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A Network-Based Perspective in Alzheimer’s
Disease: Current State and an
Integrative Framework
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Abstract—A major rise in the prevalence and impact
of Alzheimer’s disease (AD) is projected in the coming
decades, resulting from increasing life expectancy, thus
leading to substantially increased healthcare costs. While
brain disfunctions at the time of diagnosis are irreversible,
it is widely accepted that AD pathology develops decades
before clinical symptoms onset. If incipient processes can
be detected early in the disease progression, prospective
intervention for preventing or slowing the disease can be
designed. Currently, there is no noninvasive biomarker
available to detect and monitor early stages of disease
progression. The complex etiology of AD warrants a
systems-based approach supporting the integration of
multimodal and multilevel data, while network-based
modeling provides the scaffolding for methods revealing
complex systems-level disruptions initiated by the disease.
In this work, we review current state-of-the-art, focusing
on network-based biomarkers at molecular and brain func-
tional connectivity levels. Particular emphasis is placed
on outlining recent trends, which highlight the functional
importance of modular substructures in molecular and con-
nectivity networks and their potential biomarker value. Our
perspective is rooted in network medicine and summarizes
the pipelines for identifying network-based biomarkers,
as well as the benefits of integrating genotype and brain
phenotype information for a comprehensively noninvasive
approach in the early diagnosis of AD. Finally, we propose
a framework for integrating knowledge from molecular and
brain connectivity levels, which has the potential to enable
noninvasive diagnosis, provide support for monitoring ther-
apies, and help understand heretofore unexamined deep
level relations between genotype and brain phenotype.

Index Terms—Alzheimer’s disease, omics, heuroimaging,
network biomarkers, multilevel integration.
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I. ALZHEIMER’S DISEASE
A. Facts and Current Situation

LZHEIMER’s disease (AD) results in progressive loss of
A cognitive function and typically, by the time a patient is di-
agnosed, the disease has progressed for many years. Therefore,
early detection is crucial for therapy design. Approximately 15%
of the population >65 years old is affected by AD, incurring
the highest healthcare costs among brain related conditions [1].
Current statistics of AD indicate a prevalence of 44 million and,
with the increase in life expectancy, it is projected to quadruple
by 2050 [2]. An estimated one out of nine people aged 65 and
older, and one out of three people aged 85 and older suffer from
the condition [1]. The economic and societal impact is reflected
by the healthcare costs associated with AD, which are the high-
est among brain related medical conditions, being estimated in
Europe at €106 billion and in the US at $236 billion [1], [3].
Additionally, the quality of life of patients and the welfare of
families are dramatically affected [4].

In this context, global leaders have recently agreed that bat-
tling AD should be made a strategic priority, with the overar-
ching goal of finding an effective way to treat or prevent the
disease by 2025 [5]. One major hurdle in achieving this goal is
the fact that, even in high income countries, only around 50% of
people living with dementia receive proper diagnosis, whereas
in low and middle-income countries less than 10% of cases are
diagnosed [1]. From this perspective, as focus is shifted from
the development of palliative treatments for populations in late
disease stages to disease modifying therapies (DMTs) targeting
early stage treatment, the design of reliable, accurate biomarkers
and tools able to diagnose AD and monitor disease progression
is expected to have a major scientific impact.

B. Current Therapies, Early Detection and the Need for
a Paradigm Shift

AD is a multi-factorial and heterogeneous disease involv-
ing, besides a genetic factor, environmental, epigenetic and
metabolic factors [6]. These factors, coupled with brain-related
etiopathogenic mechanisms, result in a complex cognitive phe-
notype. Due to this inherent complexity of AD, most drug agents
entering the AD drug-development pipeline have failed in the
last three decades [7].
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Current therapies of AD have extremely limited efficiency
and therefore the development of DMTs is considered as alter-
native [8]. However, the development of reliable DMTs is lim-
ited by several factors, to name the most important: (i) the lack
of reliable noninvasive biomarkers in early disease stages [9];
(ii) the absence of mechanistic understanding of the multifacto-
rial nature of AD, having as result a large number of therapeutic
interventions to fail in phase II and III of clinical trials [10];
(iii) the slow progressive nature of AD, implying extended
monitoring time and consequently delaying the clinical assess-
ment. In this context, it is not surprising that no new drug is
expected to be available on the market by 2025 [5].

Current early AD diagnosis relies on topographical markers
(volume changes in the brain) measured by magnetic resonance
imaging (MRI) and hypometabolism of neocortical regions
assessed by fluorodeoxyglucose (FDG)-positron emission to-
mography (PET), in conjunction with evidence of AS and tau
pathology from Cerebrospinal Fluid (CSF), for a definitive di-
agnosis [2], [11]. The deposition of amyloid 3 (A() in the extra-
cellular space characterizes AD and can be measured efficiently
through CSF samples, thus CSF-based approaches constitute a
vast body of AD early diagnosis literature [12] Additionally,
tau phosphorylated at Thr181 (P-taul81P) is considered as a
well-established marker of AD [13]. Recently, also the mix-
ture of A1-42 and P-taul81P offered a molecular signature
associated with AD [14]. However, a number of clinical stud-
ies pointed that up to 25% of patients clinically diagnosed with
probable AD during their lifetime, did not have post-mortem ev-
idence of AD pathology, such as A3 plaques or tau pathology,
thus further complicating diagnosis [15]

Under these circumstances, even if CSF-based analysis has
contributed effectively in AD diagnosis, reflecting metabolic
processes in the brain owing to direct contact between the brain
and CSF, the lumbar puncture and collection of CSF is still an
invasive approach with potential side effects [16]. In parallel,
attempts to measure A or tau from plasma as potential pre-
dictive markers of AD have so far not been successful [16].
Additionally, diagnosis based on PET is relatively expensive,
has limited availability, and exposes subjects to radiation [17].
Thus, the major drawback of current approaches is that they do
not support the DMT scenario, where the longitudinal evolution
of disease as well as effects of treatment must be followed, in-
creasing the need for noninvasive biomarkers. For more details
about current AD diagnosis and biomarkers, extensive surveys
published recently are recommended [16].

In this context, a paradigm shift is bound to occur in pre-
clinical AD diagnosis and treatment: from invasive biomarkers,
based on CSF and PET to blood-based biomarkers and more
affordable neuroimaging techniques (MRI) and from palliative
therapies to DMTs [8], [9], [18], [19]. Although a number of
significant challenges are posed by the peculiarities of AD [9],
initial outcomes are encouraging and significant progress is be-
ing made towards personalized medicine approaches based on
omics technologies which have significantly impacted the man-
agement of other complex diseases [20].

In this review article, we provide a summary on recent
research on the discovery of AD biomarkers. We focus on
network-based molecular biomarkers derived from omics data,

particularly from patients’ blood samples and neuroimaging
biomarkers derived from functional connectivity data in resting
state, that is, the subjects not performing an explicit task. Spe-
cial emphasis is placed on approaches identifying biomarkers
as modular substructures of functional relevance within global
molecular and connectivity networks. Since disruptive disease
processes take place at different rates in different molecular
pathways and brain areas, such approaches are more sensi-
tive to small local perturbations Therefore, analysis focusing
on network substructures may reveal changes otherwise unde-
tected. The underlying rationale of investigating network-based
biomarkers is that such biomarkers take into account the biolog-
ical and functional context in which disease evolves, rather than
focusing on specific events (e.g., hypometabolism, phosphory-
lation) or measurements (volumetric assessment of specific re-
gions). Finally, a framework for integrating the network-based
multi-level (molecular omics and brain connectivity) biomark-
ers is provided that can further improve diagnosis, help identi-
fying heretofore unexplored relations between the genotype and
phenotype and, consequently, facilitate the implementation of a
new generation of biomarkers in AD.

Il. MOLECULAR AND BRAIN LEVEL BIOMARKERS — THE
NETWORK PERSPECTIVE

Integration of molecular level biomarkers from omics data
analysis of blood samples with brain level biomarkers retrieved
from MRI neuroimaging, holds the promise of advancing AD
biomarker research. Both types of data (i) have high impact due
to their noninvasive nature, (ii) offer support in terms of monitor-
ing DMT outcomes, and (iii) have an increasing trend in exper-
imental data availability and quality. Several recent approaches
based on these two types of data have proposed novel biomark-
ers at either molecular level or brain level [18], [21], [22].

A. Molecular Level, Blood Omics-Based Biomarkers
for AD

Research on blood based biomarkers has attracted increas-
ing interest recently due to the noninvasive nature and wide
availability of samples, in contrast with approaches based on
CSF [18], [23], [24]. A number of studies have identified AD
related blood-based biomarker panels in serum and plasma in
the last decade [25], [26]. Among these, several blood tran-
scriptome based approaches using expression profiles of gene
panels yielded diagnostic value related to AD [27], [28]. Exten-
sive reviews have been published recently highlighting the cur-
rent state of AD analysis and biomarkers identification through
blood-based samples [24], [29].

However, despite the plethora of approaches using blood-
based samples and their encouraging results, as well as the
obtained EU approval (CE marking), their accuracy remains
relatively low. Generally, studies report a lack of reproducibility
across cohorts for all types of blood-based markers and lack
of functional context [9]. Recently, it has been suggested that
the limited reproducibility of markers is due to the reduction-
ist, single marker-based approach (even for gene panels, the
methodology relies on individual gene-level statistical test used
to identify differential expression).
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Emerging approaches: Network-based biomarkers

In contrast, a holistic approach would conveniently link mark-
ers to pathophysiology by providing wider functional context.
Generally, complex diseases, such as AD, have driven the
need for systems-based approaches that elucidate the molec-
ular mechanisms underlying the disorder, rather than the ef-
fect of individual genes [30]. The molecular basis of complex
diseases is highly heterogeneous and affected by multiple fac-
tors simultaneously, such as genetic predisposition, multipart
molecular mechanisms and effects of the environment and nu-
merous other factors [31]. Hence, to account for these aspects,
the research community has shifted towards systems-based ap-
proaches (see Table I). The recent work of Voyle er al. [32]
adopts such a framework, by designing a pathway-based model
using Random Forest modeling with recursive feature elimina-
tion. Their approach furthers the currently prevalent approaches
based on gene panel biomarkers, by considering functional con-
text and correlations between the genes’ expressions, encoded
in the form of network interactions between genes. The model
is applied to AD diagnosis using gene expression data from
blood-based samples.

The systems biology approaches to AD developed recently
can be categorized into two types of networks: predefined
Protein-Protein Interaction (PPI) networks and co-expressed
gene networks usually built based on genes co-expression pro-
files. More specifically, based on PPIs the authors of [33]
successfully identified 13 novel AD-related candidate genes
through a classification approach. The information obtained
from a list of AD-associated genes and not-related genes was
incorporated within the PPI network, while various global topo-
logical features were used to predict disease. Similarly in [34],
a network-based approach to identify novel AD-related genes
was described using an integration of PPI and a list of AD-genes
along with a strategy that combines local and global network
analysis. Going beyond, a robust integration was implemented
in [35], where the authors proposed the integration of transcrip-
tome (gene expressions data — as node attributes) and proteome
(edges in a PPI network). This combination can provide addi-
tional relevant information in the study of complex diseases like
AD by identifying key genes, proteins and cellular pathways
involved in disease processes.

The second category of AD systems biology approaches fo-
cuses on co-expressed gene networks using as edge attributes
various similarity measures among gene expression profiles
from a case under study and subsequently searching for topo-
logical overlap between networks [36], or modular structures
related to AD [37]-[39]. However, most such studies are based
on brain/postmortem samples and are thus not suitable for non-
invasisve diagnosis and DMTs. Concluding, despite the wider
use of systems-level approaches in complex neurodegenera-
tive diseases [43], [44], approaches extracting network-based
biomarkers in AD using omics data from blood samples are still
in their infancy, though considered as the emerging paradigm in
AD prognosis and early diagnosis [45].

Given the exponential growth of omics data and the natural
view offered by molecular networks, one of the main chal-
lenges in AD remains the development of a System Biology

framework integrating heterogeneous omics data by mapping
to a molecular network [46]. This has led to an emerging field
known as Network Medicine, at the confluence between Systems
Medicine and Network Science. Network Medicine approaches
hold the promise to improve our understanding of how changes
in cellular processes can lead to complex diseases by providing
the modeling tools needed to identify correlations between es-
sential molecules and the discovery of phenotype-associated
substructures (subnetworks or subpathways) in biological
networks [47].

As part of the Network Medicine approaches, pathway anal-
ysis has been gaining ground in molecular-based network anal-
ysis over the past few years, since it can capture the complex
mechanisms in biological processes and human diseases in a
realistic manner [48]. The current trend of pathway analysis
methods, called subpathway analysis, focuses on the identifica-
tion of ‘active subpathways’ related to a case under study [49].
Subpathways are local areas of cellular networks that can be as-
sociated with specific biological processes, the deregulation of
which can give rise to disease. Tools based on cellular subpath-
ways are attractive due to the fact that they can explore deeper
the biological significance of genotype-phenotype associations
identified through full-genome sequencing [50]. Additionally,
it was shown that disease associated genes aggregate in local
neighborhoods within interactome [51]. Towards this direction,
several groups proposed that key subpathway regions may bet-
ter represent pathway dysregulations and be more relevant than
whole pathways in interpreting the associated biological phe-
nomena [52]. So far, a number of subpathway-based tools have
been published in the recent years, offering new insights into
uncovering the human diseases mechanisms [53].

One basic part of these approaches is to place genes into a
biologically relevant context by mapping them to an organism-
level molecular pathway interaction network. Databases such
as KEGG [54], Reactome [55] and software packages such
as CHRONOS [52], graphite [56] or SubpathwayMiner [57],
contain robust frameworks and conversion tools for construct-
ing and analyzing molecular pathway interaction networks. A
subsequent part is the integration of multi-omics data, where
heterogeneous data (transcriptomics, genomics, proteomics,
metabolomics, epigenomics etc.) are combined and overlaid
onto the pathway interaction networks to provide additional
functional insights. The reference point that can integrate the
multi-omics data — where a typical bioinformatics analysis can-
not relate them - is network science. Networks (or graphs) can
offer a platform for investigating complex systems by integrat-
ing various types of data and enabling downstream analysis [58].
One of the first attempts to construct an integrated network from
heterogeneous various expressions data was made by Cheng
et al. [59] while they presented a network framework with PPIs,
RNA-Seq and Chip-Seq expression data and interactions among
Transcription Factors and miRNAs. The specific network con-
sisted of three types of nodes and four types of interactions in
which the authors performed various topological analyses in-
cluding network motifs identification. In [60] a robust method-
ology is described for integrating multi-source information on
a single network.
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TABLE |
OVERVIEW OF MOLECULAR OMICS APPROACHES USED TO INVESTIGATE NETWORK-BASED BIOMARKERS IN AD

Study Data (Samples) Graph Methodology Measures

Jamal et al. 2016 Gene List PPI network Classification framework based on an SPL, CC, CLC, Degree,

[33] integrated network with topological Eccentricity, NC, TC,
properties, sequence features and FA. Radiality, GO

Zanzoni, 2016 Gene List PPI network Network-based approach combining local GO, FM

[34]
Ray et al., 2008 Single-cell GE (Entorhinal ~ Co-expressed gene
[38] cortex/postmortem) network

and global analysis strategies

Network-based approach to identify
modular structures embedded in GE

FM, Hub genes

Miller et al., 2010
[37]

Hallock, 2012
[35]

Rayetal., 2010
[36]

GE (brain/postmortem)

GE (hippocampal/
postmortem)

GE (brain/postmortem)

Co-expressed gene
network

PPI network

Co-expressed gene
network

Hierarchical clustering in modules of co-
expressed genes

Construction of a core network of AD
followed by network structure and key
nodes analysis

Construction and analysis of co-expression
networks involving their differential

Module membership

Degree, PLC, CC, CCL, SPL,

Density, Diameter

Topological overlap

Zhang et al.,2013 GE (brain/postmortem) Co-expression

[39] networks

Baietal., 2016 GE (brain/postmortem) Co-expressed gene
[40] network

Voyle etal. 2015 GE (blood) Molecular pathways
[32]

Li etal., 2017 GE (blood) PPI network

[41]

Satoh, et al., 2015 miRNA-Seq data (blood) Networks of miRNA-

[42] gene targets
Hanetal., 2013 Transcriptomics (blood) Functional network
[28] (constructed)

topology

Modular differential
connectivity measures

Bayesian network approach for using co-
expression modules

Network modules detection and enrichment
analysis

Module-level connectivity

Random Forest modeling, pathway level Singular value decomposition

scores used for classification

Local network analysis (gene-pairs), DEG, FA
enrichment analysis

Pathway analysis and enrichment analysis FA
Pathway network analysis and enrichment DEG, FA

analysis

SPL = shortest path length, CC = closeness centrality, CLC = clustering coefficient, NC = neighborhood connectivity, TC = topological coefficient, PLC = power-law
coefficient, GO = Gene Ontology, FM = functional modules, GE = gene expressions, FA = functional annotation, DEG = differentially expressed genes

(B) Differentially
Expressed Molecules

(A) Omics
Expression Data

-omics
Micron- Epigen-

Transcript- Gen-
Prote- Metabol-

Fig. 1.

(C) Pathway Interaction Network Integration

Control

(E) Differentially

. Expressed Subpathways
Disease

(D) Graph
Mining
Analysis

Typical steps followed to identify network-based biomarkers through pathway analysis. Heterogeneous data from various omics experi-

ments are first collected and analyzed (A) and differentially expressed molecules (genes, proteins, metabolites, etc.) between different conditions
are identified (B). The resulting information is subsequently overlaid onto a pathway interaction network constructed from pathway databases
(C). Subsequently, activated regions, or subpathways, of the pathway interaction network are identified through graph mining analysis (D) and
network biomarkers are retrieved among the differentially expressed subpathways exhibiting statistically significant differential expression among

conditions (E).

Further, differentially expressed subpathways (between
healthy and disease conditions) can be identified and interro-
gated for significant enrichment with disease associated molec-
ular entities, such as miRNA targets or methylated genes,
via various statistical approaches based on hypergeometric
test [61], randomized rotation test [62], or Fisher exact test
[63]. The result of this statistical significance analysis are
subpathways with increased biomarker value. The functional
context provided by subpathways, as well as the thorough
statistical testing, reduces the risk associated to biomarker
relevance. Briefly, the typical analysis workflow in such a
network-based paradigm is described in Fig. 1 and would con-
sist of the following steps: (i) collection and analysis of het-
erogeneous data from various omics experiments, (Fig. 1A)
(ii) identification of differentially expressed molecules (genes,

proteins, metabolites etc.) between different conditions (e.g.,
control, disease), (Fig. 1B) (iii) overlaying the resulting infor-
mation onto a pathway interaction network constructed from
pathway databases (by means of nodes and edge proper-
ties), (Fig 1C) (iv) identification of activated regions, or sub-
pathways, of the pathway interaction network through graph
mining analysis (Fig. 1D) and (v) selection of potential net-
work biomarkers in the form subpathways with statistically
significant differential expression among conditions (Fig. 1E).
Additionally, the activity of groups of molecules connected in
subpathways can be summarized using scoring schemes which
reflect their active/non-active status while considering topolog-
ical relations between the subpathway molecules. Towards this
direction, the works of [62] and [64] suggested such subpathway
scores.
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B. Brain Level, Volumetric Approaches, Connectivity
From MRI

Given the complex nature of AD, the discovery of effective
early AD biomarkers must go beyond the investigation of molec-
ular level disruptions and be able to link them to changes in
brain level, cognitive function, in order to monitor both disease
progression and treatment effects in a coherent and integrative
manner.

Measurements from magnetic resonance imaging (MRI),
such as volumetric and morphometric analysis have been used
extensively in AD diagnosis [65], [66]. However, MRI reflects
structural changes such as atrophies in various regions, which
are effects of disease progress into symptomatic stages. Addi-
tionally, atrophies are hallmarks of brain aging in general, and
thus, differentiating AD specific structural changes from MRI
may need to involve more elaborate investigations.

Resting-state functional magnetic resonance imaging (rs-
fMRI) enables the assessment of functional connectivity be-
tween different brain regions with high spatial resolution. It
does so by means of estimating correlations in the blood oxy-
gen level dependent (BOLD) signals between brain regions,
which are reflective of brain activations due to cognitive pro-
cesses. By focusing on the brain function instead of struc-
tural changes, rs-fMRI connectivity methods are more likely
to detect early cognitive decline as result of early manifesta-
tion of genetic effects. It is currently the most widely used
neuroimaging modality to investigate the functional patholog-
ical changes in early AD, due to its noninvasive nature and
convenient process of data acquisition [67]. Additionally, it al-
lows monitoring disease progression in longitudinal studies,
tracking cognitive decline by means of functional connectivity
disruptions [68].

It was very recently suggested that brain networks may be
viewed as ‘intermediate phenotypes’ between molecular sys-
tems and individual behavior, and that brain networks mediate
the causal effect of genetics on behavior and vice versa [69].
The architecture of these networks affects higher order, cog-
nitive functions, and thus network interactions provide insight
into the biological mechanisms and their disruptions brought by
disease [70]. Neural circuit connectivity and network activity
were shown to be affected by amyloids deposits in AD [71].
Therefore, studying the connectivity in brain networks provides
the opportunity to reveal patterns underlying disease propaga-
tion throughout the brain and could elucidate which network
and subnetwork connectivity features are relevant biomarkers
in prodromal AD.

Emerging approaches: Network-based biomarkers

Some studies (see Table II) investigated the direct use of
correlation values from the functional connectivity matrix as
potential biomarkers. Chen et al. [72], ranked the correlation
coefficients by means of z-scores and top ranked coefficients
were considered as discriminating biomarkers in a Fisher lin-
ear discriminant analysis (LDA) to classify a subject as AD or
non-disease. In a multimodal approach, Dai et al. [73], used be-
sides correlation values also structural MRI features, as well as
frequency domain transformations of BOLD time series, and re-

gional homogeneity features. Discriminative features from each
modality were fed into ensembles of weighted LDA classifiers
used to discriminate AD and normal cases. However, a ma-
jor disadvantage of studies using direct connectivity values (or
direct voxel-derived measures) is that they fail to account for
the topological organization of brain networks. In this context,
Dipasquale et al. [74] decomposed fMRI data into distinct net-
works maximally independent in the spatial domain, by using
group-based independent component analysis (ICA) on the tem-
porally concatenated fMRI data across subjects. The networks
resulting from high-dimensional ICA decomposition were then
investigated in terms of inter- and intra-network correlation dif-
ferences between groups.

Recent studies found that healthy brains are characterized by
optimal balance between local segregation and global integra-
tion, which can be reflected by network modularity and connec-
tivity measures [75], [76]. Additionally, these studies suggested
that network hubs (nodes with high degrees of connections)
are preferentially affected in AD, thus affecting the connectiv-
ity networks’ modularity. These observations have pointed re-
searchers to characterize AD as a disconnection syndrome [75].
Overall, a number of local and global network-based connec-
tivity measures, have been investigated as possible biomarkers
to discriminate AD and healthy patients, such as node degrees,
shortest path lengths, clustering coefficient, small-world, char-
acteristic path length, various centrality measures and others.
For a survey on commonly used connectivity measures we refer
the reader to [77].

A typical example of such approaches is the classification
based method in [78] for extracting network-based discriminat-
ing features among a pool of measures of functional segregation
(clustering coefficient, local efficiency), functional integration
(characteristic path length, global efficiency) and nodal mea-
sures (degree, participation coefficient and betweenness cen-
trality). Feature selection and subsequent classification using a
support vector machine (SVM) classifier showed that the con-
nectivity measures can be efficiently used for AD diagnosis.
Zhang et al. [79] took a slightly different approach, while still
using connectivity measures (modularity, nodal and edge cen-
trality) to detect group differences. Their high-order connectiv-
ity network was defined based on correlations among correlation
profiles of each node. Supekar et al. [76] analyzed connectiv-
ity measures at regional, sub-network level, and indicated that
clustering coefficients in the left and right hippocampus differed
significantly between groups, suggesting connectivity asymme-
try measures are potential biomarkers.

However, the multifactorial pathogenesis of AD, as well as
the wide range of brain networks disruptions potentially in-
duced by plaques and tangles formation, is at odds with the cur-
rent implementation of neuroimaging-based biomarkers, which
are single-dimensional. Thus, the redefinition of the biomarker
as a network model that can be used to explain group dif-
ferences in brain connectivity between healthy and disease
subjects, presents the potential to capture additional relevant
discriminative information. Under this definition, biomarkers
are multidimensional network structures connecting several
brain regions.



DRAGOMIR et al..: NETWORK-BASED PERSPECTIVE IN AD: CURRENT STATE AND AN INTEGRATIVE FRAMEWORK

TABLE Il

OVERVIEW OF FUNCTIONAL MRI CONNECTIVITY APPROACHES USED TO INVESTIGATE NETWORK-BASED BIOMARKERS IN AD

Study Modality Focus Connectivity Methodology Measures Sample Size
Chen et al., 2011 fMRI Global functional connectivity ~ Pearson correlation Connectivity values 20 AD, 15 aMCI
[72] 20 HC
Dai etal., 2012 fMRI, sMRI  Global functional connectivity ~ Pearson correlation Connectivity and 16 AD, 22 HC
[73] and structural morphology morphology features
Dipasquale et al., fMRI Global intrinsic connectivity Pearson correlation on ICs Intra-| and inter-| 21 AD, 20 HC
2015 [74] network subnetwork connectivity
Khazaee et al., 2015 fMRI Global functional connectivity =~ Pearson correlation PC,ND, BC,CCusedas 20 AD, 20 HC
[78] features in classification
Zhang et al., 2016 fMRI Global high-order functional Correlation of connectivity M, NC and EC of the 77 MCI, 89 HC
[79] connectivity (HOFC) profiles HOFC matrix
Supekar et al., 2008 fMRI Global and regional functional =~ Wavelet correlation CC |,SW | 21 AD, 18 HC
[76] connectivity
Chen et al., 2013 fMRI Global functional connectivity — Cross-correlation coefficient Symmetry index| 30 AD, 30 HC
[85] subnetwork integrity |
Sun et al., 2015 fMRI, DTI Global functional and Pearson correlation CC|,SW |, M| 12 AD, 15 aMCI
[75] structural connectivity 14 HC
John et al., 2017 sMRI Global structural connectivity ~ Spearman correlation Subnetwork based 100 AD, 135 HC
[87] connectivity measures
Dai et al., 2015 fMRI Local and global seed-based z-transform of Pearson Hub connectivity | 34 AD, 41 HC
[88] connectivity correlation
Jicetal.,, 2014 fMRI Global functional connectivity  z-transform of Pearson Discriminative 12 MCI, 25 HC
[89] correlation subnetworks
Jieetal., 2018 fMRI Global functional connectivity ~ Pearson correlation Discriminative 34 AD, 99 MCI
[90] subnetworks 30 HC
Guo et al., 2017 fMRI Global and regional functional ~ Sparse linear regression Discriminative 38 AD, 28 HC
[91] hyper-network connectivity model subnetworks and brain

region features
Cui, 2018 fMRI Global functional connectivity =~ Pearson correlation Discriminative 21 AD, 25 MCI
[92] subnetworks 22 HC

IC = independent component, PC = Participation coefficient, ND = nodal degree, BC = betweenness centrality, CC = clustering coefficient, M = modularity, NC = nodal
centrality, EC = edge centrality, SW = small-worldnes, SMRI = structural MRI, DTI = diffusion tensor imaging, aMCI = amnestic mild cognitive impairment.

An increasing body of research is focusing on investigating
subnetworks, as substructures of the brain network, thus provid-
ing useful information regarding mesoscale network organiza-
tion [80]. It is well established that the human brain network has
a modular organization, consisting of a number of subnetworks
dedicated to different cognitive functions [81]. Given the pecu-
liarities of AD-induced disruptions to the brain network, it is
obvious that subnetwork-based approaches may yield more ac-
curate disease markers that cannot be reflected in the individual
properties of a node or an edge, or of the whole network [82].
Under this perspective, several subnetwork-based biomarker ap-
proaches have been proposed in AD [83], [84].

To exemplify, Chen et al. [85] estimated group level con-
nectivity networks by averaging individual network correlations
into a group representative network and subsequently performed
community detection using the spectral algorithm [86] to iden-
tify subnetworks. Subnetwork integrity and symmetric connec-
tivity was found to be disrupted in AD. In another study, Sun
et al. [75] performed community detection using the spectral
algorithm and further investigated changes in subnetwork struc-
ture in terms of connections density and hubness. In a related
approach, John et al. [87] used community detection algorithms
to identify group-level subnetworks in structural networks and

a pool of connectivity measures were then used to assess signif-
icant differences.

A variation from the above approaches was used by Dai
et al. [88], who performed community detection on a reduced
connectivity network defined around seed regions of interest
(ROIs) and examined differences among connectivity strengths
between- and within- subnetworks. They concluded that long-
range connectivity between subnetwork hubs and modular in-
tegrity disruptions could be used as potential biomarkers.

A different category of approaches are measuring direct topo-
logical similarity between connectivity networks using methods
such as graph kernels, without the need of computing additional
connectivity subnetwork-based measures. Examples of such ap-
proaches are those in [89], where authors define subnetworks
by first thresholding connectivity matrices and then identify the
most discriminative ROI connections by a feature extraction
method based on graph kernel distance and SVM classifiers. A
variation of this approach is proposed in [90], where multi-scale
subnetworks are built around seed network nodes (by increasing
neighborhood around seed) and similarity between subnetwork
profiles of pairs of corresponding nodes in AD vs healthy net-
works is computed by graph kernels in an effort to identify most
discriminative seeds (and subnetworks). While still based on the
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idea of identifying discriminative subnetworks using topolog-
ical dissimilarity measured via graph kernels, Guo et al. [91]
took a different approach in defining subnetworks by means of
hyper-network connectivity defined using a sparse linear regres-
sion model that estimates a region using linear combination of
time series of other regions. Thus, a hyper-network can rep-
resent, through a connecting edge, higher-order relationships
among multiple brain regions (i.e., subnetworks).

Recently, Cui et al. [92], merged the graph kernel approach
with a prior step in which frequently occurring subnetworks are
searched in connectivity networks at group level via the gSpan
algorithm [93]. Discriminative subnetworks are then identified
based on their frequency of occurrence in the AD and healthy
group. Graph kernel PCA is then used as a feature extraction
and a method for embedding the subnetworks into a vector
representation for subsequent classification using SVM. Table II
presents an overview of the described approaches.

A general pipeline for the analysis of rs-fMRI functional con-
nectivity for identification of subnetworks with biomarker value
can therefore be summarized in Figure 2. Typically, the steps in-
volved consist of: 1) extraction of BOLD signals from functional
data scans, which includes region of interest (ROI) parcellation,
according to anatomical atlases (Fig 2. A-C); ii) estimation of
inter-regional connectivity based on correlation coefficients of
the BOLD time-series signals (Fig. 2D). This step may involve
various signal processing such as wavelet analysis, such that spe-
cific frequency components of the signals are emphasized [94];
iii) filtering of the correlation coefficients matrix to exclude
spurious connectivity values (Fig. 2E); iv) estimation of the
topological graphs reflecting functional connectivity between
brain regions (Fig. 2F), and network community structure anal-
ysis to identify densely connected communities (subnetworks)
representing group consistent connectivity network structure
(consensus clustering) (Fig. 2G). Finally, v) comparison of con-
nectivity structure between different patient groups (disease vs
healthy) and identification of discriminative subnetworks with
significant differences between the groups (Fig. 2H). The search
for subnetworks which exhibit topology changes across differ-
ent patient groups is typically accomplished by either (i) deter-
mining a group representative (consensus) connectivity network
which is subsequently clustered using a community finding al-
gorithm, e.g., the spectral or Louvain methods [95]; significant
changes between subnetworks among different groups are then
assessed using statistical measures, such as the normalized mu-
tual information (NMI) [94], and subnetworks with lowest NMI
are considered to be relevant for between group discimination.
Or, alternatively by ii) employing graph mining methods, such
as the gSpan algorithm [93], which search for frequent sub-
networks present within individual connectivity networks of
different patient groups. Then, among the retrieved frequent
subnetworks in each group, are retained only those which carry
group discriminative information. The procedure can follow a
simple approach based on a discriminative score, in terms of dif-
ference in the frequency of occurrence between the AD group
samples D 4 p and control group samples Dy ¢, such as:

DS (si) =|f (si|Dap ) — f (si|Duc)|

Where s; is a subnetwork from S = {Sap, Syc} with Sap
= {sAD1,SAD2, - - -, SADm } denoting the set of all subnetworks
retrieved from AD group samples and Sy¢ = {spc1, SHeg, - - -
sgen } denoting the set of all subnetworks retrieved control
group samples [91]. The score allows ranking of subnetworks
and the selection of only those with top discriminative value.

I1l. INTEGRATING OMICS AND BRAIN LEVEL - TOWARDS THE
FUTURE BIG CHALLENGE

It has become increasingly clear that combining information
from different modalities, and at different biological and sys-
tems levels, has the potential to provide accurate assessment of
disease stage and progression, a vital step in the development
of DMTs [96]-[99]. This assessment is grounded on evidence
that AD, like most neurodegenerative disorders evolves at the
systems level and that biomarkers—molecular and neuroimaging
- need to be considered from a holistic point of view.

System-level approaches, which integrate data from different
levels, and thus have the potential to uncover a wider range
of dysfunctions, are expected to drive the biomarker discovery
process into a new generation of biomarkers. Additionally, they
hold the promise of identifying currently unknown mechanisms
of AD, as well as causal relations between the genotype and
brain phenotype. Existing approaches mostly combine informa-
tion from different imaging modalities, commonly voxel based
intensities from MRI and PET [73], [98], [99]. Several multi-
modal approaches include also CSF markers, besides MRI and
PET [96]-[99], MRI, PET and neuropsychological measures
[100], or MRI, PET, CSF and APOE genotype [101].

However, the drawbacks of existing integrative approaches
result from using markers obtained by invasive methods (CSF —
lumbar puncture is needed for sample collection; PET- requires
radioactive tracers), as well as the combination of low-level
features (with limited information power — such as MRI voxel
intensities) from individual modalities. In this context, integra-
tion of multimodal and multilevel network-based markers from
molecular and brain connectivity levels has the potential to im-
prove diagnosis in the early, preclinical stage of AD, as well as
provide breakthrough insights to understanding the mechanisms
and dynamics of the disease. Towards this direction, classifica-
tion approaches based on deep learning techniques have gained
increased attention recently, due to the excellent representational
power characteristic of deep architectures [ 102]. Deep networks,
such as the deep autoencoders, are able to discover latent fea-
ture representations from biomarkers identified at molecular and
brain connectivity levels, thus enhancing significantly classifi-
cation accuracy. In this context, we propose the use of a deep
learning model based on the bimodal deep autoencoder which is
able to identify relevant cross-level features [103] and use them
to improve diagnosis.

Typically, the proposed framework consists of the following
steps:

la-2a. Construction of integrated pathway network and

extrac-tion of differentially expressed subpathways
from omics data following the pipeline described in
Fig. 1.
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Flowchart for identifying subnetwork biomarkers from rs-fMRI functional images. (A) Resting-state BOLD fMRI data is acquired from each

individual and pre-processed; (B) Pre-processed signals are parcellated into regions of interest (ROI), according to anatomical atlases; C) Bold
signal time series are estimated for each ROI by averaging over ROI voxels; (D) BOLD signals are used for estimation of inter-regional connectivity
based on correlation coefficients, which are stored into a correlation matrix. (E) The correlation coefficients matrix is filtered to exclude spurious
connectivity values between regions and the connectivity matrix is obtained; (F) Group connectivity networks reflecting functional connectivity
between brain regions are determined and (G) network community structure analysis is performed to identify densely connected communities
(subnetworks) representing consistent connectivity network structure (consensus); (H) Comparison of connectivity structure between patient groups
(disease vs healthy) is performed for the identification of subnetworks with significant discriminative differences between the groups (figure shows
four subnetworks with different colors using circle graphs). Figure adapted from [95].

1b-2b. Construction of brain functional connectivity networks
and extraction of discriminative subnetworks following
the pipeline described in Fig. 2, using fMRI scans.

3. Transformation of individual data samples into bi-
nary vector representations for each of the two lev-
els, with features corresponding to the reference set of
subpathways/sub-networks identified at steps 1-2), and
values representing either activation, or presence (1) of
the respective subpathway/subnetwork in the current
data sample, or its inactivity, or absence (0). This can
be achieved by means of a subpathway activation scor-
ing scheme [62] at molecular level, and a subnetwork
score, e.g., based on NMI, at brain connectivity level.

4. In the pre-training step, vectorized input data from
each level will be fed into a level-specific (omics
and brain connectivity) restricted Boltzmann machine
(RBM) which will encode in the first hidden layer pos-
teriors the dependencies between features within each
level input. Subsequently, the posteriors of the first in-
put layer will be used as input data for the next layer,
where the new shared representation will be achieved
by merging variables of the level-specific first hidden
layer (Fig. 3C), an approach inspired by [103]. Fur-
ther, one or more additional layers can be added by
stacking autoencoders, which use as input previous’
hidden layer variables, forming a deep hierarchy of
stacked autoencoders. Following approaches in [103]
and [105], pretraining can be done using an augmented
dataset with additional samples which have only sin-
gle level data (either subpathways from omics level
or subnetworks from brain connectivity level). Fea-
tures corresponding to the other level are zero-masked.
This strategy enables learning of cross-level correla-
tions, while at the same time learns a network model
robust to input were only single level data is avail-
able [103]. The bimodal deep network presented so far
is able to learn, in an unsupervised manner, existing

latent higher-order correlations across levels. At this
pre-training step, publicly available blood sample gene
expression and other omics data, as well as MRI imag-
ing data, of patients and controls enrolled in large
scale multi-center longitudinal studies, such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[104] can be used.

5. Finally, in the supervised training (or fine-tuning) step,
an output layer will be stacked on top of the bimodal
deep network to represent the class labels of input
data (ADNI labeled data could be used here as con-
trol and early AD, i.e., converted MCI patients for
whom follow-up exams confirmed transition to AD).
A linear classifier, softmax regression layer or a lin-
ear SVM, can be used for discriminating incoming test
data (Fig. 3C). The new test data samples will be di-
agnosed after their transformation into binary vector
representation following steps 1-3 above.

Notably, the advantage of using such bimodal deep network
models is that they can be pre-learned in a greedy layer-wise
manner, to obtain the optimal features in an unsupervised way.
Subsequently, during training, the pre-learned network’ param-
eters are fine-tuned based on supervised class information, us-
ing backpropagation. The pre-learning of parameters reduces
the risk of falling into local maxima. Another advantage of the
proposed framework compared to other deep learning-based ap-
proaches (such as convolutional neural networks), besides the
fact that once pre-learned, the model is able to work with inputs
where partial data from a modality is absent, is the possibility
to enrich the pre-training dataset with unlabeled data from other
available sources during unsupervised learning. This was shown
to enhance the learning of more robust representations [105].

The rationale behind the integration framework we propose
is two-fold: first, currently, the relation between connectiv-
ity markers and molecular pathology, especially in preclinical
stages of AD is largely unknown. Since, it is widely accepted
that pathological process in AD starts well before cognitive
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The proposed framework for integrating network-based biomarkers from molecular omics level (A) and brain connectivity level (B). The

data samples from each level are converted into binary vector representations using the reference set (from A and B) of differentially expressed
subpathways and discriminative subnetworks through subpathway/subnetwork scoring schemes and subsequently fed into a bimodal deep network
which extracts high-level shared features subsequently fed into linear classifiers (C).

deficits manifest, integrating omics level functional information
has the potential of providing ‘upstream’ evidence, increasing
diagnostic sensitivity. Second, the deep learning-based models
better fit the intuitive notion of cross-level relation (between
genotype and phenotype). Several recent studies based on sim-
ilar deep learning approaches have demonstrated the ability to
extract such high-level relations with diagnostic value, either
from neuroimaging (PET and MRI) and genetic (single nu-
cleotide polymorphism), or neuroimaging and CSF biological
data [98], [106]. In our proposed framework, the shared rep-
resentation, learned by the bimodal deep network may encode
higher-level relations between input data features, e.g., cross-
talk between omics level subpathways, cognition-related asso-
ciations between brain connectivity subnetworks, or synergy
between subpathways and subnetworks reflective of processes
transcending the blood-brain barrier. However, the nature of
deep networks architectures makes the direct examination of
such representations a complex task, which is currently the fo-
cus of sustained research [102].

Challenges and Limitations

A common issue in omics data integration and analysis is
the difference induced by non-biological variables or technical
heterogeneity (e.g., different reagent lots, technicians and labs,
etc.), known as batch effects. Robust approaches for batch ef-
fects removal need to be considered at the experimental and
data preprocessing phases, in order to preserve biological het-
erogeneity and avoid erroneously skewed analysis. Recently,
an increasing number of studies tackle these aspects in sev-
eral directions such as: developing best practices and guidelines
for experimental design (e.g., required technical and biological

replicates) [107] and analysis pipelines for removal of non-
biological variation [108].

In the context of our proposed framework, a number of re-
cent studies have highlighted the ability of network-based ap-
proaches to mitigate effects and confounding variability. This
is due to their inherent incorporation of biological constraints
by the use of validated background knowledge and biological
context from structured pathway databases [109]. Thus, when
overlaying experimental data onto pathway interaction networks
constructed from databases, additional validation steps can be
implemented to check the agreement of new data with biological
context, and prune spurious edges as in [52].

Similar challenges are posed by the reliability and repro-
ducibility of MRI neuroimaging data. Several parameters may
differ between MRI studies, such as scanner protocol, prepro-
cessing and analysis pipelines, or subject related variability
in rs-fMRI experiments. However, particularly in the case of
AD, the emergence of multi-center international consortia and
initiatives, such as the ADNI and the European Alzheimer’s
Disease Consortium (EADC) has fostered sustained efforts
for developing field-wise consensus on the harmonization of
experimental, assessment and biorepository protocols [24].
Additionally, recent works have demonstrated that imple-
mentation of specific processing pipelines, which incorporate
biology-inspired filtering schemes of brain networks, as well as
subsequent analysis pipelines result in increased reproducibility
of results [110], [111]. Akin to the efforts pursued in the case
of omics data, the neuroimaging research community has been
taking significant steps in the implementation of standards and
best practices [112].
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Another significant challenge in the context of the proposed
integration framework is the need of deep learning algorithms
for sufficient and balanced sample for learning robust repre-
sentations of data [102]. However, recent studies attempting
multi-modal integration of low-level neuroimaging and CSF
biological data and employing similar deep learning architec-
tures have shown encouraging results using as few as 51 AD
and 99 MCI patients’ data [98]. The advantage of the proposed
framework is that it can easily incorporate in the training phase
publicly available data from datasets collected by standardized
protocols under the above-mentioned AD initiatives (e.g., ADNI
database includes omics and neuro-imaging data from a cohort
of more than a thousand participants, longitudinally collected
since its launch in 2004 [104], thus enabling ‘data hungry’ deep
learning approaches).

Moreover, the availability of data collected longitudinally and
from a wide range of modalities in studies such as ADNI, help
overcome other limitations. Such a presumable limitation would
be the need for training on same subject data from both levels,
in order to extract meaningful cross-level correlations between
omics and brain connectivity network biomarkers. Neverthe-
less, this limitation is additionally accounted in the proposed
framework by the possibility of using partial data (when data
from one level is unavailable) by employing the zero-masking
strategy described above [103].

V. CONCLUSION

Network-based biomarkers are attracting increasing interest
lately due to their ability of facilitating comprehensive systems-
level approaches and modeling of intrinsic functional relations
at multiple biological levels [25]. In this context, the study of
complex diseases, such as AD, benefits from the established
methodologies of network science and graph theory which of-
fer not only a conceptual framework but also practical toolkits
and techniques able to tackle the challenges and limitations of
existing biomarker discovery approaches.

The development of efficient frameworks for identifying non-
invasive biomarkers in preclinical stages of AD is a crucial step
in managing the disease. In this context, omics-based data col-
lected from blood samples, as well as information obtained
through neuroimaging techniques provide ideal candidates for
discovery of noninvasive biomarkers. Moreover, the integra-
tion of information from genotype and brain phenotype lev-
els, provides systems-level insight into disruptions brought by
the disease, while the network- based modeling benefits from
the functional context provided by the network interactions. At
molecular level, pathway analysis methods can identify differen-
tially expressed, dynamic substructures in biological networks.
Such substructures, or subpathways, have highly coherent func-
tion, based on underlying topology, and enhanced capability to
detect variations in response to specific biological context. At
brain connectivity level, complex network analysis can iden-
tify discriminative modular substructures, which may serve as
biomarkers. Such substructures, or subnetworks, often corre-
spond to underlying brain functional specialization, since it
is well established that brain networks have modular organi-
zation and, therefore, can provide valuable information about

mesoscale network organization and serve as useful approach
for identifying biomarkers [80], [81].

While in the present review we focus on diagnostic biomark-
ers in early AD, network-based biomarkers have the potential
to find wider use in AD biomarker research. Specifically, given
the noninvasive nature of considered data modalities, similar
network-based approaches could be employed for the identi-
fication of prognostic biomarkers, as well as biomarkers for
monitoring therapeutic efficacy. For this, the discussed meth-
ods should be adapted in order to be able to extract biomarkers
reflective of network dynamical changes. Existing longitudinal
studies such as ADNI, provide extensive data support for such
approaches.

The recent high-profile failures of AD drugs in various phases
of clinical trials [10] suggest there is a strong need for objective
early stages biomarkers, able to provide support for DMTs. The
network-based perspective presented in the current review holds
the promise of facilitating the development of such biomarkers,
while the integration of genotype-brain phenotype information
leads the way to the personalized medicine solutions in preclin-
ical AD research.
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