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Abstract—As the popularity of wearable and the im-
plantable body sensor network (BSN) devices increases,
there is a growing concern regarding the data security
of such power-constrained miniaturized medical devices.
With limited computational power, BSN devices are often
not able to provide strong security mechanisms to protect
sensitive personal and health information, such as one’s
physiological data. Consequently, many new methods of
securing wireless body area networks have been proposed
recently. One effective solution is the biometric cryptosys-
tem (BCS) approach. BCS exploits physiological and be-
havioral biometric traits, including face, iris, fingerprints,
electrocardiogram, and photoplethysmography. In this pa-
per, we propose a new BCS approach for securing wireless
communications for wearable and implantable healthcare
devices using gait signal energy variations and an artifi-
cial neural network framework. By simultaneously extract-
ing similar features from BSN sensors using our approach,
binary keys can be generated on demand without user
intervention. Through an extensive analysis on our BCS ap-
proach using a gait dataset, the results have shown that
the binary keys generated using our approach have high
entropy for all subjects. The keys can pass both National
Institute of Standards and Technology and Dieharder statis-
tical tests with high efficiency. The experimental results also
show the robustness of the proposed approach in terms of
the similarity of intraclass keys and the discriminability of
the interclass keys.

Index Terms—Wearable security, gait biometrics, artificial
neural network, data privacy, wireless communications, IoT
security.

I. INTRODUCTION

R ECENT wireless communication technology advance-
ments have facilitated the development of light-weight,

low-energy, miniaturized sensor nodes to be worn on human
body or implanted in the body, thus, forming a network of body
worn sensors (i.e. Body Sensor Networks (BSN)), and asso-
ciated wireless networking technology which is known as the
Wireless Body Area Network (WBAN) defined by the IEEE
standard 802.15.6 [1]. Operating mainly in ISM (Industrial,
Scientific and Medical) bands, wireless channels in WBANs are
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opened to anyone with matched radio interface configurations,
and thus attackers can eavesdrop or even participate within the
wireless communication amongst WBAN sensor nodes [2]. As
a result, a high level data protection is a necessity for BSNs,
whereby the protection of patients’ data from unauthorized ac-
cess is of paramount importance. However, due to the very
limited computational power, the lack of an user interface, and
the low battery power design of BSN sensors, security solutions
for wearable and implantable sensors are required to be light-
weight and robust. Physiological signals, such as Electrocar-
diogram (ECG), Photoplethysmography (PPG), and behavioral
characteristics, such as voice [3], and gait [4], can be captured
by BSN sensors, thus, providing opportunities for Biometric
Cryptosystems (BCS) to be applied as channel encryption, de-
vice authentication, and key distribution methods for securing
WBANs. The state-of-the-art BCSs are mainly designed based
on extracting binary keys from ECG signals [5], [6] for WBAN
channel encryption and authentication. However, ECG sensors
are expensive and cumbersome to use, as they require two or
more electrodes to be directly attached onto the body and have
to be with at least a few centimeters apart to measure the poten-
tial differences generated by the cardiac cycle. Long term use of
such electrodes could cause irritation and poor contacts result in
inaccurate ECG readings. In addition, most ECG-based BCSs
require high sampling frequencies to capture the fiducial points
in ECG waveforms, which could drain the battery power of the
BSN sensors.

Alternatively, gait signals can also be used as the common
source for generating secret keys for symmetric BCSs. Gait
refers to the walking pattern of a person and it has been shown
that gait signature is a reliable biometric for security applications
[7]–[9]. Gait signals can be captured by using Inertial Measure-
ment Units (IMUs), which are less expensive and much smaller
than ECG sensors, and many wearable and implantable devices
are already embedded with an IMU or inertial sensor. The chal-
lenge of using gait signals as the common entropy sources for
generating secret binary keys for BSN applications is that the
IMU signals collected from sensors located at different posi-
tions are less correlated, compared to ECG signals. As initially
discovered by Cornelius et al. [10], a good correlation exists
between gait signals collected from different body positions,
including hands and legs, however, it is not sufficient to extract
high similarity random numbers. Without applying any method
to increase the correlations between the IMU signals at different
positions, only a fraction of common features from the different
IMU signals can be used to extract secret keys for securing the
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on-body wireless channels, which will significantly hinder the
reliability of gait based biometric. For example, a gait-based
authentication scheme BANDANA [11] can only extract 4 bits
per gait cycle from the IMU signals. Another gait-based authen-
tication scheme [12] using Fast Fourier Transform (FFT) can
only extract one bit per second on average (around 1.2 bits per
gait cycle) from IMU signals. Our proposed security scheme
is capable of generating 13 bits per gait cycle, outperforming
the state-of-the-art gait-based key generation and authentication
schemes.

Therefore, we propose the use of Artificial Neural Network
(ANN) to estimate IMU signals on the chest from IMU signals
from other body positions, to increase the correlations among
the IMU signals at different body positions, such as head, wrist,
and thigh. Using the correlated IMU signals estimated by the
ANN, sensors located at different body positions are capable
of extracting secret keys with high similarity for symmetric
encryption of wireless channels among them. ANN is used
in the proposed security scheme due to its flexibility (can be
easily retrained) and light-weight (compared to deep learning
approaches). The ANN framework only has 1 hidden layer with
10 hidden nodes, which can be easily implemented in the iOS
[13] or Android [14] based wearable devices. Xu et al. [15] have
also proposed a gait-based automatic key generation protocol,
in which an Independent Component Analysis (ICA) approach
is applied to separate acceleration signals produced by torso
movement and arm swing motions. Xu’s work only considered
placing the coordinator on the chest position, but in practical,
coordinators, such as mobile phones, are often placed in the
pockets (thigh positions). Our proposed ANN framework is
more flexible in terms of where the network coordinator can be
placed on the body. In the experiment, the proposed biometric
security scheme was tested on 7 different body positions,
namely head, upperarm, chest, waist, wrist, thigh, and shin.
The coordinator can be placed at any of the aforementioned
major body positions. Majority of the gait-based biometric
security schemes require fixed network coordinator positions
[7]–[9], [15], [16], whereas the proposed security scheme
can be applied on the wearable devices located at any body
positions.

In this paper, we propose an ANN framework for gait bio-
metrics for symmetric encryption, using signal energy variations
with an ANN-based gait signal estimation algorithm, to secure
wireless channels among wearable medical and healthcare de-
vices and on-body network coordinators. The proposed security
scheme can generate encryption keys with high level of unique-
ness, freshness, robustness, and efficiency, compared with the
state-of-the-art gait-based approaches. Our contributions in this
paper are summarized as follows:

1) gait-based biometric/security scheme for securing wire-
less channels of wearable devices and coordinators;

2) ANN framework for IMU signal estimation to in-
crease the correlations among different on-body
positions [17];

3) analysis of the security strength of the proposed security
scheme against common attacks on biometrics

Fig. 1. A typical 3-tier BSN-based healthcare system.

II. METHODOLOGY

A. System Modeling

Fig. 1 illustrates a typical 3-tier BSN-based healthcare system
[18], where the sensor data, such as skin temperature and blood
pressure readings, collected from patients are forwarded to med-
ical servers by gateway devices or personal servers, which is
often an on-body coordinator (ex. a smart-phone). The wireless
communications between the personal servers to the medical
servers are often secured by computer network security mea-
sures, such as the Secure Sockets Layer (SSL). However, there is
very limited protection for the wireless communications among
the sensors and the personal servers. Our proposed security
scheme is designed to symmetrically encrypt the wireless chan-
nels among sensors and the on-body coordinator with the secret
keys extracted from the estimated IMU signals. As sensors and
the coordinator are placed on the same body, they can simulta-
neously capture the gait IMU signals when the user is walking.
Then the ANN framework can be applied to increase the corre-
lations, and improve the reliability of the security scheme. Gait
is defined as the walking pattern of a person, and gait signals in
this paper refer to the acceleration and angular velocity captured
by the IMU sensors during the walking motion. Gait signals can
also be recognized as a behavior biometric trait, with both time-
domain features, such as instantaneous signal energy variation,
and frequency-domain features, such as FFT coefficients. An
advantage of using behavioral biometric traits, including gait,
rather than using physical biometric traits, such as fingerprints,
is that the binary keys generated at different time intervals will be
sufficiently different, thus providing freshness and randomness
to the security scheme. As such, our proposed scheme uses gait
signals as the common source for the on-body or implantable
sensors to generate secret keys for the symmetric BCS.

However, the main challenge of using gait signals as the com-
mon source for key generation is that the gait signals captured
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Fig. 2. IMU outputs at the chest and shin positions, a = acceleration,
ω = angular velocity, and B = magnetic field. (a) IMU outputs at the
chest. (b) IMU outputs at the shin.

Fig. 3. Overview of the proposed security scheme.

by the sensors positioned at different locations on the body
will have different patterns as shown in Fig. 2. The discrepan-
cies between the sensor signals are often introduced by body
movements such as arm and leg swings. As stated in [15], the
frequency of acceleration introduced by arm swing overlaps
with the frequency of the torso movement, so they cannot be
separated simply by applying filters. To solve this problem, we
propose the use of ANN-based gait signal estimation [19] to
project the gait signals acquired from body worn sensors onto
the chest, to minimize the gait signal differences among sensors
and improve the performance of the security scheme. The esti-
mated gait signals will have similar signal patterns and energy
variations, from which similar binary keys can be extracted for
the symmetric BCS approach. This is illustrated in Fig. 3, where
an overview of the proposed security scheme is presented.

As presented in the bottom of Fig. 3, the scheme requires
a training phase, where ANNs on the sensors and the coordi-
nator are trained using the ground truth gait signals captured
by the sensors attached to the chests. The ANNs will require
reinforcement training if the sensor is moved to a new position.
Such training can be conducted in the set up phase of a BSN
system, and the trained scheme can then be applied as most of
the wearable and implantable devices are worn or fixed to the
targeted positions; for instance, a smart watch will always be
worn on the wrist. Moreover, complex tasks like the training of
ANNs can be carried out by a high performance cloud server

Fig. 4. ANN-based gait signal estimation.

and the trained model can then be transferred onto the sensors
for on-node processing, therefore, the power consumption can
be minimized while maintaining a sufficient level of security.
The proposed security scheme consists of four main functional
blocks: a signal recording block, an ANN-based gait signal es-
timation block, a binary key generation block, and a fuzzy key
exchange block. For secured communications, sensors and the
coordinator will perform the functions of these blocks sequen-
tially to establish an encrypted channel for data exchange. Meta
information including gait cycles and reliability vectors (from
which the secret keys cannot be guessed) will be exchanged in
the binary key generation block, and individual secret keys will
be corrected in the fuzzy key exchange block as indicated using
the gray double-headed arrows in Fig. 3.

B. ANN-Based Gait Signal Estimation

The ANN-based gait signal estimation block consists of a pre-
processing layer, an input layer, a hidden layer with 10 hidden
nodes, and an output layer. In the training phase, the acceler-
ation in the inverted gravity direction, a−G,chest , captured by
the sensors on the chest are set as the training targets. Although
the accelerometer has 3 axes and the orientation of the sensors
are often not aligned with the anatomical plans of the users, the
inverted gravity direction can be easily detected by choosing the
axis which has the largest mean value, as gravity is mostly cap-
ture on that axis of the accelerometer. In the proposed security
scheme, only the acceleration in the inverted gravity direction is
used to demonstrate the feasibility of the scheme, and a−G will
be referred as the gait signal in the rest of the paper. The gait
signals, a−G,input, captured by the coordinator and the sensors
except the ones on the chests are set as the training inputs. The
training dataset consists of the training inputs and the training
target that collected on the same subject and at the same time.
Assuming there are N samples in the training target, each sam-
ple in the training dataset, represents features extracted from
sliding window with size W in the training inputs, as illustrated
in Fig. 4. Thus, there are W

2 + N + W
2 features in the training

inputs for N samples in the training dataset.
Assuming the red circle in the training target in the output

layer represents the nth sample, and the red dash rectangle on
the training inputs is the associated sliding window, w(n). The
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training input for the nth sample is given by

x(n) = [a−G,input(w(n))]T (1)

where w(n) ∈ [n − W −1
2 , n + W −1

2 ]. The training inputs for
the entire training set can be expressed as

X = [x(1), x(2), ..., x(n), ..., x(N)] (2)

whereas the training target set is

Y = [y(1), y(2), ..., y(n), ..., y(N)] (3)

where y(n) is the nth sample in the training targets.
An ANN has to be trained for each sensor other than those

worn on the chest. In the application phase, the inputs follows
the same format as the training inputs X, whereby the outputs
of the ANNs are the estimated gait signals projected on the
chest, denoted as â−G,chest . By estimating chest gait signals on
both the coordinator and the sensors, they would obtain much
similar gait signals as the common source, as shown in Fig. 10,
from which binary keys with high similarity can be generated
using the algorithms presented in section III-C. The impact of
the ANN-based gait signal estimation block is analyzed and
presented in section IV-B-3.

C. Binary Key Generation

Since the binary key generation block is performed on the
coordinator and the sensors, its algorithms have to be light-
weight. The algorithm only contains three modules: a gait cycle
detection module, a binary sequence extraction module, and a
reliability bit extraction module.

1) Gait Cycle Detection: the gait cycle detection module is
adopted from [17], in which a low pass filter is applied to
â−G,input . The cut-off frequency of the low pass filter is set
to 3 Hz, because the average gait frequency is between 1.7 and
2.7 Hz [16]. Every two consecutive valley is considered as the
boundary between two adjacent gait cycles, as indicated with
the red vertical lines in Fig. 5b, where two gait cycles are pre-
sented for illustration. After the gait cycle detection module, the
original gait signal â−G,input is filtered by a 10 Hz low-pass
filter which is shown as the blue dash line in Fig. 5c, to remove
any noise. Assuming J gait cycles are found, the detected gait
cycles are then interpolated or decimated to the same length, T ,
which is the averaged number of samples in all gait cycles for
each subject. The normalized gait cycles are denoted as

c = [c1 , c2 , ..., cj , ..., cJ ] (4)

where cj = [â1 , â2 , ..., ât , ..., âT ]T and ât represents the tth

sample in â−G,chest .
2) Binary Sequence Extraction: to calculate signal energy

variations, c is divided into U groups, and each group contains
L gait cycles. The gait cycle group is represented as

C = [C1 , C2 , ..., Cμ , ..., CU ] (5)

where Cμ = [cμ , cμ+1 , ..., cμ+ l , ..., cμ+L ]. Then, all the aver-
aged gait cycle, α, for C is represented as

α = [α1 , α2 , ..., αμ , ..., αU ] (6)

Fig. 5. Illustration of the binary key generation block. (a) Gait signal
â−G ,ch est (m/s2 ). (b) â−G ,ch est (m/s2 ) filtered by the 3 Hz low-pass
filter. (c) Bit extraction by comparing â−G ,ch est filtered by the 10 Hz
low pass filter and the averaged â−G ,ch est . (d) Energy difference, δ,
between â−G ,ch est ,L P =10 H z and â−G ,ch est ,a v g . (e) Re-indexed binary
keys using the associated reliability vectors.

where αμ = 1
L

∑L
l=1 cμ+ l .

The signal energy difference, δ, between c and α can be
calculated using

δμl = cμ+ l − αμ (7)

as a gait cycle c contains T samples, the signal energy difference
for the tth individual sample in the lth gait cycle of the μth gait
cycle group is δμlt , which can be used for generating a bit,
bμlt ∈ {0, 1}, using

bμlt =

{
1, δμlt ≥ 0

0, otherwise
(8)

Finally, the μth binary key, bμ , containing (L · T ) bits, is
formed using the bits generated from the μth gait cycle group
Cμ . The process is illustrated in Fig. 5c, where 1 is extracted
from the red circles which are the samples whose signal energy
is higher or equal to that of the averaged gait cycle, and 0
otherwise. The binary sequence extraction itself cannot generate
highly randomized keys with respect to the corresponding binary
sequences generated on other sensors. To address the problem,
the extracted bits are re-indexed by the associated reliability
vectors.
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3) Reliable Bit Extraction: the calculation of the reliability is
adopted from Schurmann et al. [11], where a reliability vector
is defined as the descending index vector of the absolute values
of the signal energy differences. The absolute values of the
signal energy difference for the μth gait cycle group Cμ can be
represented as

Δμ = [|δμ1 |, |δμ2 |, ..., |δμη |, ..., |δμ(L ·T ) |] (9)

and it is rearranged in a descending order to produce the asso-
ciated reliability vector

rμ = [rμ1 , rμ2 , ..., rμη , ..., rμ(L ·T ) ] (10)

where rμη ≥ rμη+1 . The generated binary keys are re-indexed
using the reliability vectors as illustrated in Fig. 5d and Fig. 5e.
Bits generated from higher signal energy differences are more
reliable, as they have higher chances to be identical to the corre-
sponding bits on different sensors [11]. The final binary keys are
the top n reliable bits in each gait cycle group, and n matches the
codeword length in the Bose-Chaudhuri-Hocquenghem (BCH)
error correction codes in the fuzzy key exchange block.

D. Fuzzy Key Exchange

In the fuzzy key exchange block, we adopt the fuzzy commit-
ment scheme [20], which has been previously used in biometric-
based security systems [9]. To correct the bit errors introduced
by the dissimilarity of the intra-class keys, BCH error correc-
tion codes [21] is adopted in the fuzzy key exchange block.
The codeword length, n, and the minimum distance, dmin , of
the binary t-error-correcting BCH codes can be defined by two
positive integers m (m ≥ 3) and t (t < 2m−1) satisfying

n = 2m − 1 and dmin ≥ 2t + 1 (11)

where t is the maximum number of bit errors that is correctable
by the corresponding BCH codes. The second parameter k in a
BCH pair (n, k, t) is the message length that satisfies

n − k ≤ mt (12)

subsequently the length of the parity bits is p = n − k. A Galois
field array GF (2) is created from the k-bit secret message K,
which is then encoded by the BCH encoder on the sender to
create a codeword c. A codeword length long binary key b is
generated by the binary key generation block, and an XOR
operation is performed between c and b to encrypt the codeword
c into cipher-text ccommit . The data requester receives ccommit ,
which is then decrypted by an XOR operation with b′, which is
the binary key generated on the requester, to obtain c′. c′ is then
decoded by the BCH decoder, producing K ′ and bit error e.
Finally, if e ≤ t, the decoding process on the requester is a
success, thus, an acknowledgement is sent back to the sender
to establish a secure channel, and messages will be directly
decrypted by the BCH-corrected key. On the other hand, if
e > t, the requester requests a new key for the commitment and
the process will be repeated until it meets e ≤ t. The process of
the fuzzy key exchange block is illustrated using flowcharts in
Fig. 6.

Fig. 6. Flowcharts of the fuzzy key exchange block. (a) Sender.
(b) Requester.

Fig. 7. HAR walking dataset.

III. EXPERIMENTS AND RESULTS

A. Experimental Set-Up and Dataset

To assess the performance of the proposed security scheme,
we evaluated the scheme with a series of experiments, using a
walking dataset containing recordings of 15 subjects (age 31.9±
12.4, height 173.1 ± 6.9 cm, weight 74.1± 13.8 kg, 8 males and
7 females) from the Real World Human Activity Recognition
(HAR) dataset [22]. The HAR dataset is designed for activity
recognition research, and therefore it has activity recordings
such as walking, sitting, and running. In our experiments, only
the walking dataset was used. In this walking dataset, 7 sensors
were worn by the subjects at different body locations, namely the
head, upperarm, chest, wrist, waist, thigh, and shin, as illustrated
in Fig. 7. As there is only one recording at one sensor position
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Fig. 8. Averaged similarity between 128-bit binary keys generated si-
multaneously from two sensors on different sensor positions of the same
subject (intra-class group).

for each subject in the HAR walking dataset, we divided each
sensor’s recording into three equal-length subsets, and employed
a k-fold cross validation method (with k = 3): to train the
ANNs, one subset of data is used and the other two subsets are
used to test the proposed scheme. Instead of listing independent
accuracy of each validation, the mean and standard deviation of
accuracy from the k-fold cross validation are provided, as box
charts, to show the robustness of the approach. As there are only
marginal differences between the validations, the results from
the validations are grouped together as box charts to show the
results of the experiment.

In the HAR walking dataset, the sensors on each subject cap-
ture gait signals independently according to their own software
clocks, therefore, the gait signal recordings were not synchro-
nized and have different lengths of samples. To solve this issue,
we re-sampled the 7 gait recordings to the same length for
each subject using two timestamps of the subject’s sensor on
the chest. One timestamp was selected at the beginning of each
recording when the subject has not started walking, and the other
one was selected at the end of each recording when the subject
has stopped walking. As aforementioned in section III-B, only
the acceleration in the inverted gravity direction was used as the
gait signals in our experiments.

B. Group Similarity Evaluation

1) Number of Gait Cycles: as there are 60 samples in each
gait cycle on average, to generate one 128-bit key in the bi-
nary key generation block, a minimum number of 3 gait cycles,
Ngc = 3, is required. However, to reliably generate 128-bit keys
with high similarity within the intra-class group, at least 8 gait
cycles are required, as shown in Fig. 8. Intra-class keys refer
to the keys generated on the same subject from two different
sensors at the same time interval, whereby inter-class keys re-
fer to the keys generated either on different subjects, or on the
same subject but at different time intervals. In the experiment,
Ngc = 10 was chosen to be used to generate each 128-bit key,
as it can provide sufficient intra-class similarity while maintain
a high key generation rate at the same time.

Fig. 9. Averaged similarity between intra-class keys at different key
lengths. The keys were generated by reordering binary sequences using
reliability vectors and cutting off at the key lengths.

Fig. 10. Illustration of the ANN-based signal estimation. (a) Raw gait
acceleration signals (a−G ). (b) Estimated gait acceleration signals (â−G ).

2) Key Length: the similarity of the intra-class keys de-
creases with the increase of the key length, as shown in Fig. 9,
where the box charts of the intra-class similarity of the 32, 64,
128, 256, and 512-bit reliable keys, generated when Ngc = 10,
are shown. Reliable keys refer to the keys re-indexed with the
associated reliability vectors. 128 was chosen as the key length
used in the experiment as it provides larger number of possible
keys to prevent brute force attacker from exhausting it in a short
time, meanwhile, providing sufficient intra-class similarity and
high inter-class distinctiveness.

3) ANN-Based Gait Signal Estimation: as aforementioned,
the challenge of using gait signals as the common source for
generating secret keys for symmetric-BCSs is that the gait sig-
nals captured by different sensors at different locations on the
body have different patterns, as shown in Fig. 2 and Fig. 10a. In
our proposed security scheme, an ANN is designed to project
and estimate the gait signals (captured by sensors positioned
at different body positions) onto the chest. Therefore, the esti-
mated signals, â−G , on each position would be similar to each
other as shown in Fig. 10b. The results of using the ANN-
based gait signal estimation block is illustrated in Fig. 11, where
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Fig. 11. CCs between the raw gait signals at other positions and chest
gait signals (blue boxes), and CCs between estimated gait signals, using
trained ANNs, at other positions and the chest gait signals (red boxes).

correlation coefficients (CC) between raw gait signals at various
positions and chest gait signals are represented as blue boxes,
and CCs between estimated gait signals at various positions and
chest gait signals are represented as red boxes. CC, also known
as Pearson’s correlation coefficient, is a method of assessing
linear relationship between two continuous variables [23], and
CC has often been used for measuring how close an estimator,
such as joint angles over time, is to the ground truth measured
in gait analysis research [24]. According to [25], a value of CC
in the range of 0.5 to 0.7 indicates a moderate correlation, in the
range of 0.7 to 0.9 indicates a high correlation, and in the range
of 0.9 to 1 indicates a very high correlation. As shown in Fig. 11,
the ANN-based gait signal estimation block improves the corre-
lation between gait signals from chest and other positions from
moderate correlations to high or very high correlations (where
the averaged CCs for six sensor positions are all above 0.7),
leading to improvements on the intra-class similarity results.
There are 4 CC results in the estimated signals which are below
0.2 (no correlation) and would lead to low intra-class similarity.
Hence, the keys generated from these gait signals, 4 out of 90,
were excluded from the final results. The ANN-based estimation
block fails to improve the CC results because the raw signals do
not have any correlation (below 0.2) to the chest gait signals.

The impact of the ANN-based gait signal estimation is fur-
ther illustrated in Fig. 12, where blue boxes are the intra-class
similarity between one sensor position to the rests without the
ANN-based gait signal estimation block and red boxes are the
ones with the ANN-based gait signal estimation block. It is clear
that the intra-class similarity improves at every sensor position
in Fig. 12, especially for those on the wrist, shin, and thigh
positions. As aforementioned in section III-E, the binary BCH
error correction coding scheme is adopted in the proposed se-
curity scheme for correcting bit errors between intra-class keys.
BCH encoder only allows its code word length to be equal to
n = 2m − 1 for any integer m between 3 and 16 [21]. When
m = 7, n = 27 − 1 = 127 is the closet codeword length as the
keys have a key length of 128. A number of valid BCH pairs
(n, k, t), which could be used in the fuzzy key exchange block,
are listed in Table I. Therefore, the minimum similarity between
the encryption key and the decryption key required by BCH

Fig. 12. Similarity of the keys generated at various positions against
the keys generated at the rest of the positions.

TABLE I
POTENTIAL BINARY BCH (N,K,T) PAIRS

TABLE II
PROBABILITY (IN PERCENTAGE) OF MESSAGES ENCRYPTED BY

INTRA-CLASS KEYS GENERATED ON ONE POSITION TO BE SUCCESSFULLY
DECODED BY FOUR BCH DECODER PAIRS (N,K,T) ON THE REST OF THE

SENSOR POSITIONS (ANN=WITH THE ANN-BASED GAIT SIGNAL
ESTIMATION BLOCK, RAW=WITHOUT THE ANN-BASED GAIT SIGNAL

ESTIMATION BLOCK)

decoder to successfully decode the encrypted messages is
75.6%. The probabilities of successful fuzzy key exchanges
with or without the ANN-based gait signal estimation block on
various sensor positions are listed in Table II. Without the ANN-
based gait signal estimation block, the probabilities of the keys
generated on the shin and thigh positions to be accepted by other
sensors are 8.07% and 18.27% for the BCH pair (127, 8, 31),
which is very inefficient. With the ANN-based estimation, their
probabilities reach to 57.75% and 61.46% respectively, which
are sufficiently improved.

Assuming a successful fuzzy key exchange in a series of
attempts is an independent event, the probability of a successful
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Fig. 13. Probability of successful fuzzy key exchanges on various
positions to the rest of positions in different number of attempts.

TABLE III
DETAILED AVERAGED POSITION-TO-POSITION INTRA-CLASS SIMILARITY OF

128-BIT KEYS GENERATED FROM 15 SUBJECTS

fuzzy key exchange after the nth attempt is calculated as

Pn =
n∑

i=1

Psuccess × (1 − Psuccess)n−1 (13)

where Psuccess is the probability of a successful fuzzy key ex-
change for an individual attempt. Using Eq. (13), the proba-
bilities of success against the number of attempts for the BCH
pair (127, 8, 31) are calculated and shown in Fig. 13. At all 7
positions, a successful fuzzy key change occur on the second,
third, and fourth attempt reach 80%, 90%, and 95% respectively,
with the ANN-based gait signal estimation. As Ngc = 10, each
attempt requires 10 gait cycles, and the proposed method can
provide at least 95% successful rates for all sensor positions
using 40 gait cycles.

A detailed comparison amongst position-to-position intra-
class similarity, averaged for all the subjects in the HAR walk-
ing dataset, is presented in Table III. The averaged similarity
between wrist and shin and between wrist and thigh are 72%
and 73% respectively, which are the lowest similarity values in
the position-to-position comparison. This can also be seen in
Fig. 12. It is due to the fact that shin and thigh gait signals are
less correlated with chest gait signals, as shown in Fig. 11.

4) Reliability: the impact of reordering keys using associated
reliability vectors has also been investigated and the results are

Fig. 14. Similarity of intra-class group and inter-class group. Unreliable
keys are the 128-bit keys generated without reordering by their reliability
vectors, while reliable keys are the reordered unreliable keys using their
associate reliability vectors.

shown in Fig. 14, where the left two boxes are the similarity
for the intra-class and inter-class unreliable keys, and the right
two boxes are the similarity for the intra-class and inter-class
reliable keys. It is clear that reliable keys produce higher similar-
ity for intra-class keys and better distinctiveness for inter-class
keys, which means the inter-class similarity distribution is less
dispersed. In addition, although we chose 128-bit reliable keys
in the experiments to demonstrate the feasibility of our pro-
posed security scheme, longer key length can also be adopted as
presented in Fig. 9. The mean intra-class similarity for 256-bit
keys is 78.13%, when Ngc = 10, indicating that 256-bit keys
can be used but with less efficiency (requires more attempts to
achieve high probabilities of successful key exchanges). Longer
key length can provide better distinctiveness between inter-class
keys due to its further concentrated normal distribution of inter-
class similarity, and provide more secure bits in each key. For
example, using the BCH pair (255, 9, 63) in the fuzzy key ex-
change block would provide 192 secure bits, whereas using the
BCH pair (127, 8, 31) would provide 96 secure bits.

C. Uniqueness and Freshness of Generated Keys

Uniqueness and freshness can be interpreted as the distinc-
tiveness between inter-class keys, which are generated from
either different subjects, same subject but sensors are worn at
different positions, or same person wearing the same sensors
but at different time. The purpose of this analysis is to quantify
how distinctive the inter-class keys are, and it is achieved by an-
alyzing the distribution of the Hamming Distance (HD) for the
inter-class keys and vitalizing the generated binary keys. A HD
between two binary keys, ba and bb , of the same length, is equal
to the number of bits in which the two binary keys differ from
one another [26]. HD = 0 means two binary keys are identical,
while HD = 1 means two binary keys are completely different
from one another [27]. For sufficiently long binary keys, the
distribution of HD should be a normal distribution with a mean
close to 50% [28]. As shown in Fig. 15, the probability of HD
of the inter-class keys generated in the experiments follows a
normal distribution with the mean of 49.96%, which is very
close to 50%. Moreover, the lower bound of the HD distribution
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Fig. 15. Probability distribution of hamming distance of any two inter-
class 128-bit keys generated from all 15 subjects, with the mean distance
of 49.96%.

is around 0.3, which indicates that no key will be falsely ac-
cepted. This result demonstrates the robustness of the proposed
biometrics against brute force attacks.

D. Randomness Evaluation

To protect the proposed security scheme from brute-force at-
tacks, it is vital that the generated keys process high randomness.
Therefore, we evaluated the randomness of the keys generated
in the experiments using the entropy analysis, the NIST ran-
domness test, and the Dieharder battery test.

1) Entropy Analysis: the generated keys in the experiments
were tested with the entropy analysis. Shannon entropy is a mea-
sure of uncertainty of binary sequences [29]. The uncertainty
refers to the possibilities of the next event being any mutually
exclusive events are equal. The entropy of the binary keys, which
contains two mutually exclusive events {0, 1}, can be calculated
using [30]

H({0, 1}) = −P (0)log2P (0) − P (1)log2P (1) (14)

where P (0) is the probability of 0 s and P (1) is the probability
of 1s. The results of the entropy analysis for 128-bit keys gener-
ated from all the subjects in the HAR walking dataset are shown
in Fig. 16. Although the entropy varies from subject to subject,
a large majority of the keys have entropy above 0.99, which
indicates that no pattern of 0 s and 1 s dominates in the keys
generated from any subjects.

2) NIST Randomness Test: the National Institute of
Standards and Technology (NIST) randomness test suite
has also been used widely by researchers [15], [28], [31] to
detect deviations of a binary sequence from randomness [32].
We tested all the 600-bit (60 × 10) keys, re-indexed using
associated reliability vectors, generated in the experiments
when Ngc = 10 using NIST tests, and the results are listed in
the Table IV. The minimum pass rate for each statistical test
is approximately 96%, therefore, all tests have passed the tests.
The P-values in Table IV are from the uniformity tests for these
statistical tests, and P > 0.0001 indicates the p-values from the

Fig. 16. Shannon entropy of 128-bit keys for 15 subjects in the HAR
walking dataset (Ng c = 10).

TABLE IV
NIST STATISTICAL TEST RESULTS

corresponding statistical test are uniformly distributed on the
interval [0, 1) [33].

3) Dieharder Test: all the keys generated in the experiments
were also run through a series of Dieharder statistical tests [34],
and the p-value distributions of 21 runs of the Dieharder tests
are shown in Fig. 17. If a p-value from a Dieharder statistical
test is below 0.001, it can be considered as it fails the test,
however, p-values are expected equals or below 0.05 (weak) 5%
of the time. The results in Fig. 17 shows no incident of failure
in any tests and a few incidents where p ≤ 0.05 as expected.
Furthermore, the p-values of all the tests are well distributed
over the interval [0, 1), indicating the keys have passed all the
Dieharder statistical tests.

One of the common concerns for biometric security is the
uniqueness of the biometrics for different users (inter-class) and
for different access request attempts, which are considered as
intra-class for most biometric approaches, but they are consid-
ered as inter-class in the proposed security scheme. Only the
keys generated on the same user and at the same time are con-
sidered as intra-class keys. This approach gives the proposed
security scheme freshness and robustness against attacks using
the correlations between two attempts, which traditional bio-
metric schemes do not provide.



996 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 3, MAY 2019

Fig. 17. Distribution of p-values in the Dieharder statistical test results.

IV. DISCUSSION

Possible attack scenarios and adversarial analysis against the
proposed security scheme are discussed in this section.

A. Security Model

1) Brute Force Attacks: A brute force attack is a trial-and-
error attack used to exhaust the space of possible keys, which
means to try out all possible keys to decode the messages that
the attacker have intercepted. As the BCH error correcting code
with the pair (127, 8, 31), which can correct up to 31-bit errors
in the keys, is used in the fuzzy key exchange block, there are
127–31 = 96 secure bits, resulting in the number of all possible
keys to be F96

2 . Therefore, it is recommended to renegotiate a
new key as quickly as possible to prevent the secured channel
from being exposed. If the attacker successfully obtained one of
the keys using brute force attacks, only the messages encrypted
by that key are exposed. As all the keys possess the property of
high distinctiveness, the attacker cannot use the exposed key to
predict any other keys.

2) Dictionary Attacks: besides brute force attacks, dictionary
attacks are also very popular methods used by among hackers in
recent years [35]. Therefore, it is a requirement for any biomet-
ric cryptosystems to be resilient to dictionary attacks. Although
they have not been tested using no user-specific dictionaries,
the keys generated in our experiments produced uniform distri-
butions of p-values in the majority of the Dieharder statistical
tests, which includes many commonly used dictionaries, such
as birthdays and DNA. Thus, the proposed security scheme is
resilient to common dictionary attacks.

3) Attaching Device: the attacker can also attach a malicious
device to the victims to try to obtain the secured keys. However,
the malicious device requires a fully-trained ANN, specifically
to the position it attached to, in order to extract binary keys ac-
ceptable to other legitimate BSN devices. If the attacker intends
to train ANNs for the malicious device, at least two malicious
devices must be attached to the target position and another one
on the chest at the same time. This process is difficult for at-
tackers to execute successfully without being noticed by the
victims.

Fig. 18. CCs between impersonators and victims (blue boxes), and
CCs between impersonators and victims when using victims’ trained
neural networks (red boxes).

4) Impersonation Attacks: impersonation attacks in gait bio-
metrics have been studied extensively in the literature [36]–[38].
Muaaz and Mayrhofer [38] demonstrated that a zero effort or a
mimicry impersonation attack on gait biometric is unlikely be
able to compromise the IMU-based gait authentication systems.
Furthermore, previous studies have shown that during imper-
sonation attacks, impersonators could lose regularity between
steps, increasing the difficulty of the impersonation. Fig. 18
shows that when using victims’ neural networks, the zero-effort
impersonation does not increase the CC results nor improve
chances of the impersonation.

5) Freshness: another big concern when adopting fuzzy
commitment or fuzzy vault scheme into the any biometric-based
security schemes would be “with the unavoidable information
leak, is it resilient to the attacks targeting the correlations or
correspondence between two or multiple keys generated from
the same biometric instance”. Previous studies [39], [40] have
demonstrated that fuzzy commitment or fuzzy vault schemes are
vulnerable against many attacks (i.e. Decodability [39], record
multiplicity, surreptitious key-inversion, and novel blended sub-
stitution [41]). In general, such vulnerability comes from the
fact that the dependency of binary features has been neglected
in many research, resulting in overestimation in the security lev-
els of such schemes [42]. For instance, if the keys are extracted
using frequency domain features, such as FFT, from the same
face or fingerprint, they are likely to contain similar patterns
of 1 s and 0 s. In our proposed scheme, temporal gait features
are used for generating encryption keys with a high level of
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Fig. 19. Use the proposed security scheme as biometric device-to-
device authentication. (a) FAR & FRR. (b) ROC.

freshness. Because temporal features are time-variant, produc-
ing distinctive keys even in a short period of time. As shown
in Fig. 14 and 15, the keys generated using proposed security
scheme process high distinctiveness and a good probability dis-
tribution of hamming distance, meeting the strict condition for
fuzzy commitment scheme to be used safely.

6) Efficiency: the number of the gait cycles required for gen-
erating one 128-bit key is sufficiently reduced compared with
our previous work [17], in which 32 gait cycles are required
for one 128-bit key, and BANDANA, in which 48 gait cycles
are required. The proposed security scheme only requires 10
gait cycles for one 128-bit key, which is 68.75% and 79.17%
more efficient than our previous work and BANDANA respec-
tively. The averaged number of samples in one gait cycle af-
ter re-sampled to 50 Hz in the HAR walking dataset is 60,
thus, the averaged time for one gait cycle is 60 × 1

50 = 1.2 s.
When Ngc = 10, the averaged time required for generating one
128-bit key is 12 s, and the averaged output rate of the binary
key generation block is 128× 1

12 = 10.7 bps. The proposed se-
curity scheme is based on gait biometric, it will only generate
new keys when the user is walking. Hence, the same key will
be used if the user is performing other activities.

B. Authentication

The proposed security scheme can be used as traditional bio-
metric device-to-device authentication with different thresholds
instead of fixing it to the constant t. Fig. 19a and Fig. 19b present
the performance of such authentication usage using False Agree-
ment Rate (FAR), False Rejection Rate (FRR), and Receiver Op-
erating Characteristic (ROC) curves. Equal Error Rate (EER) is
5.5% when the threshold is set to 0.57. However, the gener-
ated keys cannot be used for channel encryption, as the fuzzy
commitment scheme is not applicable at the EER point. After
authentication, a new set of encryption keys must be used based
on the mutual agreement between the sender and the receiver.

V. CONCLUSION

In this paper, we proposed a novel gait-based security scheme
with ANN for securing wireless communications for wearable
and implantable healthcare devices. The use of ANN-based gait
signal estimation block for estimating gait signals on the chest
from those captured by sensors worn on the other body positions

has been proposed and significant improvement on the perfor-
mance of the proposed security scheme has been shown from the
experimental results. The probability of a successful intra-class
fuzzy key exchange using the BCH pair (127, 8, 31) within 4
attempts for all sensor positions reach 95%, and inter-class keys
possess the property of high distinctiveness, with a mean Ham-
ming Distance of 49.96% for all 15 subjects in the HAR walking
dataset. The experimental results have demonstrated the feasi-
bility and the robustness of our proposed security scheme and
its resilience against common attacks. With its low computa-
tional power design and the use of gait signals from IMUs, the
proposed scheme could provide the needed for secured commu-
nications for wireless pervasive healthcare systems.
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