-
series of each vital-sign comprised (i) vital-sign measurements
and (ii) their associated time-stamps. Patients’ vital-signs were
recorded continuously, with individual patient records lasting
from less-than an hour to several weeks on ward. HR, RR, and
SpO- were acquired at approximately % Hz. SBP and DBP were
recorded approximately once every 30 minutes.

112 clinically-validated emergency events, called C”’-events,
occurred in 59 patient’s vital-sign time-series. These 59 patients
are called C”-patients. Each patient record includes the time-
stamp, duration, and primary cause of any C”-event. C’-events
are defined as a single vital-sign’s prolonged non-artefactual
exceedance of the thresholds defined in Table I. Non-artefactual
exceedances of these thresholds warrant emergency medical in-
tervention. Identical or nearly-identical criteria have been used
in numerous other studies at the UPMC SDU to define “car-
diorespiratory instability”, for example in [1]-[3], [29]. The
presence of 112 emergency C”-events when, in practice, only
7 MET calls were made for abnormal vital-signs supports the
understanding that continuous monitoring can add value to the
intermittent observation of nursing staff.

VI. EXPERIMENTAL DESIGN
A. Data Selection

For the purpose of detecting deterioration, we will focus on
a patient’s first C”-event since the vital-signs subsequent to that
first C”-event may be affected by clinical intervention. (Simi-
lar reasoning is found, e.g., when developing the APACHE IV
system [18], which use patient exclusion-criteria to avoid the
confounding affects of previous emergency interventions.)

Acknowledging the small number of C”-patients, we took all
59 C”-patients and 89 non-C”-patients (selected at random) to
test the efficacy of early deterioration detection. The remain-
ing 333 — 59 — 89 = 185 patients were used as a training set
to (i) learn how to parametrize GPR and SVM models fit to
HR, RR, and SpO, time-series and (ii) train the KDE baseline
comparator.

B. Early Warning Performance Metric

Each of the comparator methods is evaluated according to its
trade-off between two performance metrics: (i) the false positive
alarm rate (FPR), and (ii) the time of early warning (TEW).

O
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Fig.2. The construction of a TEW vs. FPR plot. In (a) the early warning
scores of three patients (red, blue, and green) are shown near their
respective C"-event, at time 0 (orange). Plausible alarms are considered
if they occur between 8 before until 2 hours after the event (white), and
not considered if they occur outside of this time period (grey). In (b),
for any alarm sensitivity we have a corresponding false-alarm rate in the
non-C”-patient set (which we aggregate into a single proportion across all
89 non-C”-patients) and the TEW across the 59 C”-patient. To visualise
the dispersion of TEW values, we plot the 33, 50, and 67 percentiles of
the 59 C”-patients. The TEW distribution at two distinct FPR values is
shown in (b) in red, and the constituent TEW values are plotted in (c)
and (d), illustrating how, for each patient, TEW increases monotonically
with FPR.

The trade-off between TEW and FPR closely resembles the
familiar ROC curves. However, the TEW vs. FPR performance
metric incorporates both (i) the clinical ambiguity of a patient’s
time-series prior to deterioration, as well as (ii) the time-value of
early alarms. The calculation of a TEW vs. FPR plot is described
in Figure 2: Alarms on non-C”-patients are false positive alarms.
For a generic EWS calculated over time, in 2(a), true positive
alarms are those alarms on C”’-patients falling in the time period
of 8 hours before until 2 hours after the C’-event (in orange).
A patient’s TEW is the time between a C’-patient’s first true
alarm (within this window) and his first C”-event (in orange).
Alarms prior to 8 hours before, or following 2 hours after the
C”-event (in the greyed-out region) are not considered due to
their ambiguous status. That is, it is less certain that an alarm in
this region is specific to the abnormal physiology related to this
C”-event.

A false negative would be the failure of the EWS to escalate
sufficiently to surpass an alarm threshold within the alarmable-
window. The TEW of such cases is censored at —2 hours, which
is 2 hours after the C”-event at 0 hours. This is the worst possible
TEW result. The desired TEW vs. FPR plot of 2(b) is achieved
by modulating the threshold required to trigger, which, in turn,
modulates our alarm sensitivity in the window of 2(a), but at the
cost of more frequent false positives among non-C” patients.

At a given alarm threshold, each patient will differ in the
TEW due to differing personal physiology in the period sur-
rounding their C”-event. We are therefore interested in the the
distribution of TEWs for all 59 C”-patients at any particular
FPR. To visualize this, we plot the 33, 50, and 67-percentiles
of the TEW distribution at each FPR. For example, at two dif-
ferent FPR values, marked in red in 2(b), we can see that the
span of TEW quantiles differ since they are drawn from the
59 individual-patient’s TEWSs, shown in 2(c) and 2(d). We are
interested in the distribution of TEW because it informs impor-



COLOPY et al.: GAUSSIAN PROCESSES FOR PERSONALIZED INTERPRETABLE VOLATILITY METRICS IN THE STEP-DOWN WARD 953

Fig. 3. KDE-based model of patient vital-sign abnormality. The dis-
played figures show only HR and RR, however, the KDE model was fit
across all 5 recorded vital-signs: HR, RR, SpO,, SBP, and DBP. The 185-
patient training set comprises millions of 5D vital-sign measurements.
For practical implementation, these data are reduced to 400 k-means
centroids (e). In (a) the KDE fits a joint probability density to the 400 cen-
troids (e). This produces high-likelihood regions were the training data
is present, and low-likelihood regions elsewhere. In (b) the negative log-
likelihood of the KDE creates a novelty score which is high when data
are far from those data seen in the training set. Since the training set
is comprised of non-C”-patients, we assume that deviation from these
points may indicate deterioration.

tant clinical considerations, such as worst-case performance on
the hardest patient cases. Such patients are of special interest to
machine-monitoring applications, since they have the greatest
potential to benefit, compared to easy-to-identify deteriorating
patients.

VIl. DETERIORATION DETECTION METHODS
A. Baseline Comparator: KDE Method

There are many methods from which to select a baseline com-
parator. To represent the technical state-of-the-art in empirical
patient monitoring, we select a KDE-based novelty detection al-
gorithm. A further 6 methods, based on current heuristic practice
were also tested. These were single-parameter trigger systems
for each of the 5 vital-signs, along with a NEWS-based algo-
rithm. However, the TEW vs. FPR results for each of these 6
methods were inferior to that of the KDE and are not shown.

A KDE-based model of patient normality reasonably repre-
sents the current technical state-of-the-art in empirical methods
in use today, particularly for the UPMC data set under consid-
eration:

The UPMC data set was first collected in order to train and
evaluate such a model in 2008. As a testament to its success,
KDE-based monitoring was retained in the UPMC SDU after
the conclusion of the study, and continues to generate publica-
tions using UPMC SDU data. The KDE-based model, commer-
cially known as Viscensia, was FDA-approved in 2012. Using
the Visensia system in a single-site prospective study (the same
UPMC SDU as this study), Hravnak et al. [29] found that the
time period of using the Visensia system had a statistically-
significant decrease in the number and duration of cardiorespi-
ratory instabilities per admission, compared to the time period
prior to using the system. Mortality decreased from 2% (before
Visensia) to 1% (after using Visensia), but a statistical compar-
ison was not made.

In Figure 3(a), the KDE models the joint distribution of the
vital-signs from a “healthy” patient group (the training set’s 185
non-C”-patients described earlier). In Figure 3(b) the novelty of
a new measurement is quantified by the negative log-likelihood
of the new measurement with respect to the KDE. The KDE’s

warning score is used any time in which at least 3 of the 5
vital-signs are available.

Notably, the KDE is an IID model of vital-signs: Vital-sign
abnormality is only a function of their current values and not of
their time-series dynamics.

B. GP Model

Ebden [30] provides a concise introduction to GPs for regres-
sion and classification. An overview of Gaussian process co-
variance functions can be found in “The Kernel Cookbook™ by
David Duvenaud [31], with a more in-depth coverage through-
out multiple chapters of his thesis [32].

The GP extends the multivariate Gaussian (of pre-defined
dimensionality ) to an infinite-dimensional stochastic process.
We define the GP to be a stochastic process for which any finite
subset of points, along a domain ¢, follows an MVN distribution.
This MVN has both a mean vector, m, and covariance matrix,
K to describe any observed data points.

To populate the elements m and K for any finite subset
(conditional on specifying all t), we replace the mean vector,
m, with a mean function p(t). That is, mean of the Gaussian at
point ¢ is p(t).

Similarly, the covariance of any two points y; and y;, located
at points ¢; and ¢;, is defined by covariance function k(t;,t;) =
Covly;, y;]. This function k(t;,t;), which will be described in
detail below, is positive semi-definite and typically decreases as
t; and t; separate in distance. Note that the covariance function
k takes the location (time) of the random variables y; and y; as
arguments, not y; and y; themselves.

We return to our initial definition of a GP as “a
stochastic process for which any finite subset of points,
along a domain ¢, follows a multivariate Gaussian”. Given
this specification of Y'(¢t) ~ GP(u(t), k(¢,t')), then for any
finite vector t = [t1,...,t,] we have a random vector
Y (t) = [yt ,-.., s, |, with the now-familiar mean vector m =
BIY (6)] = [1(t:)s s pr(ts ).

The covariance matrix is

E(ty,t1) E(ti,tn)

k(tn s t1) k(tn ) tn)

While GPs do not necessarily specify a functional form over
y(t), a priori, functional characteristics may be made implicit
via the a priori-specified mean and covariance functions, which,
typically, are parametric. Selection of the covariance function
k(t,t'), typically receives the lion’s share of attention for GP
model selection. This may be sensible, given that, while the
prior mean may be “washed out” where data is observed, the
implicit effect of the covariance function will always influence
the posterior estimate of y(t).

Collating the hyperparameters of the mean and covariance
functions into a single vector, 8, we can infer appropriate values
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of 6 though the posterior log marginal likelihood (LML)

log p(y|6) = —%(y -m)'T7' (y —m)

1
—5log |8 - Flog(2m), (1)

where 6 influences log p(y) via the the mean function and co-
variance function which determine the values of the mean vector,
m,, and the covariance matrix, 3.

This crucial inferential step typically either (i) optimises the
LML (e.g. via gradient ascent), or (ii) integrates across the LML
(e.g. via Markov Chain Monte Carlo as in [33]). Access to
parallel computation can assist MCMC via (i) running multiple
parallel MCMC chains, or, alternatively, (ii) parallel processing
of the proposals for the likelihood-ratio step between points
[34].

Due to the real-time application of patient monitoring al-
gorithms, it is desirable to reduce computational burden, where
possible. One way to achieve this is to frame the GP as an equiv-
alent state-space model, which requires less-burdensome infer-
ence. [35] demonstrates how these requirements can be reduced
to O(m>n) for covariance inversion and O(m?*n) for memory,
by reformulating k(¢,t") as an mth-order, scalar, linear time-
invariant stochastic differential equation. This computation-
saving manipulation does not affect interpretation of the GP
models subsequently described. For this reason we used a state-
space approximation of the GP, with hyperparameters fit via
optimisation of Equation 1.

C. GP-Based Step-Change Detection

Figure 4 illustrates how a GP-based step-change algorithm
sequentially fits and forecasts the future distribution of 4(a)
BR, 4(b) Sp0O2, and 4(c,d) HR values. When the future values
are consistent with the prediction, as in 4(d), the corresponding
LML, as shown in 4(h) will be high. However if the future values
are not consistent with the forecast distribution, as in 4(a-c), then
the corresponding LML will be lower, as in 4(g). It is reasonable
to present the various LML values within a forecast window via
a summarising statistic, such as the mean. This also mitigates the
affect of occasional outlying measurements. Since conventional
alarm scores are high in the presence of abnormal physiology,
we will measure step-change warning scores in terms of negative
log marginal likelihood (NLML).

Since the step-change detector forecasts over a time-window
that contains one NLML value per vital-sign measurement with
the window (as seen in Figure 4(g) and 4(h)), the step-change de-
tector’s tunable parameters include (i) the metric to summarize
NLML values within the forecast window, and (ii) the time-
length of the window. To reduce research degrees of freedom,
we will relegate our choices to the simplest and most obvious
choices for these tunable parameters. We will examine the mean
NLML of 1-minute forecast windows.

Using the 185 training set non-C”-patients, we can assess
forecasting robustness of various combinations of covariance
functions with regularising priors for our GP model. Since our
goal is step-change detection of large forecast errors, we select
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Fig. 4. lllustration of a GP-identified step-change in (a) RR, (b) SpO-,
and (c) HR. In (d) the HR time-series shows no step change. GPs are
fit to observed data (e) and forecast the distribution of unseen data in
the future (o). In (c) the asymmetric GPR confidence bounds on SpO,
are duetoalog (101 — SpO, ) transformation, to minimize the proportion
of the posterior distribution greater than 100%, which is physically im-
possible. Since the marginal Gaussian distribution changes through the
forecast window, the z-scores of the forecast-window HR from (c) and (d)
are shown in (e) and (f), respectively. In (e) and (f) a N (0,1) reference
distribution (gold) is provided with (- -) denoting mean + 0, 1, and 3
standard deviations. The forecast LML of each measurement in the fore-
cast windows of (c) and (d) are shown in (g) and (h), respectively. The
LML measurements within a specific time window may be summarized,
e.g., by the mean or another statistic. Step-change warning scores are
the negative of these LML values, NLML.

kernel-prior combinations that maximise the lowest 1%-10% of
forecast LML for each patient. A patient-by-patient evaluation
of these criteria is helpful to avoid Simpson’s paradox, by which
a model with inferior performance across all patients individ-
ually may appear to have superior performance on aggregate.
Using these criteria, we selected an additive two kernel Matérn
5/2 covariance function, plus white noise, to model HR time-
series. We selected a single-kernel Matérn 3/2 covariance func-
tion, plus white noise, to model RR and SpO, time-series. The
Matérn 3/2 and 5/2 covariance functions encode that the time-
series are once- and twice-differentiable, respectively, which is
more realistic for erratic vital-sign time-series than the smooth
(infinitely-differentiable) radial basis function (RBF) kernel.

In Figure 5, we show how step-change metrics may be used
as a continuously-monitored warning score in the same man-
ner as the NEWS or the KDE methods described above. It is
noteworthy that unlike the NEWS or KDE method, which tend
to be persistent, the step-change detector (by its nature) pro-
duces transient warning metrics. This can be seen in 5(b) where
step-change NLML is escalated for only a short period of time,
e.g. for HR step-change NLML (red) near hours 71, 73, and
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Fig. 5. Time-series of a patient’s vital-signs and early warning scores

leading up to an emergency event near hour 80 (black vertical line). The
patient’s vitals in (a2) HR (e) and RR (e), and (c) SpO: (e) each display
various step-change dynamics. SBP and DBP are not shown. In (d), the
5-vital KDE score of the patient vitals has been calculated. It is seen
here to escalate at the approach of the emergency event. In (b) the step-
change detection novelty score for each individual vital sign is shown for
HR (e), RR (e), and SpO: (). No step-change score is available in the
absence of measurements.

74.5 and for SpO, step-change NLML (green) near hours 77.5,
78.5, and 80. This is to be expected since the flexibility of the
GP allows it to quickly adjust to the new (volatile) data and re-
sume precise forecasting. In contrast, the KDE-based warning
score in 5(d) is persistent when elevated, e.g., between hours 79
and 80.

Since the warning scores produced by step-change detec-
tion are transient instead of persistent, the warnings scores of a
step-change detector are apt to be missed if monitored only spo-
radically by clinical staff. In this, step-change detection would
only be appropriate in a continuous computer-assisted monitor-
ing setting since the score indicative of deterioration would need
to be recorded and brought to the attention of clinical staff.

D. Baseline Comparator: SVM-Based Step-Change
Detection

SVMs provide an alternative method to the GP for non-linear
time-series regression. In contrast to the GP, which evaluates
the suitability of parameters via the posterior likelihood func-
tion, the SVM is typically parametrized via cross validation
techniques. Previous work in SVMs for time-series applications
has noted their difficulty in forecasting (compared to alterna-
tive time-series tasks such as interpolation, as in [22]). Like the
GPR method, the SVM can learn time-series trends and fore-
cast. Since SVM is non-probabilistic, a forecast’s performance
will be evaluated by root mean squared-error (RMSE) and, in
turn, will serve as the metric for SVM-based step-change.

A common critique of machine learning literature is that base-
line methods are less rigorously tuned to the desired applica-
tion, compared to the proposed method. To address this, mul-
tiple cross-validation methods (CVMs) were compared to find
the best method of parametrizing the SVM’s RBF kernel for
forecasting tasks. The three contending cross-validation meth-
ods (abbreviated to CVM-1, CVM-2, and CVM-3, respectively)
were

® CVM-I: traditional k-fold cross-validation, with training
data randomly allocated to each fold,

e CVM-2: “windowed” k-fold cross validation, with the
training data partitioned into k-contiguous time windows,
and

® CVM-3: forecast-only validation, where the k-folds for
cross validation are k sequential training and forecast win-
dows at the end of the data set.

An illustration of each CVM is provided in the appendix of
supplemental material. We will note that with continuously ac-
quired vital-sign data, CVM-1 selects parameters according to
strong interpolation performance, CVM-3 for strong forecast
performance, and CVM-2 for a combination of forecast, back-
cast, and interpolation performance. To validate our choice in
CVM, the 185 training set patients were divided into 45 pa-
tients to learn vital-sign specific (i) ranges for the SVM param-
eters and (ii) the preferred CVM. The remaining 140 patients
were used to compare SVM to GPR forecast (the GP’s covari-
ance function having also been selected by performance on the
same 45 patients). For each vital-sign, CVM-2 was found to
have marginally better forecast RMSE than CVM-3, and both
outperformed CVM-1.

VIII. RESULTS
A. GPR vs. SVM for Step-Change Detection

140 patients were used to compare SVM to GPR forecast.
In Figure 6, patient-specific forecasting of GPR and SVM were
compared. Results indicated that GPR provided more accurate
forecast performances more frequently for most patients. Ac-
cordingly, for our step-change detection method, it is sensible
to select GPR to derive the metric since it (i) is more successful
learning and forecasting patient dynamics 6(a-c), (ii) provides
probabilistic estimates (of which SVMs are incapable), and (iii)
seems to run faster 6(d-f). For thoroughness, the early warning
performance of the SVM was also evaluated, and this is included
in the appendix.

B. TEW vs. FPR Results

We wish to emphasize how personalized volatility metrics
may helpfully supplement more common extreme-value ori-
ented EWS. Accordingly, the results section will focus on the
comparison of the GPR-derived personalized volatility met-
rics against the population-wide, extreme-value oriented KDE
method. A performance comparison for the GPR versus SVM-
based methods can be found in the supplemental materials.

Figure 7 shows the TEW vs. FPR performance of the 5-vital-
sign KDE against the performance of GPR-based step-change
detection models over 1, 2, and 3 vital-signs. We focus on early
warning performance in the 0% to 2.5% FPR range due to the
desirability to mitigate alarm fatigue. The strong performance
of step-change detection methods suggest that step-change de-
tection, or similar methods may provide a useful supplement to
the current state-of-the-art in patient monitoring.

Among the univariate step-change detectors, 7(a) HR and
7(b) RR both outperform the KDE, despite each using only
a single vital-sign compared to the KDE’s five vital-signs. The
7(c) step-change on SpOs is nearly the same as the KDE, except
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for which GPR was more accurate, and results are stratified by patient. A
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included in the analysis. Subplots (d), (e), and (f) compare the runtimes
to parametrize for each forecast, with SVM (e)(e)(e) and GPR (e). These
runtime differences should be seen as rough comparisons, given that
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univariate step-change detectors (_) on (a) HR, (b) RR and (c) Spo2;
Bivariate step-change detectors (_) on (d) HR+RR, (e) HR+SpO2, and
(f) RR+SpO2; Trivariate step-change detector (_) on (g) HR+RR+SpO2
(red). Lines represent 33, 50 and 67 percentiles of TEW at the respective
FPR. Each FPR value is calculated from 600 random time points for each
of the 89 non-C”-patients in the test set, i.e. 600 x 89 = 53,400 total time
points. Results were nearly identical when FPR was calculated using
minutely predictions from the first 72 hours of monitoring.

for the KDE’s superior performance in the 0% to 0.5% FPR
range. An explanation for the superior performance of univariate
step-change detection over the KDE will be discussed shortly,
however this outcome is positive in several respects:

First, the step-change method is not dependent on the magni-
tudes of vital-signs. The information contained within the step-
change detection metrics is significantly different from KDE or
NEWS-based scores. This suggests that such a metric may be
a useful supplement to current monitoring. Second, the strong
monitoring results on only a single vital-sign suggests that a vast
number of clinical variables may not be necessary to achieve
optimal or near-optimal monitoring performance. This may be
useful, i.e. for intelligent monitoring in resource-constrained
settings where fewer monitoring modalities are available. How-
ever, both of these benefits are dependent on the interpretablity
of the step-change detector when it brings warning scores to the
attention to clinical staff.

A final note on the univariate step-change methods is that,
within the FPR range of 0% to 0.5%, the KDE frequently outper-
forms the step-change detector in median and 33-percentile per-
formance. This region roughly corresponds to warnings about 1
hour or less prior to the emergency event. Contributing factors
to this are several-fold. One factor is the missingness in individ-
ual vital-channels near the emergency event, as illustrated for
HR and RR in Figure 5(a). This puts univariate methods at a
disadvantage when the particular vital-sign under consideration
is missing. However, this would also put the KDE method at a
disadvantage when 3 or more of the five-total vital signs (that is,
any 3 between HR, RR, SpO,, SBP, and DBP) are missing since
the KDE would no longer produce a score whereas univariate
monitoring system on either of the other two vital-signs would
continue.

More important than the issue of missingness, is the definition
of C”-events: C’-events, by definition, have highly-abnormal
vital-sign values. This means that the KDE-based warning score
is nearly-guaranteed to be high in proximity to emergency events
because at least one vital-sign will be sufficiently abnormal to
contribute to a high warning score. In contrast, the emergency
events are not defined according to vital-sign volatility, on which
step-change methods are based. Step-changes are, therefore, not
guaranteed to occur at the time of event.

When KDE performance is compared to 5(d,e,f) bivariate and
5(g) trivariate step-change detection, there are fewer caveats to
the results, since results are almost uniformly superior. While
the improved performance itself may be unsurprising (having
already seen that univariate methods themselves produced su-
perior results) the magnitude of difference in performance mo-
tivates further inspection to understand why this may be.

IX. DISCUSSION

There are several possible factors that contribute to the differ-
ence in performance between step-change based monitoring and
KDE-based monitoring. The following factors were determined
to be particularly important:

1) The physiology at the time of emergency differs from the
physiology preceding the emergency.
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2) Personalisation of monitoring improves FPR, or, con-
versely, population-based risk assessment necessitates
high FPR.

We will illustrate each of these two items below to add trans-
parency to why GP-based volatility metrics (via step-change
detection) may to a useful supplement to current monitoring
methods, which may only alarm when a patient’s vital-signs are
univariately or jointly extreme.

A. The Physiology at the Time of Emergency Differs
From the Physiology Preceding the Emergency

Vital-sign measurements tend to differ between (i) the time
of the emergency event, and (ii) the time preceding an emer-
gency events. In other words, the majority of patients” abnormal
values are not preceded by a long period of gradual decent to-
wards abnormal values. Instead vital-signs are more frequently
characterised by “shocks” to one or more vital-signs, which are
quickly corrected by homeostatic mechanisms. This can be ver-
ified by examining plots of patient time-series in the the time
period surrounding emergency events. For example, in Figure 5,
the emergency event triggered by low-SpO, near hour 80, was
only preceded by about 1 hour of decreasing SpO-. Otherwise,
there was nothing abnormal in the absolute values of HR, RR,
or SpOs. This means that NEWS or KDE-based warning scores
would only begin to increase (compared to the general popu-
lation) in the final hour before deterioration. Therefore, for the
KDE to achieve a TEW greater than 1 hour, FPR would need to
increase substantially. In contrast, step-change detection identi-
fies at least 3 prominent HR step-changes, 2 prominent RR step-
changes, and two prominent SpO- step-changes, in addition to
several smaller step-change episodes. This results in approxi-
mately 1 step-change episode per hour. It is unclear whether the
KDE warning score was artificially depressed between hours
76 to 80 due to the missingness of HR and RR, however, the
KDE does not appear to identify any episodes for which alarms
should be raised between hours 70 to 76, in which data for all
vital signs are available.

In summary, magnitude-based EWS methods (e.g., KDE,
NEWS) have both advantages and disadvantages:

An advantage is that alarms occur for vital-sign measurements
that are univariately or jointly abnormal (high or low). Since the
emergency events of this data set were also annotated as such for
their abnormally high or low values, the KDE can alarm reliably
at the time of the annotated emergency events. In contrast, the
step-change detector has no such guarantee that the requisite
physiology (a step-change) will occur at the time of the event.

However the TEW metric places a premium on advanced
warning, since earlier warning facilitates preventative clinical
intervention. If vital-signs are neither abnormally high or low
far in advance of the emergency event, then magnitude-based
monitoring methods are disadvantaged.

B. Personalization Improves FPR

Like the heuristic NEWS approach, the KDE-based EWS
suffers from attempting to use a single model to describe all
patients. This means that it only matters (i) whether a patient
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RR, (c) SpO2, contrasted to (g) KDE warning scores, and step-change
NLML in (d) HR, (e) RR, and (f) SpO2. For each patient the following
percentiles are marked: median (-), 25 and 50 (e), 5 and 95 (e), and 2.5
and 97.5 (e). Patient indices are ordered in ascending median value for
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in (d) HR, (e) RR, and (f) SpO-. For each patient the following percentiles
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exhibits physiology abnormal to the entire population, not (ii)
whether the patient exhibits physiology abnormal to himself.
Age- and sex-based early warning scores attempt to adjust for
obvious confounding demographic information, however, the
intra-group variability is likely to be substantial, given that
inter-patient and intra-patient variability is high. Inter-patient
variability is high, even when stratified by C”-status.

To illustrate this, the inter- and intra-patient variability of
vital-signs, KDE warning scores, and step-change warning
scores are plotted in Figure 8 for 89 non-C”-patients, and Fig-
ure 9 for 59 C”-patients.

Inspection of the intra-patient ranges in 8(a-c) and 9(a-c)
show patient vital-signs occur in completely different dynamic
ranges. In extreme cases the upper 2.5 percent of one patient’s
vital-signs may be less-than the lower 2.5 percent of another
patients vital-signs. This, effectively, removes the possibility
of alarming on low values for patients with high-valued vital-
signs or alarming on high values for patients with low-valued
vital-signs. More importantly with respect to the FPR met-
ric, this means for an “average” patient in the middle of this
range could not achieve any type of alarm without the moni-



958 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 3, MAY 2019

toring system inducing a nearly-constant state of alarm in other
patients.

In contrast, the dynamic range of step-change NLML for
HR, RR, and (to a lesser-extent) SpOs is highly consistent and
compact across all patients. Fewer patients have dynamic ranges
in step-change NLML that overlap with the extreme (alarm-
generative) values of other patients. For example, the 2.5 quan-
tile values of HR NLML in C”-patients in 9(d) are more extreme
than those of non-C”-patients in 8(d). This indicates that C”-
patient have more pronounced HR step-changes than non-C”
patients, as we would expect. More important for maintaining
a low FPR, though, is that no patient has average values that
would fall within the high NLML range. This leads to a two-
fold conclusion: (i) a single threshold can delineate between
low-NLML and high-NLML step-changes across all patients,
and (ii) highest NLML step-changes occur more frequently in
C”-patients than they do in non-C”-patients. It is not surpris-
ing then, that step-change detection demonstrates a successful
trade-off between TEW and FPR.

The KDE method falls in between thresholding on raw
vital-signs and the step-change method. Comparing KDE
warning scores between the 89 non-C” patients in 8(g) and
the 59 C’-patients in 9(g), it is immediately apparent that
C”-patients experience a much higher rate of high warning
scores than non-C”-patients. The difference is much greater,
even, than the difference between NLML step change values of
C” and non-C”-patients. This is expected, since the KDE-based
novelty score is persistent in the presence of abnormality.
However it can be seen that the 95 (o) and 97.5 (e) percentiles
of KDE novelty are still highly-intermingled with more central
values on an inter-patient basis. To avoid the high FPR that
make an early warning system infeasible in clinical practice, the
high and low percentiles must be clearly delineated. Otherwise
the system will generate a near-constant rate of alarms in a
subset of the non-C”-patients, which escalates average FPR.

X. CONCLUSION

Current practice in vital-sign EWSs focuses on identifying
patients with extreme vital-sign measurement values. This is
sensible, given that emergency events themselves are typified
by vital-signs with extreme values. However, clinical reasoning
over time-series offers many ways to identify early physiolog-
ical indications which current practice tends to ignore. Such
reasoning requires an intelligent system, both to compute warn-
ing metrics and inform the clinician.

The probabilistic representation of GP modelling allows us
to incorporate a richer range of physiological features beyond
magnitude, such as volatility and uncertainty in the patient’s
current and future vital-sign values. The described methods can
provide useful clinical insight beyond or paired with current
practice, even when using only a single vital-sign. This is helpful
in implementation, since the benefits of a step-change detector
may be realised with only a single vital-sign, whereas other
empirical monitoring systems may require a diffuse range of
vital-signs in order to provide an EWS. Both the baseline KDE
method and step-change detection (via GPR or SVM) have their

advantages, however the KDE and related methods are limited
due to (i) their population-based approach to modelling patient
abnormality, which increases FPR, and (ii) the fact that many
patients do not exhibit extreme-valued vital-signs until shortly
before the emergency event, which decreases the TEW provided
by such methods.

The described step-change methods may be applied to a vari-
ety of settings including those with constrained computational
resources or with a single vital-sign under consideration. Im-
portantly, the described step-change detection models can be
run in real-time, even with minimal computational resources,
and present salient interpretable physiology to clinical staff to
explain the cause of the alarm. By displaying the vital-sign step-
change that precipitated the alarm, the GP-based step-change
detector is far from a black-box algorithm, it is an intelligent
monitoring system to supplement and enhance a clinician’s un-
derstanding of deterioration.

Xl. FUTURE WORK

Reiterating our conclusion that personalized volatility metrics
are promising candidates with which to supplement (not replace)
current clinical metrics, we would suggest several steps mov-
ing forward. First, a clinical review of the volatility metrics,
and their associated interpretable figures, as in Figure 4(a-c),
would be helpful to identify which of the step-changes clini-
cians would like to be brought to their attention. Currently, we
have not identified precisely which step-change alarms would
have elicited clinical intervention, and therefore our method’s
effect on clinical outcome requires prospective validation. Clin-
ical feedback would also help establish strategies to combine
these personalized volatility metrics with the more traditional
extreme-value-based EWSs.

In this paper, we constrained our search to a generally-
applicable warning score, due to the heterogeneous patient pop-
ulation in the UPMC set. However there are many critical care
wards in which patients are suffering from a more homoge-
neous set of clinical ailments. In this case, it would be helpful
to bring in a larger number of condition-specific physiological
parameters, to better tailor treatment to the patient population.
In these settings waveform data (which was unavailable in the
UPMC set) would also be desireable to (i) better evaluate mea-
surement noise and (ii) identify informative arrhythmias with
disease-specific connotations.
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