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Unsupervised Bayesian Inference to Fuse
Biosignal Sensory Estimates for

Personalizing Care
Tingting Zhu , Marco A. F. Pimentel , Gari D. Clifford, and David A. Clifton

Abstract—The role of sensing technologies, such as
wearables, in delivering precision care is becoming widely
acceptable. Given the very large quantities of sensor
data that rapidly accumulate, there is a need to employ
automated algorithms to label biosignal sensor data. In
many real-life clinical applications, no such expert labels
are available, and algorithms for processing sensor data
must be relied upon, without access to the “ground
truth.” It is therefore extremely difficult to choose which
algorithms to trust or discard at any point in time, where
different algorithms may be optimal for different patients,
or even for different points in time for the same patient. We
propose two fully Bayesian approaches for fusing labels
from independent and potentially correlated annotators
(i.e., algorithms or, where available, experts). These are
generative models to aggregate labels (i.e., the outputs
of the algorithms, such as identified ECG morphology) in
an unsupervised manner, to estimate jointly the assumed
bias and precision of each algorithm without access to the
ground truth. The latter fused estimate may then be used
to infer the underlying ground truth. For the first time in the
biomedical context, we show that modeling correlations
between annotators, and fusing information concerning
task difficulty (such as the estimated quality of the sensor
data), improve these estimates with respect to commonly
employed strategies in the literature. Also, we adopt a
strongly Bayesian approach to inference using Gibbs
sampling to improve estimates over the existing state of the
art. We present results from applying the proposed pair of
models to simulated and two publicly available biomedical
datasets, to demonstrate proof-of-principle. We show that
our proposed models outperform all existing approaches
recreated from the literature. We also show that the
proposed methods are robust when dealing with missing
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values (as often occurs in real-life biomedical applications),
and that they are suitably efficient for use in real-time
applications, thereby providing the basis for the reliable
use of sensors for personalizing the care of the individual.

Index Terms—Bayesian inference, data fusion, person-
alised modelling, unsupervised learning.

I. INTRODUCTION

W ITH THE rapid increase in volume of wearable devices
being used in clinical practice, there exists the possibil-

ity of personalising the care of individuals, such that care is more
closely based on their physiology. This “precision” approach to
healthcare is predicated on the fact that biosignal data arising
from patient-worn sensors can be used for diagnosis and progno-
sis in a manner that is sufficiently robust and interpretable for use
in a clinical scenario. Replacement of “one-size-fits-all” treat-
ments for personalised equivalents would be greatly supported
by the use of wearable healthcare sensors. It is recognised, how-
ever, that existing systems suffer from a lack of robustness [1],
typically because reliable analysis of the very large resulting
datasets of sensor data is often impossible using existing meth-
ods. Given the very large quantities of sensor data that rapidly
accumulate, there is a need to employ automated algorithms to
label biosignal sensor data (e.g., abnormal morphology of the
ECG). However, automated algorithms are typically less reliable
than gold-standard expert labels; the latter are typically sparse
and expensive, and it is usually not feasible to obtain expert
labels for real-time data arising from actual patients.

Expert labelling of these datasets that contain sensor data is
the gold standard for diagnosing many diseases and providing
subsequent care. From a clinical perspective, expert labelling
is defined as being the result of experienced physicians anno-
tating an area of interest in some data when the ground truth
(e.g., the true time-of-occurrence or duration of an event; a
numerical estimate of a physiological measurement, such as a
vital sign; or the diameter of an object in a medical image) is
not readily available. Expert labels are generally used for train-
ing automated algorithms when taking a supervised approach
to learning. However, experts are relatively scarce, their time
is expensive, and the task of labelling is time-consuming. It
is thus typically impossible to obtain expert labelling in real-
time for most practical healthcare-sensing applications, where
time-series rapidly becomes too large in quantity for human
interpretation. In such cases, automated algorithms must be
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relied upon to label real-time datasets. Expert labelling can
be further complicated by the ambiguous definition of what it
means to be an “expert” for a given medical application. There
is no standardisation for testing measures of clinical compe-
tency above a proficient level, both in terms of accuracy and
consistency, and no empirical method for measuring levels of
clinical expertise, even though the quality of annotation relies
heavily on the expert’s experience. Therefore, large inter- and
intra-annotator variabilities occur when physicians label data,
depending on their respective experience and level of training
[2], [3].

The “experts” in terms of the work described by this paper
could be either humans (such as trained clinicians), or automated
algorithms, or some combination of both. Empirical studies
have shown that both humans and automated algorithms are
likely to have their own bias values regardless of their level
of “expertise” [3]–[5]. The bias of each labeller (also termed
annotator) is defined as being the average difference between the
expert’s estimate and the (unseen) true value. In the context of
labelling medical data, being reliant on results from automated
algorithms to produce a diagnosis (or to make a patient-specific
decision for a certain treatment) is typically not sufficient due
to large inter- and intra-variabilities between recommendations
from such algorithms. Furthermore, when the ground truth is
unknown, it is difficult to choose which algorithms to trust or
discard, or even how to merge their recommendations to form a
consensus output.

In this paper, we propose two generative models for aggre-
gating individual continuous labels in a principled manner and
inferring a more reliable label than each individual labeller con-
sidered independently. We demonstrate our models using two
datasets from exemplar biomedical applications where subjec-
tive continuous labels of some presumed underlying ground
truth are provided by “experts”. These “experts” can be inde-
pendent or potentially-correlated. For the purpose of this paper,
we will accept the broad definition of “expert” to include au-
tomated algorithms for producing continuous-valued estimates
given exemplar biomedical data. In keeping with the literature,
we will refer to “annotators” and “experts” interchangeably.
Similarly, we will refer to “annotations” and “labels” as refer-
ring to the outputs of the experts.

II. RELATED WORK

There exist some key contributions in the literature for mod-
elling continuous-valued labels, and the biases and expertise of
each annotator: Raykar et al. [6] used an expectation maximisa-
tion (EM) method to fuse continuous-valued labels for measur-
ing the diameter of a suspicious lesion from a medical image.
Welinder and Perona [4] devised a Bayesian EM framework
for fusing binary, multi-valued, and continuous-valued labels,
which explicitly modeled the precision of each annotator to ac-
count for their varying skill levels, without modelling their bias
values. We have extended this Bayesian framework to jointly
model the annotators biases and precisions using a Bayesian
treatment [7]. In medical imaging, Warfield et al. [3] proposed
a method for validating segmentation by estimating the bias and

variance of each annotator. A similar model was described by
Ouyang et al. [8] that estimated the quantitative ground truth
(such as count and percentage estimation) in a “crowd sensing”
setting. Xing et al. recently proposed using a Gaussian prior on
the bias parameter for the identification of cardiac landmarks
in two-dimensional images [9]. However, their model does not
cater for missing annotations or the incorporation of physiolog-
ical features into the model to further improve the estimation of
ground truth [6]. Furthermore, existing approaches have no prin-
cipled means of accounting for uncertainty due to missingness
and/or quality of the data. The aforementioned studies [3], [4],
[6], [9], [10] serve as the basis of comparison for the proposed
models. A comprehensive comparison of such models is pre-
sented in the Supplementary Materials Table III. Note that these
models are unsupervised methodologies. Other related work
concerns the use of supervised approaches. Ensemble meth-
ods, such as Bagging, Boosting, AdaBoost, and more recently
Rotation Forests, combine the predictions from multiple base
learners to form ensembles, which typically achieve more ac-
curate aggregate predictions than the individual base learners.
Ensemble learning, in general, is a performance-driven approach
which involves a measure of quality of the base learners (e.g.,
accuracy), either for training or for estimating the weights of
each base learner, for which labelled training data (i.e., training
data with a ground-truth) are required. Also, their interpretabil-
ity is critically limited [11]. Our work diverts from this body of
literature in that the proposed learning method does not require
a ground truth, as commonly found in medical and biomedical
datasets.

III. NOVELTY

In this paper, we built on our previous model [7], and
propose a fully-Bayesian approach via Gibbs sampling for
fusing continuous-valued labels from independent and/or
potentially-correlated annotators to form a consensus in an
unsupervised manner. The labels can be either QT intervals of
an ECG measured, timestamps of abnormal ECG peaks from
a sensor-based signal, or the estimated respiratory rate values
from a wearable device. This allows, for the first time, a full
distribution over the posterior estimates, due to the use of a
strongly-Bayesian approach, and an explicit quantification of
our uncertainty in the estimates using a signal quality extension.
Additionally, the proposed framework overturns the strong as-
sumptions of existing approaches such that we take into account
the precision and bias of the individual annotators, in addition
to estimating the correlation that exists between annotators. All
existing algorithms from the literature assume that the experts
are independent, including our previously proposed model [7].
In this study, we aim to demonstrate that its performance can
be improved using the newly proposed models. Allowing such
correlations is an important means of representing, for example,
the distinction between “experts” and “novices”, or between
human experts and automated algorithms. To the best of the
authors’ knowledge, this is the first attempt to perform such
task, and we will demonstrate that explicit modelling of these
correlations improves model performance with respect to the
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start-of-the-art. We aim thereby to make a case that the methods
proposed in this paper increase robustness in our example
sensor-based healthcare applications such that the results can
support the use of patient-specific personalised treatments.

IV. PROPOSED GENERATIVE MODELS

The generative models considered by this paper are stochas-
tic processes that are assumed to have generated the available
observations, given some model parameter values. These will
be fully-probabilistic, in which we model the joint probability
distribution over all parameters.

A. Modelling the Latent Ground Truth

Suppose that there are N records of N labels (annotations).
The underlying ground truth for the ith record, zi (such as a
physiological timestamp of an event, a predicted continuous-
valued of an vital sign, and a QT interval value in the ECG), can
be assumed to be drawn from a Gaussian distribution with mean
ai and variance 1/b. The probability density function (pdf) of
zi is defined as follows:

p (zi | ai, b) = N (zi | ai, 1/b), (1)

where ai can be expressed as a linear regression function
f(w,xi) with an intercept w0 : w are the coefficients of the
regression (which includes w0

1). xi is a column feature vector
for the ith record containing d features (i.e., we have an (N × d)-
dimensional design matrix, X = [xᵀ

1 ; ...;xᵀ
N ]). To cater for the

modelling of w0 , a scalar value of one was added in the feature
matrix (i.e., xi := [1,xi ])). Furthermore, the precision of the
ground truth defined as the inverse-variance, b, is assumed to be
modeled from a gamma distribution2 as follows:

p (b | kb, ϑb) = Gamma (b | kb, ϑb) , (2)

where kb is the shape parameter and ϑb is the scale parameter.
If one further assumes that the ground truth can be drawn in-
dependently from the N records, the conditional pdf of z as a
vector of annotations is given by:

p (z | xi ,w, bi) =
N∏

i=1

N (zi | xᵀ
i w, 1/bi) . (3)

zi may represent a QT interval value of an individual that is
drawn from a Gaussian distribution cetered around its mean (i.e.,
xᵀ

i w) (which is determined by the heart rate and age featuresxi .)
with variance 1/bi . For a total of N subjects or N recordings,
there are N independent Gaussian.

1w0 models the overall offset predicted in the regression, which is different
from the annotator specific bias φ in the proposed models that will be described
in later sections.

2A gamma distribution can be defined as Gamma(x | k, ϑ) =
1

Γ(k )ϑ k xk−1 exp(− x
ϑ ), where k is the shape of the distribution and ϑ is the

scale of the distribution, Γ(·) is the gamma function. The gamma distribution is
commonly used to model positive continuous values and it is therefore assumed
that precision values are drawn from a gamma distribution.

B. The Independent Annotator Model

Assuming the presence of N recordings, we have a dataset,
D = [xᵀ

i , yj=1
i , · · · , yj=R

i ]Ni=1 , where yj
i corresponds to the an-

notation provided by the jth annotator for the ith record, and
there are a total of R annotators. In this model, it is assumed
that yj

i is a noisy version of zi , with a Gaussian distribution
N (yj

i | zi, (σj )2). The motivation for the latter comes from the
central limit theorem: given the assumption that the annotations
for a given annotator are independent and identically distributed,
their residuals (i.e., errors in annotations) derived from the la-
tent ground truth will converge to a Gaussian distribution. In the
absence of prior knowledge, this assumption provides a robust
and generalisable model for the given data, as will be demon-
strated. Here, σj is the standard deviation associated with the
jth annotator and represents his variance in annotation around
ground truth zi . Furthermore, the bias of each annotator, where
it measures the average difference between the estimation and
the ground truth, can be modeled as an additional term, denoted
as φj . The pdf of estimating yj

i can then be written as:

p
(
yj

i | zi,
(
σj
)2) = N

(
yj

i | zi + φj , 1/λj
)

, (4)

where (σj )2 is replaced with 1/λj . Here, λj is the precision
of the jth annotator, defined as the estimated inverse-variance
for annotator j. It is assumed that y1

i , · · · , yR
i are conditionally

independent given the ground truth zi ; with the assumption that
records are independent, the conditional pdf of y can be modeled
as:

p (y | z,φφφ,λλλ) =
N∏

i=1

R∏

j=1

N
(
yj

i | zi + φj , 1/λj
)

. (5)

The assumption of conditional independence may not be nec-
essarily true in cases where the annotations are generated by
algorithms, some of which may be variations in implementation
of the same general approach. Nevertheless, this assumption
was made to simplify the model and subsequent derivation of
the likelihood (see relaxation of independence assumption in
Section IV-D). The pdf of the bias for annotator j, φj , is as-
sumed to be drawn from a Gaussian distribution with mean μφ

and variance 1/αφ [9]:

p
(
φj | μφ, αφ

)
= N

(
φj | μφ, 1/αφ

)
. (6)

Although the biases of the annotators might be assumed to
have other distributions, such choices are likely to be dataset-
dependent. In the absence of any knowledge of the underlying
distribution of biases, we adopt the strategy of assuming them to
be drawn from a Gaussian distribution. As described earlier, it
is assumed that precision values, such as λj and αφ , were drawn
from a gamma distribution, with parameters kλ, ϑλ, and kα , ϑα ,
respectively:

p
(
λj | kλ, ϑλ

)
= Gamma

(
λj | kλ, ϑλ

)
. (7)

p (αφ | kα , ϑα ) = Gamma (αφ | kα , ϑα ) . (8)

In the case when predicting an QT interval for the ith subject:
the QT interval, yj

i , estimated from algorithm j is assumed to
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Fig. 1. Graphical representation of the BCLA model [7]: yj
i corresponds

to the annotation provided by the jth annotator for the ith record, and
is modeled by the zi (the unknown underlying ground truth), the φj

(bias), and the λj (precision). Furthermore, zi is drawn from a Gaussian
distribution with parameters mean a and variance 1/b, where a for the
ith record is a function of feature vector xi as a linear regression function
f (w, x), and w being the coefficients of the regression. φj is modeled
from a Gaussian distribution with mean μφ and variance 1/αφ . The b,
λj , and αφ are drawn from a gamma distribution with parameters kb , ϑb ,
kλ, ϑλ, and kα , ϑα , respectively.

be within ±√1/λj away from the truth QT value for subject i
(i.e., zi), with an offset, φj , that is specific to algorithm j.

C. BCLA - A Joint Model of Ground Truth and
Independent Annotators

Bayesian continuous-valued label aggregator (BCLA) [7] is a
straightforward means of combining the ground truth and anno-
tator models (see Section IV-A and Section IV-B, respectively).
It comprises two key contributions: (i) BCLA provides an un-
supervised estimation of the continuous-valued annotations that
are valuable for time-series related data, as well as the duration
of events for physiological data; (ii) it introduces a unified frame-
work for combining continuous-valued annotations to infer the
underlying ground truth, while jointly modelling annotators’
bias and precision values. The graphical form of BCLA is pre-
sented in Fig. 1. Under the assumption that records are indepen-
dent, the likelihood of the parameters θθθ = {w,λλλ,φφφ, αφ , b, zi}
for a given dataset D can be formulated as:

p (D | θθθ) =
N∏

i=1

p
(
y1

i , · · · , yR
i | xi , θθθ

)
. (9)

For the first time, we here propose a fully-Bayesian approach
to BCLA modelling using Gibbs sampling, denoted as BCLA-
Gibbs. We note that previous methods in the literature are not
fully-Bayesian (either using maximum likelihood or maximum-
a-posteriori (MAP) approach for estimating model parameters).
Our previous work [7], for example, uses a MAP approach
(denoted as BCLA-MAP). The posterior probability of the pa-
rameters θθθ for a given dataset D can be written using Bayes’
theorem as:

p (θθθ | D) =
p (D | θθθ) p (θθθ)∫

θθθ p (D | θθθ) p (θθθ) dθθθ
, (10)

where

p (D | θθθ) p (θθθ) = Gamma(αφ | kα , ϑα )Gamma(b | kb, ϑb)

×
⎡

⎣
R∏

j=1

N
(
φj | μφ, 1/αφ

)
Gamma(λj | kλ, ϑλ)

⎤

⎦

×
⎡

⎣
N∏

i=1

N
(
zi | xᵀ

i w, 1/b
) R∏

j=1

N
(
yj

i | zi + φj , 1/λj
)
⎤

⎦ .

Each parameter in the BCLA-Gibbs likelihood is assumed to
be independent, and can therefore be updated in a fully-Bayesian
manner by sampling from its conditional posterior distribution
with its hyperparameters (denoted by *). The derivations and
convergence criterion of BCLA-Gibbs, as well as its implemen-
tation are explained in the Supplementary Materials.

Learning From Incomplete Data Using BCLA-Gibbs

For the N annotations from the R annotators, we should
consider the case in which there are missing annotations from
different annotators (i.e., not all annotators have labelled all
recordings). In such a case, the hyperparameters of the posterior
distribution of BCLA-Gibbs can be re-written as follows:

zi ∼ N

(
zi

∣∣∣∣a
∗
i ,

1
b∗i

)
, φj ∼ N

(
φj

∣∣∣∣∣μ
j∗
φ ,

1
αj∗

φ

)
,

λj ∼ Gamma
(
λj
∣∣∣kj∗

λ , ϑj∗
λ

)
, b ∼ Gamma (b |k∗

b , ϑ
∗
b ) ,

αφ ∼ Gamma (αφ | k∗
α , ϑ∗

α ) .

where

a∗
i =

(xᵀ
i w) b +

∑
j∈Vi

[(
yj

i − φj
)

λj
]

b +
∑

j∈Vi
λj

, b∗i = b +
∑

j∈Vi

λj .

μj∗
φ =

μφαφ + λj
∑

i∈Uj

(
yj

i − zi

)

αφ +
∑

i∈Uj
λj

, αj∗
φ = αφ +

∑

i∈Uj

λj .

kj∗
λ = kλ +

Nj

2
,

1
ϑj∗

λ

=

∑
i∈Uj

(
yj

i − φj − zi

)2

2
+

1
ϑλ

.

k∗
α = kα +

R

2
,

1
ϑ∗

α

=

∑R
j=1

(
φj − φ̄

)2

2
+

1
ϑα

.

k∗
b = kb +

N

2
,

1
ϑ∗

b

=
∑N

i=1 (zi − z̄)2

2
+

1
ϑb

.

Note that Uj is the set of records with annotations provided
by the jth annotator, Vi is the set of annotators that provided
annotations for the ith record, and Nj is the number of records
annotated by the jth annotator. w can be learnt by finding
the zero gradient of the expectation of the complete data log-
likelihood as w = (

∑N
i=1 xix

ᵀ
i )−1 ∑N

i=1 xizi . The above al-
lows us to cope robustly with the commonly-encountered diffi-
culties arising from incomplete (or even sparse) labelling, in a
principled and probabilistic manner.
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D. BCLAc – A Combined Ground Truth and Correlated
Annotator Model

The BCLA model assumed that annotators are conditionally
independent given the features which defined the ground truth.
It does not factor in the possible dependency (or correlation) be-
tween individual annotators, which might occur between sets of
automated algorithms. For example, as outlined previously, a set
of algorithms based on different implementations of the same
analytical method might be expected to yield correlated errors in
their respective labels. Incorporating a correlation measure into
the annotator model could therefore allow for a better aggrega-
tion of the inferred ground truth. Annotators who are considered
to be anomalous (i.e., those that are highly correlated to other
annotators but which have relatively large variances and biases)
should be penalised with lower weighting for their labels; con-
versely, expert annotators (i.e., those that are highly correlated
to other annotators but which have relatively small variances
and biases) should have their labels weighted more heavily in
the model. A generative framework for modelling BCLA with
correlated annotators (denoted BCLAc) is now described.

A multivariate normal distribution3 can be applied to the
annotator model, using the covariance matrix (denoted ΣΣΣ) to
describe the correlation among annotators, as well as provid-
ing a constraint on the biases φφφ. The Inverse-Wishart (IW)
distribution4 is used as a prior for the covariance matrix ΣΣΣ,
and the bias values φφφ for all annotators are modeled using a
multivariate normal distribution with mean μμμφΣ and covariance
ΣΣΣ/k0 . The graphical representation of BCLA with correlated
annotators (denoted BCLAc) is shown in Fig. 2.

As illustrated in Fig. 2, only the annotator model has been
modified in BCLAc when compared to the BCLA model, by in-
troducing the covariance measure among annotators. Assuming
that each record is independent, the conditional pdf of the mod-
ified annotator model with covariance becomes the following:

p (y | zi,φφφ,ΣΣΣ) =
N∏

i=1

N (zi + φφφ,ΣΣΣ) , (11)

where ΣΣΣ is the covariance matrix of the R annotators and where
there are N recordings.

Matrix ΣΣΣ can be further decomposed into a correlation matrix
and the precision values of the annotators. Using the separation
strategy proposed by Barnard et al. [12], ΣΣΣ is formulated as:

ΣΣΣ = QρρρQ, (12)

where Q is an R-by-R diagonal matrix with entries being
1√

λj = 1 , ..., 1√
λj = R

. Here, λj is the precision value for the jth

3The probability density function of the d-dimensional multivariate nor-
mal distribution can be defined as N (z | μμμ,ΣΣΣ) = (2π)d |ΣΣΣ|)(−1/2) exp
(− 1

2 (z −μμμ)T ΣΣΣ−1 (z −μμμ), where μμμ is 1-by-d and ΣΣΣ is a d-by-d symmetric
positive-definite matrix.

4The probability density function of a Inverse-Wishart distribution for d-
by-d symmetric positive-definite matrices X and T , and where v as a scalar

greater than or equal to d, is
|S |v / 2 |X |−( v + d + 1 ) / 2 exp(− 1

2 trace(SX −1 ))

2v d / 2 Γd (v /2)
, where

Γd (v/2) = πd (d−1)/4
∏d

i=1 Γ( v +1−i
2 ) is a multivariate gamma function.

Fig. 2. Graphical representation of the BCLAc model: yi corresponds
to the annotations provided by all annotators for the ith record, and
it is modeled by the zi (the unknown underlying ground truth), the φφφ
(biases), and the ΣΣΣ (covariance matrix). Furthermore, zi is drawn from a
Gaussian distribution with parameters mean a and variance 1/b, where
a for the ith record can be a function of feature vector xi and coefficients
w. The biases, φφφ are modeled from a multivariate Gaussian distribution
with mean vector μμμφΣ and covariance ΣΣΣ over a scalar factor k0 . The ΣΣΣ is
drawn from an Inverse-Wishart (denoted IW) distribution with parameters
v and S. The b is drawn from a gamma distribution (denoted as Gamma)
with parameters kb and ϑb .

annotator, and ρρρ is the correlation matrix of the annotation er-
rors among R annotators. The ρρρ matrix measures the Pearson
product-moment correlation coefficients [13], where each ele-
ment ρij ∈ [−1, 1]. The correlation coefficient ρpq of two sets
of N annotations (i.e., yp and yq ), each provided by annotator
p and q, can be written as:

ρpq =

N
∑N

i=1 yp
i yq

i −∑N
i=1 yp

i

∑N
i=1 yq

i[
N
∑N

i=1 yp
i

2 −
(∑N

i=1 yp
i

)2
] 1

2
[
N
∑N

i=1 yq
i

2 −
(∑N

i=1 yq
i

)2
] 1

2
.

(13)

This coefficient ρpg = 0 when both annotators’ errors are inde-
pendent from each other, whereas having ρpq ∈ [−1, 0) or (0, 1]
indicates that annotators’ errors are negatively or positively cor-
related in a linear manner, respectively (i.e., their errors decrease
or increase together throughout recordings).

The biases of individual annotators are now assumed to be
drawn from a multivariate normal distribution constrained by
ΣΣΣ, with conditional probability density:

p
(
φφφ | μμμφΣ ,ΣΣΣ

)
= N

(
φφφ | μμμφΣ ,ΣΣΣ/k0

)
, (14)

where μμμφΣ is the prior mean for φφφ, and k0 is a positive scalar
that expresses our belief on μμμφΣ .

The posterior of the parameter θθθc = {φφφ,ΣΣΣ, b, zi} for a given
dataset D can be written using Bayes’ theorem as:

p (θθθc | D) =
p (D | θθθc) p (θθθc)∫

θθθc
p (D | θθθc) p (θ) dθθθc

, (15)



52 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 1, JANUARY 2019

where

p (D | θθθc) p (θθθc) = N
(
φφφ | μμμφΣ ,ΣΣΣΣΣΣΣΣΣ/k0

)
IW (ΣΣΣ | v, S)

× Gamma (b | kb, ϑb)

×
[

N∏

i=1

N (zi | ai, 1/b) N (yi | zi + φφφ,ΣΣΣ)

]
.

The Gibbs sampler can be used to estimate the parameter of
the covariance matrix ΣΣΣ directly, without modelling the preci-
sion and correlation individually. The ground truth zi can be
estimated using the precision values derived from the estimated
ΣΣΣ. The posterior of biases φφφ and covariance ΣΣΣ can be mod-
eled jointly using a conjugate prior defined by the multivariate
normal inverse-Wishart distribution. Each parameter in the like-
lihood described in equation (15) can therefore be updated by
sampling from its conjugate prior distribution with posterior
hyperparameters (denoted by *) as follows:

zi ∼ N

(
zi | a∗

i ,
1
b∗i

)
, φφφ ∼ N

(
φφφ | μμμ∗

φΣ ,ΣΣΣ∗
φ

)
,

b ∼ Gamma (b | k∗
b , ϑ

∗
b) , ΣΣΣ ∼ IW (ΣΣΣ | v∗,S∗) .

where

a∗
i =

(xᵀ
i w) b +

∑
j∈Vi

[(
yj

i − φj
)

λj
]

b +
∑

j∈Vi
λj

, b∗i = b +
∑

j∈Vi

λj .

μμμ∗
φΣ =

k0μμμφΣ

k0 + N
+

Uȳb

k0 + U
, ΣΣΣ∗

φ =
ΣΣΣ

k0 + N
.

k∗
b = kb +

N

2
,

1
ϑ∗

b

=
∑N

i=1 (zi − z̄)2

2
+

1
ϑb

, v∗ = v + N,

S∗ = S +
N∑

i=1

(yi − zi − ȳb)
T (yi − zi − ȳb)

+
k0N

k0 + N

(
ȳb −μμμφΣ

)T (ȳb −μμμφΣ
)
.

We recall that Vi is the set of annotators that provided an-
notations for the ith record. U is a 1-by-R vector, and each
of its elements indicates the total number of annotations pro-
vided by a respective annotator, excluding missing annotations.
ȳb = [ȳj=1

b , · · · , ȳj=R
b ], where ȳj

b = 1
Nj

∑N
i=1(y

j
i − zi), is the

sample mean difference between the inferred ground truth and
annotations across Nj recordings provided by the jth annotator
(excluding records with missing annotations). μμμφΣ is the prior
mean for φφφ, and k0 defines the belief on this prior mean. S is
proportional to the prior mean for ΣΣΣ, and v defines our belief
concerning S. v also must satisfy the condition that v > R − 1.
The precision values, λλλ for R annotators, can be estimated as
being [diag (ΣΣΣ)]−1 . w can be learnt from the complete data log-
likelihood as described before. After convergence of the Gibbs
sampler, the value of each parameter can be approximated by
calculating the mean. See Supplementary Materials for details
concerning the implementation of BCLAc.

V. DATA DESCRIPTION AND METHODOLOGY EVALUATION

A. Data Description

This section introduces datasets from exemplar clinical ap-
plications involving the potential personalisation of patient care
using health sensor data, and which would directly benefit from
the improvements of robustness offered by the work described
in this paper.

1) Simulated QT Datasets With Correlated Annotators: A
total of 1,000 simulated patient records were generated, each
having five annotators with correlated QT interval (i.e., the dis-
tance between the beginning of a Q wave and the end of a T wave
on an electrocardiogram) annotations. The number of annotators
and annotations are selected here for the purpose of demonstra-
tion. Application to other datasets using different numbers of an-
notators and annotations will be described later. The simulated
dataset was generated using the following parameter values: the
true annotation for each record, zi ∼ N (400, 40), which has
a mean, a = 400 ms and a standard deviation b−1/2 = 40 ms.
The gold standard of the simulated QT dataset was defined
following the ICH E14 clinical guidelines [14]. No additional
features were considered in this simulation (i.e., xi = 1) as it
was solely used to investigate the performance of the model
in estimating correlation between annotators, but an intercept
was assumed for f(w,x). Furthermore, it was assumed that
αφ ∼ Gamma(3, 0.0005), and that b ∼ Gamma(3, 0.0002). The
simulated annotations of the five annotators for a particular
record were yi ∼ N (z + φφφ,ΣΣΣ). The ΣΣΣ ∼ IW(τ, 5) for five an-
notators, where τ is assumed to be a diagonal matrix with diago-
nal elements being the expected mean of the Gamma(4, 0.0003);
their biases, φφφ ∼ N (μμμφΣ ,ΣΣΣ/k0), has a 0 ms mean vector and a
covariance ΣΣΣ/k0 . The k0 describes the confidence of the mean
μμμφΣ of the distribution of biases φφφ and was set to k0 = 1 for
the purposes of illustration. The true precision values of indi-
vidual annotators, λλλ, can be estimated by finding the inverse of
the values in the diagonal elements of ΣΣΣ where each of their
correlations is ρ = 1. The correlation matrix of the annotation
errors is then obtained through decomposing the ΣΣΣ matrix, and
the correlation of a pair of annotators (e.g., a1 and a2) can be
estimated as follows:

ρa1 ,a2 =
Σa1 ,a2

1/
√

(λa1 λa2 )
. (16)

The estimated correlations of errors of BCLAc for five annota-
tors are shown in Fig. 3(a). It differs from the correlation matrix
derived directly from the annotations provided by these annota-
tors as shown in Fig. 3(b). As shown in Fig. 3(b), annotations
from all five annotators are positively correlated with ρρρ > 0.
This phenomenon can be explained by the fact that the corre-
lation measures a change in trend (i.e., an increase or decrease
of two variables together, or an increase and decrease inversely)
for two sets of annotations, taken from a pair of annotators. As
long as the annotations both increase similarly, the correlation
coefficients would therefore be positive. However, the true cor-
relation of errors among annotators is not based on the absolute
variation of values about their respective means; instead, it is an
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Fig. 3. Correlation of errors of a simulated dataset: (a) The estimated
correlation matrix of errors from five annotators using equation (16). (b)
The correlation matrix derived directly from the annotations provided by
these annotators. Note that each correlated matrix is subtracted from an
identity matrix to remove the correlation of an annotator with itself.

estimation of correlation obtained from the difference between
the annotations provided and the underlying ground truth. That
is, Fig. 3(a) captures this variation of labels around the latent
ground truth, which is different to the variation of the absolute
values of labels about their means, where the latter is shown in
Fig. 3(b).

To test the robustness of the BCLAc-Gibbs approach, it was
applied to six simulated QT datasets generated from the BCLAc
model. Simulated datasets of 100, 500, and 1000 records were
generated with parameter values described above, each with (i)
five and (ii) 10 correlated QT interval annotations from corre-
sponding annotators.

2) Publicly-Available QT Dataset: We also used the 2006
PhysioNet “Computing in Cardiology Challenge” QT dataset
[15]: 548 ECG records were provided with 38,621 annotations
of the QT interval sourced from: 20 human annotators in Divi-
sion 1 of the dataset; 48 automated algorithms in Division 2; and
21 automated algorithms in Division 3. An additional division
(Division 4) was defined as being the union of the labels from
all automated algorithms from Divisions 2 and 3. Division 1
was used in the competition to generate the reference annota-
tions, and so we therefore focused on the analysis of the sets
of automated labels (i.e., Divisions 2, 3, and 4). The records
were obtained from 290 subjects (209 men with mean age of
55.5 and 81 women with mean age of 61.6), each represented
by between one and five recordings. About 20% of the subjects
were healthy controls, and the rest of subjects had a variety of
ECG morphologies with QT intervals ranging from 256 ms to
529ms. Diagnostic classifications are detailed elsewhere [16].

Not all annotators provided annotations for all records, and
where a minimum of 33% of the annotators labelled any sin-
gle recording. For the work described in this paper, only those
annotators that had provided annotations for more than 50% of
records were used, which thereby corresponds to 40 annotators
in Division 2, 15 annotators in Division 3, and 55 annotators in
Division 4.

3) Capnobase Respiratory Rate (RR) Dataset: The Cap-
nobase dataset [17] was collected from subjects undergoing
elective surgery and routine anaesthesia. It consists of photo-
plethysmogram (PPG) recordings from a pulse oximeter and
capnometry data (Fs = 300 Hz), from 59 children (median age:

Fig. 4. Example of a 32-second PPG window used for RR estimation.
AM (green), BW (blue), and FM (red) respiratory modulations are ex-
tracted; for the FFT-based method, the power spectrum is calculated
for each modulation using FFT, and the maximum power is selected
within the physiologically-plausible RR range (grey area); for the AR-
based method, the poles for each modulation are determined using an
AR model, and the dominant pole within the plausible range of RR (grey
area) is selected. Our proposed models are then used to combine esti-
mates, and provide a final “fused” value for that window.

9, range: 1–17 years) and 35 adults (median age: 52, range: 26–
76 years). We used the set as described in [18], which has 42
recordings of 8-minutes duration (336 minutes in total) contain-
ing reliable recordings of spontaneous breathing or controlled
ventilation. The capnometric waveform was used as the ref-
erence for RR estimates derived from the PPG (we note that
estimating RR from a pulse oximeter is an important applica-
tion of physiological monitoring using wearable devices) [18].

RR was computed for 32-second windows, with successive
windows having 29 s overlap. To extract the three respiratory-
induced modulations (AM, BW, FM), beat detection was per-
formed on the PPG using a segmentation algorithm [19]. The
latter produces a series of maximum and minimum intensities
for each pulse. As shown in Figure 4, the series of maximum
intensities of the PPG pulses was used for extracting the BW
timeseries. The (max-min) amplitude was used to derive the AM
timeseries. The intervals between successive beats were used to
extract the FM timeseries.
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RR was estimated using two different spectral approaches
that have been used in the literature: Fourier analysis (FFT)
and autoregressive (AR) modelling. Spectral analysis requires
evenly-sampled data, and so each timeseries (corresponding to
BW, AM and FM) was first re-sampled at 4 Hz using linear
interpolation. The frequency spectra of the resulting respiratory
signals were calculated. The frequency at which the maximum
intensity of each spectrum is obtained within the frequency
range of interest (corresponding to 3 to 60 beats-per-minute, or
bpm), was taken as corresponding to the respiratory frequency
(Fig. 4). For the AR method, an AR model of order 7 was fitted
to each timeseries. The respiratory frequency was identified as
that corresponding to the pole with the greatest magnitude within
the plausible range of frequencies for respiration. We note that
for each window, for each approach (FFT and AR), three RR
estimates were determined (i.e., on each from the BW, AM, and
FM signals).

B. Methodology Evaluation

1) Simulated and Real QT Datasets: The precision values
λλλ and biases φφφ inferred by BCLA-Gibbs and BCLAc-Gibbs
were compared with those estimated using BCLA-MAP. For
the estimation of the ground truth, the root-mean-squared-error
(RMSE) was calculated using the “gold standard” reference
provided. Results were additionally compared with the follow-
ing methodologies, which represent the existing state-of-the-
art: (i) an EM-based formulation proposed by Raykar et al. [6]
(denoted as EM-R); (ii) Scalar Simultaneous Truth and Per-
formance Level Estimation (denoted “sSTAPLE”) proposed by
Warfield et al. [3]; (iii) Mean voting between the annotations
provided by the “experts”; (iv) Median voting between the an-
notations as above. To enable us to assess the performance of
the proposed models as a function of the number of annota-
tors, a random number of annotators was selected 500 times.
This was repeated with the number of the annotators being
R = {3, 5, 7, 9} in Division 4. The minimum number of anno-
tators was chosen to be R = 3 to allow for obtaining results via
the median voting approach. A Friedman test (p < 0.01) was
applied to the bootstrapped RMSEs, to provide a comparison
between the various methods.

2) RR Dataset: In the context of personalised care, RRs
were inferred for each subject individually over all windows.
The mean-absolute-error (MAE) of the inferred RR estimates
from the PPG across all subjects using the proposed fusion
frameworks, BCLA and BCLAc, were compared to the “gold
standard” reference RR values from capnography. The BCLA
and BCLAc models were applied to the RR estimates extracted
using the conventional FFT-and AR-based algorithms outlined
earlier [20] for each individual subject. Additionally, the per-
formance of BCLA-Gibbs and BCLAc-Gibbs were compared
to that of “Smart Fusion” (i.e., the benchmarking algorithm in
this field proposed by Karlen et al. [18]), and with the best-
performing (lowest-MAE) single algorithm (denoted “Best”),
EM-R, sSTAPLE, BCLA-MAP, and also the traditional naı̈ve
mean and median voting approaches. To further analyse the

Fig. 5. (a) Plots of RMSE using different strategies for simulated
datasets. In each dataset, the number of annotators and number of
annotations are indicated on the left and right of “×” respectively (i.e.,
we show R × N ). (b) A comparison of the simulated and inferred bias
values of R = 5 annotators in the dataset of 5 × 1000. The diagonal line
indicates a perfect match between the simulated and estimated results.
The results are plotted with one standard deviation from the mean.

performance of different voting algorithms with varied signal
qualities, a comparison was made in which we compute the
MAE results of (i) RR estimates for all windows; (ii) only RR
estimates for those windows following the criteria considered by
“Smart Fusion” (denoted *)5; (iii) only RR estimates for noisy
windows (i.e., those which are rejected by “Smart Fusion”) were
considered. We note that the sets of windows (i) = (ii)

⋃
(iii).

VI. RESULTS AND DISCUSSION

A. Simulated QT Datasets

BCLA-Gibbs took approximately 350 s to generate 104 draws
of the 2,500 annotations created from R = 5 annotators for N =
500 recordings using MATLAB R2011a on a 3.3 GHz Intel Xeon
processor. In comparison, BCLAc-Gibbs took approximately
404 s to run the same number of draws. Half of the samples
were discarded as burn-in.

When R = 5 annotators were considered, RMSE results as
shown in Fig. 5(a) varied depending on how the correlation of er-
rors among annotators was generated. In the simulated datasets
as described earlier, we assumed that the uncertainty of the bias
values φφφ was controlled by the covariance matrix ΣΣΣ. In com-
parison, the BCLA-Gibbs approach assumed the bias values φφφ
were modeled independently from the covariance matrix ΣΣΣ. It
was therefore expected that BCLA-Gibbs would provide less
reliable estimation of the true bias values φφφ. The BCLA-Gibbs
approach performed consistently worse than BCLAc-Gibbs as
it over-estimated the bias values φφφ of the annotators constantly,
as shown in Fig. 5(b). However when there were R = 10 an-
notators, the BCLA-Gibbs approach was sufficient to provide
reliable estimation without introducing the correlation of errors
among annotators. In comparison, results obtained with BCLA-
MAP were slightly worse than those obtained for BCLA-Gibbs
when estimating RMSEs; BCLA-MAP also provides less reli-
able results when estimating the bias values than BCLA-Gibbs.
In contrast to BCLA-MAP, the BCLA-Gibbs model not only
provides estimates but also produces confidence in its estima-
tion – this is a key advantage of fully-Bayesian inference.

5i.e., those windows where RR estimates with one standard deviation exceed-
ing four bpm were discarded.
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TABLE I
THE PARAMETERS OF BCLA AND BCLAC FOR MODELLING THE

CAPNOBASE RR AND QT DATASETS

B. QT Dataset

BCLA-Gibbs took approximately 152 s to generate 5,000
draws of the 548 annotations, each provided from R = 5 algo-
rithms using the same system as before. With the same dataset,
BCLAc-Gibbs took approximately 70 s to run 2,000 draws until
convergence. When fusing a large number of algorithms (e.g.,
R = 55 with N = 26, 922 annotations), BCLA-Gibbs required
5,000 draws and took about 500 s, whereas BCLAc-Gibbs ran
for 290 s to compute 3,000 draws. Both methods discarded the
first half of the samples as burn-in, as before. The resulting val-
ues of the parameters and hyperparameters of the BCLA and
BCLAc models for the QT dataset are shown in Table I.

In the table above: b is the precision for the estimate of the
ground truth.ΣΣΣ is the covariance matrix. 1

λM
I is an R×R diago-

nal matrix with entries obtained from a scalar, λM , as the inverse
of the mean of the Gamma(kλ, ϑλ). λλλ refers to annotator/signal-
specific precisions. For the BCLA-Gibbs approach only: αφ is
the precision for the estimate of the bias from ground truth.
RR dataset: the values with ‡ are determined with the assump-
tion that the RR estimates provided by the best modulation
signal are ±2 bpm away from the reference [21], [22]. The val-
ues with † are estimated from the median RR estimates provided
by the algorithms. QT dataset: the values with * are determined
with the assumption that the annotations provided by the best
performing algorithm is ±5 ms away from the reference [14].
The values with � are derived from [23]–[25]. The values with

 are derived from [26]–[28].

Both the BCLA and BCLAc methods produced accurate es-
timation of the bias values for Division 2 and 4, an example of
Division 4 is shown in Fig. 6(b). More results are demonstrated
in the Supplementary Materials. In the case of Division 3 (see
Fig. 6(b) in Supplementary Materials), BCLAc-Gibbs produced
more accurate estimation of the bias values in comparison to
those computed using BCLA-Gibbs and BCLA-MAP. However
for σ prediction, the BCLA-Gibbs and BCLA-MAP methods
were more reliable than BCLAc-Gibbs. This might be due to
the fact that both the correlation of errors and the precision val-
ues were jointly modeled as a whole using one distribution (i.e.,
the IW distribution) in the BCLAc-Gibbs model, limiting its ac-
curacy, where one small imperfect estimation of the correlation
of errors would directly affect the estimation of the precision
values. In comparison to BCLA-MAP, the BCLA-Gibbs and
BCLAc-Gibbs models provide accurate estimates along with

TABLE II
RMSES (MS) OF THE INFERRED LABELS USING DIFFERENT

STRATEGIES IN THE QT DATASET

estimations of confidence in its result – this is a key advantage
of the fully-Bayesian inference methods proposed in this paper.

A further advantage of the BCLAc model is its ability to
measure the correlation of errors among algorithms (experts).
An example of the inferred correlation of errors using BCLAc-
Gibbs is shown in Fig. 6(c) for R = 55 algorithms in Division
4. Although the exact coefficient values were not fully recov-
ered, BCLAc-Gibbs was able to identify the key relationship of
correlation in annotation between algorithms, while a direct es-
timation of the correlation of annotations failed to do so. When
comparing the estimation of the ground truth, the resulting RM-
SEs are given in Table II, where it may be seen that BCLAc-
Gibbs produced the smallest errors, effectively outperforming
all other voting strategies.

Fig. 7 shows a further evaluation of the accuracies (in
terms of RMSE) of different voting strategies as a function
of the number of annotators. The results were generated by
sub-sampling (i.e., bootstrap with replacement) annotators 500
times with R = {3, · · · , 9} annotators selected from Division
4. A non-parametric Friedman test was conducted to compare
all methods and rendered a chi-squared value of 253.27, 348.84,
427.79, and 431.68 for selecting R = {3, 5, 7, 9} annotators,
respectively, which were significant (p < 0.01). We further
performed a post-hoc test using Dunn & Sidàk’s Approach
[29] to determine if the mean RMSEs of BCLA-Gibbs were
significantly different from other methods; no significant dif-
ference (p > 0.01) was observed. Nevertheless, BLCA-Gibbs
outperformed all other voting strategies with the least mean
or median RMSEs when number of annotators varied from
three to nine. RMSEs of 26.64 ± 10.32 ms, 21.10 ± 5.64 ms,
19.26 ± 4.83 ms, 18.34 ± 4.03 ms were obtained for selecting
R = {3, 5, 7, 9} annotators, respectively).

Inspecting the performance of BCLAc-Gibbs, it produced
smaller RMSEs when compared with the BCLA-MAP ap-
proach when R < 9: 27.22 ± 8.34 ms versus 29.26 ± 11.41
ms, 22.49 ± 6.28 ms versus 23.73 ± 7.67 ms, 20.77 ± 6.15 ms
versus 21.24 ± 6.26 ms, and 19.58 ± 5.87 ms versus 19.15 ±
4.40 ms for R = {3, 5, 7, 9} annotators, respectively. Although
the performance of BCLAc-Gibbs was sub-optimal when com-
pared to BCLA-Gibbs, it only required approximately half of
the sampling time, and it provided an additional modelling of
the correlation of errors among annotators.

When working with incomplete data, our proposed models
assume that annotations are missing at random given the
observed data, as there was no direct correlated relationship
found between MAEs in QT interval estimation and the length
of the QT intervals. Future work will focus on simulating
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Fig. 6. A comparison of the QT reference and inferred (a) σ and (b) bias of each annotator for Division 4. The precision can be estimated by
taking 1/(σ)2 . The diagonal (grey) line indicates a perfect match between the reference and estimated results. The results are plotted with one
standard deviation from the mean for BCLA-Gibbs and BCLAc-Gibbs. (c) A comparison of the reference and inferred correlation of errors among
55 algorithms for Division 4 in the QT dataset: in each row, the reference ρρρ (left), is compared with its inferred values using BCLAc-Gibbs (middle),
and the correlation estimated directly from the annotations provided (right). Note that each correlated matrix is subtracted from an identity matrix to
remove the correlation of an algorithm with itself.

Fig. 7. Plots of the RMSE results of using different voting approaches,
shown as a function of the number of automated annotators. Each plot
was generated by randomly sampling the annotators 500 times. The
median RMSE is indicated in red ‘-’ within each box, while the black
‘×’ indicates the mean RMSE. The span of each box represents the
interquartile range. The outliers are shown as red ‘+’. (a) Selection of
three (left) and five (right) annotators. (b) Selection of seven (left) and
nine (right) annotators.

various degrees of incompleteness and explore the performance
of our models with percentage of missing annotations.

C. RR Dataset

BCLA-Gibbs took approximately 38 s to generate 5,000
draws of the N = 900 annotations provided from R = 6 algo-
rithms. Similarly, BCLAc-Gibbs took approximately 68 s, and
the first 3,000 samples was discarded as burn-in for both meth-
ods. The average time for 5,000 iterations using BCLA-MAP
was under 2 s, similar to EM-R and sSTAPLE. The resulting
values of the parameters and hyperparameters of the BCLA and
BCLAc models for the Capnobase dataset were described in
Table I.

Fig. 8 shows MAE results across 42 subjects. In the case
where all windows or only those with standard deviation greater
than four bpm were considered, the BCLA and BCLAc meth-
ods outperformed the single best-performing algorithm with
least MAE across subjects (i.e., BA in the table). In the case
when discarding windows with standard deviation greater than
four bpm (with 55.4% of the windows thereby remaining), the
proposed BCLA and BCLAc methods outperformed “Smart
Fusion” but were slightly worse than the BA*.

Furthermore, the results show that BCLAc-Gibbs has simi-
lar performance when compared to the BCLA approaches, with
their mean MAEs being closest to the “theoretical best” (TB)
algorithm (i.e., selecting the best algorithm with least MAE per
subject which is of course impossible in practice, because it
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Fig. 8. Box plot of MAEs across 42 subjects for different fusion ap-
proaches. The median MAEs are indicated in red ‘-’ in each box, while
the black ‘×’ indicates the mean MAE. The span of each box indicate the
interquartile MAE range over 42 subjects for each fusion method when
combining six algorithms. Notation: BA – the single best-performing algo-
rithm with least MAE across all subjects; TB – theoretical best algorithm
with least MAE selected per subject; Mean* – the “Smart Fusion”. Note
that results associated with * indicate the MAEs were derived from win-
dows excluding those have a standard deviation greater than four bpm,
while those associated with ** indicate the results derived only from
windows that have a standard deviation greater than four bpm.

requires knowledge of the ground truth) for the three different
groups. For using all windows, the MAE improved with BCLA-
MAP (i.e., smaller error) over “Smart Fusion” for 69.1% of sub-
jects. When windows were excluded if the standard deviation of
RR estimates was greater than four, BCLA-MAP has a MAE im-
proved for 81.0% of subjects. Furthermore, the MAE improved
with BCLA-Gibbs over “Smart Fusion” for 73.8% of subjects
when using all available windows, and 83.3% of subjects for ex-
cluding those with a large standard deviation as aforementioned.
In addition, BCLA-Gibbs had 61.9% of subjects with smaller
MAEs than those of BCLA-MAP using all windows when fus-
ing R = 6 algorithms. When considering BCLAc-Gibbs using
all windows, it had 17 subjects (40.5%) with smaller MAEs
than BCLA-Gibbs, and had 22 and 30 subjects (correspond-
ing to 52.4% and 71.4% of subjects respectively) with smaller
MAEs than BCLA-MAP and “Smart Fusion”. In comparison to
BCLA, our BCLAc-Gibbs model provides correlation of errors
among algorithms (see Fig. 9): as BCLAc-Gibbs is a more com-
plex model where it has to learn an additional parameter (i.e.,
the correlation of errors), a larger set of annotators should be
expected to be required to better infer the ground truth.

Our proposed models assume that each window in the la-
tent ground truth model is independent. This potentially limits
their applications in area where a label produced by an algo-
rithm has a Markov dependence on the previous labels, such as
time dependency between windows. Future work could extend
the current ground-truth model to Gaussian process regression,
where the window-dependent features can be modeled using a

Fig. 9. Example of correlation matrix of errors among six algorithms
estimated for a subject: (a) computed with reference provided and (b)
computed using BCLAc-Gibbs without knowing the reference. Note that
each correlated matrix is subtracted from an identity matrix to remove
the correlation of an algorithm with itself.

covariance function (i.e., a kernel) to describe either linear or
non-linear dependency among windows.

D. Signal Quality Extension

A signal quality index (SQI) can be seen as a measure of task
difficulty: noisy records/windows are harder to label due to noise
contamination of the signals, while clean records can be seen
as easier tasks for labelling. Experts are able to “filter” noise
to some degree and provide consistently reliable annotations
across data of differing noise levels, whereas non-experts might
mistake noise for intrinsic features of the signals. Hence, an in-
dependent variable can be introduced into our proposed models
that acts as a probabilistic score to better infer the underlying
ground truth of a physiological signal.

To demonstrate proof-of-concept, we have included a
scaling factor, tji , in the range of (0, 1] as an indication of
record-specific and annotator-specific SQI in BCLA-Gibbs
(denoted as BCLA-SQI), where yj

i can be drawn from a normal
distribution defined as N (yj

i | zi + φj , (tji λ
j )−1). Different

from BCLA-Gibbs, the estimation of zi and φj are now
dependent on the signal quality tji :

zi ∼ N

(
zi | at

∗
i ,

1
bt

∗
i

)
, φj ∼ N

(
φj | μt

j∗
φ ,

1
αt

j∗
φ

)
.

where

at
∗
i =

(xᵀ
i w) b +

∑
j∈Vi

[(
yj

i − φj
)

λj tji

]

b +
∑

j∈Vi
λj tji

,

bt
∗
i = b +

∑

j∈Vi

λj tji .

μt
j∗
φ =

μφαφ +
∑

i∈Uj

(
yj

i − zi

)
λj tji

αφ +
∑

i∈Uj
λj tji

,

αt
j∗
φ = αφ +

∑

i∈Uj

λj tji .

Our preliminary results on the signal quality extension are
shown in the Supplementary Materials.
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VII. CONCLUSION

This paper has proposed two Bayesian generative models
for aggregating automated labels to form a consensus where
subjective continuous annotations of some presumed underlying
ground truth are provided, but where the desired ground truth is
not readily available in practice. This is motivated by the need
to improve the robustness of methods using biosignals acquired
from sensor data, such that the data can be used to support
precision medicine.

Simulated and two clinical datasets were considered as ex-
emplars to validate the proposed methods for aggregating the
outputs of a group of mixed imperfect automated algorithms
in an unsupervised manner. The results of the proposed mod-
els had optimal performance over the other comparison voting
strategies in all datasets. When incorporating the modelling of
potentially-correlated annotators, it was shown that annotators
can be grouped based on their correlated decision-making pro-
cess. For example, we might identify sets of annotators that
perform well (“trained experts”) from those that perform not
well (“novices”). Both proposed models were robust in deal-
ing with missing values, and there is no need for additional
pre-processing to discard noisy data. No training data need to
be “held out” for optimising the parameters of the models, and
no prior knowledge of the performance of each algorithm was
given. It is important to note that the increased performance of
our models can be explained by their ability to fit the data in a
different manner for different individuals (records or subjects).
This means the proposed models do not contain fixed parame-
ters (i.e., precision and bias of an algorithm); rather they adapt
to the given data from an individual by, for example, assigning a
higher weight to a set of labels (which can be the results of one
algorithm) that are relevant to that individual; for a different in-
dividual, the set of annotations from the same labeller can have
a lower weight. This leads to a better understanding of an indi-
viduals physiology, which in turn, may lead to better informed
decisions for personalised care.
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