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Automated Breast Ultrasound Lesions Detection
Using Convolutional Neural Networks
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Abstract—Breast lesion detection using ultrasound imag-
ing is considered an important step of computer-aided di-
agnosis systems. Over the past decade, researchers have
demonstrated the possibilities to automate the initial le-
sion detection. However, the lack of a common dataset im-
pedes research when comparing the performance of such
algorithms. This paper proposes the use of deep learning
approaches for breast ultrasound lesion detection and in-
vestigates three different methods: a Patch-based LeNet, a
U-Net, and a transfer learning approach with a pretrained
FCN-AlexNet. Their performance is compared against four
state-of-the-art lesion detection algorithms (i.e., Radial Gra-
dient Index, Multifractal Filtering, Rule-based Region Rank-
ing, and Deformable Part Models). In addition, this paper
compares and contrasts two conventional ultrasound image
datasets acquired from two different ultrasound systems.
Dataset A comprises 306 (60 malignant and 246 benign)
images and Dataset B comprises 163 (53 malignant and
110 benign) images. To overcome the lack of public datasets
in this domain, Dataset B will be made available for research
purposes. The results demonstrate an overall improvement
by the deep learning approaches when assessed on both
datasets in terms of True Positive Fraction, False Positives
per image, and F-measure.

Index Terms—Breast cancer, convolutional neural net-
works, lesion detection, transfer learning, ultrasound
imaging.
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Centre Diagnòstic, Corporació Parc Taulı́, Sabadell 08208, Spain
(e-mail: MSentis@tauli.cat).

R. Zwiggelaar is with the Department of Computer Science, Aberyst-
wyth University, Aberystwyth, SY23 3DB, U.K. (e-mail: rrz@aber.ac.uk).

A. K. Davison is with the Centre for Imaging Sciences, Faculty of
Biology Medicine and Health, University of Manchester, Manchester M13
9PL, U.K. (email: adrian.davison@manchester.ac.uk).

Digital Object Identifier 10.1109/JBHI.2017.2731873

I. INTRODUCTION

BREAST cancer is one of the leading causes of death for
women worldwide and it is expected that more than 8% of

women will develop breast cancer during their lifetime [1]. The
most commonly used and effective technique for breast cancer
detection is digital mammography (DM) [2]. However, there are
some limitations to DM imaging in dense breasts, where lesions
have a similar attenuation compared to the dense tissue, and as
such they can be hidden by the surrounding tissue. Currently, an
important alternative to DM is ultrasound (US) imaging, which
is used as a complementary method for breast cancer detection
due to its versatility, safety and high sensitivity [3]. However,
US imaging depends more on the radiologist than other com-
monly used techniques such as mammography. Interpreting US
images requires experienced and well-trained radiologists due to
the complexity and presence of speckle noise. Thus, Computer-
Aided Diagnosis (CAD) could be beneficial to help radiologists
in the US-based detection of breast cancer, minimizing the ef-
fect of the operator-dependent nature of US imaging. Different
studies have investigated the influence of CAD on diagnostics
[4], [5] and showed that CAD is an important tool to improve
the diagnostic sensitivity and specificity. The first challenge in
any CAD is the ability to locate the lesion. This process should
be automated to help the radiologist make a diagnosis efficiently
and a high sensitivity and specificity are expected.

The lack of a public standard dataset in breast US research
has limited the fair evaluation of the performance of algorithms.
The quality of breast US images is highly dependent on the ac-
quisition process and there is a vast variability between different
US systems that influence the results obtained by algorithms.
The appearance, location and size of the lesions also affect the
results.

In this paper, we review four popular lesion detection meth-
ods [6]–[9]. We propose the use of deep learning approaches
for breast ultrasound lesion detection and investigate three dif-
ferent methods: a Patch-based LeNet, a U-Net, and a transfer
learning approach with a pretrained FCN-AlexNet. Then the
performances of deep learning approaches are compared with
the state-of-the-art algorithms on two breast ultrasound datasets
(Dataset A and Dataset B) and make Dataset B available for
research purposes. To date, we are the first to conduct this
comprehensive comparison on two common datasets and pro-
pose the use of deep learning approaches for breast US lesion
detection.
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II. RELATED WORK

This section describes four state-of-the-art methodologies for
lesion detection in breast US imaging. Two of the selected
methodologies, Radial Gradient Index (RGI) Filtering [6] and
Multifractal Filtering [7], are two of the most cited works in
this area. This study also includes two recent approaches, Rule-
based Region Ranking [8] and Deformable Part Models [9].

A. Radial Gradient Index (RGI) Filtering

Drukker et al. [6] developed a lesion detection and classifi-
cation method as a two-stage process. The first stage was the
detection of lesion candidates using a RGI Filtering technique.
The second stage was the classification of those candidates, seg-
menting them by maximising an average radial gradient (ARD)
index for regions grown from the detected points and classify-
ing them with a Bayesian neural network as false positives or
potential lesions. Here we focus on the performance evaluation
of the initial lesion detection stage, thus only the location of
lesion candidates is evaluated.

Lesion candidates were identified using a filtering technique
based on the calculation of the RGI of contours throughout
the image [10]. For a given point (x, y) in the image, lesion-
like shapes were obtained by multiplying the image with a 2D
isotropic Gaussian function centred at (x, y) to construct a con-
strained image. Contours of the lesion candidates for a given
point were obtained by grey-level thresholding the constrained
image. All possible lesion contours within a specified size range
were determined, and the RGI value was calculated for each
contour as a measure of the likelihood that a given contour
represents a lesion.

RGIi(x, y) =

∑
(x ′,y ′)∈Ci

�g(x′, y′) · r̂(x′, y′)
∑

(x ′,y ′)∈Ci
|�g(x′, y′)| (1)

where Ci is the i-th possible lesion contour, �g(x′, y′) is the
maximum grey-value gradient vector of length |�g(x′, y′)| and
r̂(x′, y′) the unit radial vector pointing from (x, y) to (x′, y′).

By definition, due to normalization, RGI values are between
1 (pointing radially outward) and −1 (pointing radially inward).
For a given image point (x, y), the contour with the maximum
absolute RGI value was selected, and this value was assigned to
the (x, y) coordinate in the RGI-filtered image. The RGI-filtered
image was subsequently thresholded to determine lesion candi-
dates. The threshold was varied iteratively until either at least
one region of interest is detected, indicating a lesion candidate,
or the minimum specified RGI threshold value was reached.

B. Multifractals Filtering

The main contribution of the Multifractals Filtering tech-
nique lies in the implementation of multifractals analysis in
breast US. In 2008, Yap et al. [7] presented a novel initial lesion
detection method based on a set of image processing opera-
tions. To ensure the homogeneity of the US images, histogram
equalisation was first implemented. Then the speckle noise was
reduced using a hybrid filtering approach [11]. Hybrid filter-
ing combines the strength of nonlinear diffusion filtering [12]
to produce edge-sensitive speckle reduction, followed by linear

filtering (Gaussian blur) [13] to smooth the edges and to elim-
inate oversegmentation. Subsequent to hybrid filtering, multi-
fractals [14] were used to further enhance the partially processed
images. Multifractal analysis refers to the analysis of an image
using multiple fractals (i.e. not just one as in fractal analysis).
The generalized formulation for multifractal dimensions (D) of
order q can be represented as:

Dq =

⎧
⎪⎨

⎪⎩

1
q−1 lim

ε→0

log(xq (ε))
log(ε) for q ∈ R and q �= 1

lim
ε→0

∑
i μi log μi

log(ε) for q = 1
(2)

where ε is the linear size of the cells, q is the order for cell size ε
and μ is the measure defined as the probability of the greyscale
level in the images, where all the grey levels fall in the range
of (0–1). Multifractal analysis enables improved separability of
tumour regions from normal regions.

**** After pre-processing, images were segmented by using a
grey-value thresholding segmentation method [15]. This thresh-
olding segmentation often leads to the identification of multiple
regions of interest, of which generally only one or two would be
of diagnostic importance. To identify these important regions,
a rule-based Region of Interest (ROI) selection, based on the
size and location of the region was used as a discriminative
criterion. Based on the knowledge provided by expert radiolo-
gists [16], most of the lesions are located in the upper part of the
images. Hence, a reference point (xr , yr ) where

xr =
image height

3
, yr =

image width
2

(3)

was chosen, with xr from the top of the image. The candi-
date region closest to the (xr , yr ) location and that satisfied the
size-related criterion was selected as the final detected lesion.

C. Rule-Based Region Ranking (RBRR)

Shan et al. [8] proposed a lesion detection methodology that
considered both texture and spatial features. They first used
speckle reducing anisotropic diffusion (SRAD) [17]. The SRAD
method processes the image iteratively with adaptable weighted
filters to reduce noise and preserve edges. The diffusion coeffi-
cient was determined by

c(q) =
1

1 + [q2(x, y; t) − q2
0 (t)]/[q2

0 (t)(1 + q2
0 (t))]

(4)

where q(x, y; t) is the instantaneous coefficient of variation de-
pending on gradient ∇I and the Laplacian ∇2I and determined
by

q(x, y; t) =

√
(1/2)(|∇I|/I)2 − (1/4)(∇2I/I)2

[1 + (1/4)(∇2I/I)]2
. (5)

The initialisation q0(t) is given by

q0(t) =

√
var[z(t)]
z(t)

(6)

where t is the iteration time and z(t) is the most homogeneous
area in the image at iteration t and var[z(t)] is its variance.

Once the image was de-speckled, an iterative threshold se-
lection algorithm was applied to segment the image. First, all
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local minima of the image histogram were calculated and the
de-speckled image was binarised using the smallest local mini-
mum as the threshold value. Then, if the ratio of the number of
foreground pixels and the number of background pixels was less
than 0.1, the next local minimum value was set as the threshold.
The process continued iteratively until the ratio was larger than
0.1. This value was chosen experimentally in the original pa-
per [8]. Subsequently, morphological operations (dilation and
erosion) were performed to remove noisy regions. If none of
the regions intersected with the image centre region (a window
about half the size of the entire image and located at the image
centre) the threshold became the next local minimum and the
process was repeated. Once some region intersects with the cen-
tral window, regions connected with the boundary that do not
intersect with the central window are removed. The remaining
lesion region candidates were ranked using the scoring formula

Sn =
√

Arean

dis(Cn,C0) · var(Cn )
, n = 1, ..., k (7)

where k is the number of candidate regions, Arean is the number
of pixels in the region, Cn is the center of the region, C0 is the
center of the image, dis(a, b) is the Euclidean distance between
points a and b and var(Cn ) is the variance of a small circular
region centered at Cn .

Finally, the location of the seed point was located in the
centre of the region with a highest score. Thus, ((xmin +
xmax)/2, (ymin + ymax)/2) was considered as a seed point,
where [xmin , ymin , xmax , ymax] defined the minimum rectangle
that contained the lesion.

D. Deformable Part Models (DPM)

The DPM proposed by Felzenszwalb et al. [18] is one of the
effective object detection methods in the recent literature. The
work of Pons et al. [9] demonstrated the feasibility of adapt-
ing this methodology to detect lesions in breast US images and
obtained accurate results. The DPM method modeled the ap-
pearance of objects based on a histogram of oriented gradients
(HOG) in terms of a low resolution root filter template, which
defined the detection window, along with a set of higher reso-
lution part filter templates that captured finer details. Each part
defined a set of possible placements for a part relative to the root
filter and a deformation cost for each placement.

The system used a scanning window approach that searched
a model over a HOG pyramid [19] to detect objects at differ-
ent scales. The image was divided into a dense grid where the
histogram of gradient orientations was computed in each cell
and is normalised with respect to the gradient energy in the
neighbourhood surrounding it. The HOG pyramid was defined
by computing the HOG features of each level of an image pyra-
mid. Hence, features at the top level captured coarse gradients
as opposed to finer gradients found at lower levels.

Both root and part filters were rectangular templates F of size
w × h specifying weights for subwindows of a HOG pyramid. In
this case, H is a HOG pyramid and p = (x, y, l) a location in the
l-th level of that pyramid. The vector obtained by concatenating
the HOG features in the w × h subwindow of H in p was

defined as φ(H, p) and the score of F on this detection window
was F · φ(H, p).

The model for an object with n parts was defined by a root
filter F0 and a set of parts Pi = (Fi, vi , di), where Fi was a filter
for the i-th part, vi was a two-dimensional vector specifying pos-
sible locations relative to the root, and di was a four-dimensional
vector specifying coefficients of a quadratic function that defines
a deformation cost for each possible placement of the part.

The placement of the model was given by z = (p0 , ..., pn )
where pi = (xi, yi , li) specifies the level and the position of the
i-th filter. Note that the location of the root filter was defined
when i = 0. The final score of a detection was the score of the
root filter plus the score of the best location of the parts, placed
at twice the resolution in the pyramid, minus a deformation cost
that penalises undesired placements of the parts,

score(p0 , ..., pn )=
n∑

i=0

Fi ·φ(H, pi)−
n∑

i=1

di

[
(x̃i , ỹi)+(x̃2

i , ỹ
2
i )

]

(8)

where (x̃i , ỹi) = (xi, yi) − (2(x0 , y0) + vi) gives the displace-
ment of the i-th part relative to the root location and di are the
deformation features.

The method took advantage of the additional information
provided by the part filters. However, these part filters do not
need to be labelled (they were considered as latent values).
The method described a discriminative training with partially
labelled data called a latent Support Vector Machine, which was
an iterative training process that alternates between fixing latent
values for positive examples and optimizing the latent SVM
function (see Felzenszwalb et al. [18] for details).

E. Deep Learning for Breast Imaging

Overall, the state-of-the-art methods are not robust, partic-
ularly the image processing based approaches, relying on rule
based approaches and specific assumptions. Without needing
such strong assumption, deep learning approaches have shown
a superior accuracy in object detection, which suggests that
could also improve the state of the art of lesion detection in
breast ultrasound. Deep learning in medical imaging is mostly
represented by convolutional networks. Based on how they are
trained, they can be mostly categorized in the following:

1) Patch-based CNNs approach. This approach trains
the convolutional neural networks (CNNs) with image
patches for training and a sliding window approach for
testing [20], [21]. However, feeding each patch to the net-
work is time-consuming and the patch overlap produces
substantial redundancy [22].

2) Fully convolutional approach. To avoid computational
redundancy, Long et al. [23] proposed a fully convo-
lutional approach to increase the efficiency by training
on whole images. It produces segmentation by pixelwise
prediction rather than single probability distribution in
the classification task for each image. An example of a
modified version of such approach is U-Net [22].

3) Transfer learning approach. Another approach that has
been widely used recently in biomedical research is the
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transfer learning approach [24], [25]. This method uses
a pre-trained model from non-medical images to over-
come the limitation of data deficiency in medical imaging
research.

In breast imaging, the majority of the existing publications are
focusing on using CNNs for mammography. Dhungel et al. [26]
have implemented deep learning for segmentation of masses;
Mordang et al. [27] proposed the use of CNNs in microcalcifi-
cation detection; and more recently, Ahn et al. [28] proposed the
use of CNNs in breast density estimation. In breast ultrasound
imaging, Huynh et al. [24] proposed the use of a transfer learn-
ing approach for ultrasound breast images classification. This is
the only work in breast ultrasound but it does not cover lesion
detection. In this paper, we propose the use of deep learning
approaches for automated breast ultrasound lesions detection.
To show the benefits of deep learning approaches, we compare
the performances with the four aforementioned (Section II A-D)
state-of-the-art lesion detection algorithms.

III. DATASETS

A. Overview

This study made use of two different datasets of US images.
The datasets were obtained from US systems with different
specifications and at different times. They are referred to as
Dataset A and B.

Dataset A was collected in 2001 from a professional didactic
media file for breast imaging specialists [16]. The images were
obtained with B&K Medical Panther 2002 and B&K Medical
Hawk 2102 US systems with a 8–12 MHz linear array trans-
ducer. The dataset consists of 306 images from different cases
with a mean image size of 377 × 396 pixels. These images con-
tained one or more lesions. Within the lesion images, 60 images
presented malignant masses and 246 were benign lesions. From
the malignant images, 27 were diagnosed as invasive ductal car-
cinomas, 4 were ductal carcinomas in situ, 6 were malignant
phyllodes tumours and 23 were other unspecified malignant le-
sions. From the benign images, 74 were complex cysts, 89 were
simple cysts, 55 were fibroadenomas and 28 were other benign
lesions. To obtain Dataset A, the user needs to purchase the
didactic media file from Prapavesis et al. [16].

Dataset B was collected in 2012 from the UDIAT Diagnostic
Centre of the Parc Taulı́ Corporation, Sabadell (Spain) with a
Siemens ACUSON Sequoia C512 system 17L5 HD linear array
transducer (8.5 MHz). The dataset consists of 163 images from
different women with a mean image size of 760 × 570 pixels,
where each of the images presented one or more lesions. Within
the 163 lesion images, 53 were images with cancerous masses
and 110 with benign lesions. From the malignant images, 40
were invasive ductal carcinomas, 4 were ductal carcinomas in
situ, 2 were invasive lobular carcinomas and 7 were other un-
specified malignant lesions. From the benign images, 65 were
unspecified cysts, 39 were fibroadenomas and 6 were of another
type of benign lesions. Note that in both datasets the lesions
were delineated by experienced radiologists. Dataset B and the
respective delineation of the breast lesions will be available
online (goo.gl/SJmoti) for research purposes.

Fig. 1. Examples of images in Dataset A (first row) and Dataset B
(second row). (a) shows an example of cyst images, (b) images with
fibroadenoma lesion and (c) examples of invasive ductal carcinoma.

B. Comparison

Fig. 1 displays three images from each of the two datasets
to represent the differences in three aspects: speckle noise, im-
age quality and lesion appearance. In terms of speckle noise,
images from Dataset A show a significant presence of this
artefact but it is less obvious for images in Dataset B, where
the speckle noise was partly reduced by the US acquisition sys-
tem. The image quality also varies in both datasets due to the
different resolutions. Note that the resolution for the recent US
device to produce Dataset B is better than in the older US de-
vice (Dataset A). Consequently, the defined structures (such as
ribs, pectoral muscle or parenchymal tissue) are more visible in
Dataset B. The lesion appearance also varies in both datasets.
In Dataset B the appearance of tissue is better defined than in
Dataset A, as is illustrated in Fig. 1(b) where even the inner
structures in the fibroadenoma lesion are visible.

To further evaluate the datasets, we compare the lesion size,
the ratio between the area of the lesion and the area of the
image, and the distance from the image centre and the lesion
centroid. Fig. 2 shows the box plot charts for these comparisons
where differences between both datasets are noticeable: the av-
erage size of the lesions in Dataset A is smaller than in Dataset B
(Fig. 2(a)) but the ratio between lesion pixels and total image
pixels is higher (Fig. 2(b)). Regarding the spatial distribution of
the lesions in the image, lesions in Dataset A are more centred
than in Dataset B (Fig. 2(c)). However, none of these differ-
ences are significant. Furthermore, other characteristics such as
the quality of the image may affect the performance of the lesion
detection results.

IV. METHODOLOGY

A. Convolutional Neural Networks

Deep learning is a representation learning method [29] that
will automatically discover features suited for a particular task
from the raw data. The feature extractors are task-specific, in
that they are not fixed to a set of specific rules each time [30].
Each network contains multiple layers that lead to hierarchical
features used in the learning process [29], [31].
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Fig. 2. Dataset feature comparison. Box plot chart comparing (a) the lesion size, (b) the ratio between the area of the lesion and the area of the
image and (c) the distance from the image centre to the lesion centroid.

Fig. 3. The overall LeNet architecture. The numbers at the convolution
and pooling layers indicate kernel size, stride (in brackets) and the total
amount of neurons present at each layer.

Convolutional Neural Networks (CNNs) [32] have become an
important technique in image analysis, particularly in detection
or recognition of faces [33], text [31], human bodies [34] and
biological images [35]. However, it has not been used in breast
ultrasound lesion detection. For these reasons, we study the
performance of CNNs in breast ultrasound lesion detection.

CNNs consist of convolutional layers and pooling layers [32],
where the role of the former is to extract local features from a
set of learnable filters and the role of the latter is to merge
neighbouring patterns, reducing the spatial size of the previous
representation and adds spatial invariance to translation [29].
CNNs are hierarchical neural networks and their accuracy is
dependent on the design of the layers and training methods
[36].

Some popular CNNs available in the Caffe framework [30] are
LeNet [31], AlexNet [37] and GoogleNet [38]. We investigated
the use of three types of deep learning for breast lesion detection:
a patch-based approach using LeNet [31], U-Net [22] and a
transfer learning approach using Fully Convolutional Networks
[23].

1) Patch-based LeNet: As the ultrasound breast images in
the datasets are grayscale and the size of the breast lesions is rel-
atively small, LeNet [31] was chosen as a suitable architecture
to solve the two-class classification problem. The training and
validation images are input as patches from areas of the images
containing abnormal breast lesions and normal tissue. These in-
put patches are sized at 28 × 28, which correlates to the input
size of LeNet. The LeNet architecture is simple and was origi-
nally created for digit classification [31]. Breast lesions contain
similar gradients that can be exposed through CNNs. The over-
all architecture can be seen in Fig. 3, with the inputs consisting

of image patches of breast lesions and normal tissue. The inputs
are fed into the first convolution layer and max pooling layer,
which is repeated once and finalised with two fully connected
layers. The final number of outputs are 2 neurons, which are the
activations generated for the two classes: lesion and non-lesion.
The final part of the CNN is the output of class probabilities to
measure how close the final fully connected parameters are with
respect to the ground truth labels of the training and validation
data. The loss was calculated using multinomial logistic loss
with a softmax classifier.

The output of our network is a prediction of whether the
patch is a lesion or healthy breast tissue. It is formed by two
fully connected layers with the softmax function defined as

fj (z) =
ezj

∑
k ezk

(9)

where fj is the j-th element of the vector of class scores f and
z is a vector of arbitrary real-valued scores that are squashed to
a vector of values between zero and one that sum to one. The
loss function is defined so that having good predictions during
training is equivalent to having a small loss.

A Rectified Linear Unit (ReLU) layer is included at the first
fully connected layer. This element-wise operation is calculated
in-place for the Caffe framework [30], and so saves on some
memory. It is defined as

f(x) = max(0, x) (10)

where the function f thresholds the activations at zero.
Using a sliding window of 28× 28 pixels with a stride of 1 for

the test images, the predicted lesion patches were segmented.
The unconnected regions with an area of less than 10 pixels were
removed from the segmented images to reduce False Positives
(FPs) through empirical experimentation. The centre points of
the segmented regions were recorded as seed points.

2) U-Net: U-Net is a modified and extended version of a
fully convolutional network [22], which can overcome the need
of large-scale dataset in biomedical imaging research. It is
an encoder-decoder based CNN with skip connections. Ron-
neberger et al. [22] proposed U-Net to enable the use of data
augmentation, including the use of non-rigid deformations, to
make full use of the available annotated sample images to train
the model. These aspects suggest that the U-Net could poten-
tially provide satisfactory results with the size of the available
datasets currently used.
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3) Transfer Learning: Transfer Learning is a procedure
where a CNN is trained to learn features for a broad domain
after which the classification function is changed to optimize
the network to learn features of a more specific domain. Un-
der this setting, the features and the network parameters are
transferred from the broad domain to the specific one. Our pro-
posed transfer learning approach is based on fully convolutional
networks (FCN-AlexNet) [23] for semantic segmentation. FCN-
AlexNet is a fully convolutional network version of the original
AlexNet classification model with a few adjustments of the net-
work layers for segmentation [23]. This network was originally
used for the classification of 1000 different objects of classes on
the ImageNet dataset [37].

B. Performance Metric

Lesion detection is an initial stage of CAD, which most of the
time, uses the detected lesion location as a seed point to subse-
quently initialise a segmentation algorithm. Most of the breast
US lesion detection methodologies in the literature evaluate
their algorithms using the seed point detection as a criterion. In
current practice, a radiologist annotated a rectangular ROI with
four crosses. Based on these four extreme points (top, bottom,
left and right), we generated a bounding box as illustrated in
Fig. 5. Detection is considered as a True Positive (TP) if the de-
tection point (centre of the segmented region) is placed within
the bounding box of an expert radiologist. Otherwise, it was
considered to be a False Positive (FP).

In this paper, we compare the performance of lesion detection
techniques in breast US research by using True Positive Fraction
(TPF) and False Positives per image (FPs/image) [6]–[8]:

TPF =
number of TPs

number of actual lesions
(11)

FPs/image =
number of FPs

number of images
. (12)

TPF measures the sensitivity of the method. Some of the
algorithms are capable of detecting multiple lesions while some
are only capable of detecting a single lesion. The TPF allows a
fair measurement as it is measuring the total detected lesions to
the total number of actual lesions. Thus, if a method can detect
only one lesion in an image with multiple lesions, the TPF of
this methodology will be lower than the method that is capable
of detecting multiple lesions.

In addition to TPF and FPs/image, the F-measure (the
weighted harmonic mean of recall and precision) [39], is com-
puted as:

F -measure =
2 × TP

(2 × TP) + FP + FN
. (13)

C. Implementation

It is worth mentioning that the implementation of DPM [9]
and Multifractal Filtering [7] were provided by the original
authors, while the implementation of the RGI Filtering [4]
and RBRR [8] were accurately re-implemented following the
description in their respective papers.

Fig. 4. An example input image for training the network, with the train-
ing label used for U-Net and FCN-AlexNet.

To obtain the best performance for the state-of-the art methods
on the datasets, we have defined some parameters. For Rule-
based Region Ranking, since most of the lesions in [8] appear in
the top region of the image, the central window was initialised in
the centre-top part of the image. In addition, the iteration time
t was set to 50 in the speckle reducing anisotropic diffusion
(SRAD) process. In Multifractal Filtering [7], the order was
specified as q = −1 for the cell size ε = 3.

The DPM approach [9] has been trained with a mixture model
of 3 components and 8 parts for each root filter. These parameters
were chosen in a previous study [40] where different configu-
rations of DPM parameters were assessed in order to obtain the
best results in breast US images. For the number of available
images, we have configured the training and testing processes
as a 10-fold cross-validation. This methodology vastly increases
the computation costs in the training stage but allows a more
accurate assessment of the methods.

The proposed Patch-based CNNs approach for this study is
the LeNet framework [31]. The breast ultrasound images are
in grayscale and are split into 28 × 28 patches. The network
is trained by using Root Mean Square Propagation (RMSProp)
with a learning rate of 0.01, 60 epochs with the dropout rate of
0.33. The experiment is run using 10-fold cross validation.

For the U-Net implementation, the training data includes the
original ultrasound breast images and ground truth training label
as shown in Fig. 4. We assessed the performance of the model
using 10-fold cross validation. The network is trained by using
the Adam optimizer [41], with a learning rate of 0.0001 and
300 epochs. The training data for the proposed transfer learning
approach for this study was breast ultrasound images and ground
truth training label (as illustrated in Fig. 4). We used the Caffe
[30] framework to implement FCN-AlexNet. We have evaluated
the model using 10-fold cross validation. We train the model
using stochastic gradient descent with a learning rate of 0.001,
60 epochs with a dropout rate of 33%. The number of epochs
was kept at 60 as in [42] as which convergence has already
happened when we performed empirical experiment.

V. RESULTS AND DISCUSSION

Fig. 5 shows the results of breast lesion detection where
Row 1 present an image from Dataset A, with a well-defined
lesion boundary and a distinct appearance to the normal tis-
sue (intensity values and texture). This is the best case sce-
nario where all the detection methods identified the lesion cor-
rectly. Row 2 presents a case from Dataset B where the lesion’s
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Fig. 5. Examples cases from Dataset A and B to illustrate the performance of the lesion detection algorithms. The rectangle indicates the ground
truth and the crosses are the detected abnormality. The first row (image from Dataset A) shows an easy case where all methods detected the lesion.
The second row (image from Dataset B) illustrate a case where the lesion is located close to the top and only DPM, Patch-based LeNet and U-Net
detected the lesion. The third row (image from Dataset A) shows an image with complex shadow and only the proposed deep learning approaches
detected the lesion. The fourth row (image from Dataset B) shows an image with a very small region where none of the methods detect the lesion,
and only the FCN-AlexNet has no false positive.

appearance is close to the normal tissue and the location where
the lesion is close to the top. In this case, only DPM and CNNs
detected the lesion correctly. The methodologies that depend on
the lesion location have failed to detect the lesion. Row 3 depicts
a case from Dataset A where there is a complex shadow in the
image. None of the state-of-the-art methods were able to detect
the lesion apart from the proposed CNNs. Finally, Row 4 shows
a case where none of the methods were able to detect the lesion
due to the small lesion size.

Quantitative results are presented in Table I. These are pro-
vided in terms of True Positive Fraction (TPF), False Positives
per image (FPs/image) and F-measure. When training and test-
ing on a single dataset, the Transfer Learning FCN-AlexNet
out-performed other methods for lesion detection, with TPF of
0.98, FPs/image of 0.16 and F-measure of 0.91 for Dataset A;
and TPF of 0.92, FPs/image of 0.17 and F-measure of 0.89
for Dataset B. It is observed that the performance of U-Net is
lower than Patch-based LeNet. DPM achieved good results in
TPF, with 0.80 for Dataset A and 0.79 for Dataset B and with a
comparable F-measure to CNNs. Deep learning approaches and
DPM achieved low FPs/image. The Multifractal Filtering [7]
and RBRR [8] obtained good results for the images in Dataset
A, with TPF of 0.76 and 0.75 respectively, but not for the im-
ages in Dataset B (with TPF of 0.59 and 0.60, respectively).
The average FPs/image for Multifractal Filtering is lower than
the RBRR. Finally, the RGI Filtering [6] showed a good perfor-
mance in terms of TPF in both datasets (0.76 and 0.72) but with
a high FPs/image and poor F-measure.

Methods based on image processing (RGI Filtering [6], Mul-
tifractal Filtering [7] and Rule-based Region Ranking [8])
were inconsistent and obtained poor results when dealing with

TABLE I
COMPARISON OF PERFORMANCE FOR DIFFERENT METHODS WHEN

TRAINING AND TESTING ON SINGLE DATASET

Method Dataset TPF FPs/image F-measure

RGI [6] A 0.76 1.57 0.46
B 0.72 2.47 0.34

Multifractal [7] A 0.76 0.31 0.74
B 0.59 0.51 0.56

RBRR [8] A 0.75 0.50 0.67
B 0.60 0.54 0.56

DPM [9] A 0.80 0.20 0.80
B 0.79 0.21 0.79

LeNet A 0.89 0.10 0.88
B 0.85 0.14 0.86

U-Net A 0.91 0.21 0.86
B 0.77 0.28 0.75

FCN-AlexNet A 0.98 0.16 0.91
B 0.92 0.17 0.89

The method LeNet represents the Patch-based LeNet and FCN-AlexNet
represents Transfer Learning FCN-AlexNet. Bold indicates the best re-
sults when training and testing on a single dataset.

images acquired from two different US systems. One explana-
tion is that most of the approaches take the characteristics of
their datasets into consideration, such as the lesion location,
the influence of the speckle noise or the appearance of the le-
sions. These characteristics may differ in another dataset, which
reduce the accuracy of the algorithms.

Dataset B was acquired from a modern US system, which
introduces new challenges for the existing techniques in lesion
detection. These US systems acquire high-resolution images
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TABLE II
COMPARISON OF THE PERFORMANCE OF THE PROPOSED DEEP LEARNING

APPROACHES ON THE COMBINED DATASET

Method Dataset TPF FPs/image F-measure

LeNet (A+B) A 0.92 0.07 0.91
B 0.91 0.09 0.91

U-Net (A+B) A 0.94 0.18 0.89
B 0.80 0.27 0.78

FCN-AlexNet (A+B) A 0.99 0.16 0.92
B 0.93 0.18 0.88

The method LeNet represents the Patch-based LeNet and FCN-AlexNet repre-
sents Transfer Learning FCN-AlexNet. Bold indicates the best results training
and testing on the combined datasets.

which may include other structures such as ribs, pectoral muscle
or the air in the lungs making the lesion detection more difficult.
Dataset A was obtained from an older US system. The nature of
the images is normally of a lower resolution and with a higher
noise level. For a better visualisation, the radiologist tends to
place the suspected lesion at the centre of the image. Nowadays,
with high quality US systems this is no longer necessary due to
the fact that one image can capture larger regions of the breast.
Hence, methodologies that assume that the lesion is centred in
the image fail in more cases when using the modern US systems.

The techniques with better results in breast lesion detection
are the machine learning and deep learning approaches, where
the Transfer Learning FCN-AlexNet performed the best over-
all. This is due to the fact that these approaches adopt a training
process, which helps the method to build a particular model
of each dataset. The training stage mimics an adaptation pro-
cess for different datasets. Thus, it is not as dataset-dependent
as other methodologies. However, this methodology contains
some drawbacks. The main drawback is the training process,
which is time consuming and requires a representative set of
normal images. The acquisition of these images in an ultrasonic
examination is not common practice in clinical environments.

To investigate the robustness of deep learning approaches on
different datasets, we conducted an experiment by combining
the two datasets (A+B) - this formed a total of 356 benign le-
sions and 113 malignant lesions. By using the similar settings
as outlined in the methodology, the results are shown in the final
three rows of Table II - with (A+B). Overall, Transfer Learn-
ing FCN-AlexNet performed best for Dataset A with a slight
improvement on TPF of 0.99, FPs/image of 0.16 (unchanged)
and F-measure of 0.92. For Dataset B, the best TPF was 0.93,
achieved by Transfer Learning FCN-AlexNet, but the overall
best result was Patch-based LeNet with FPs/image of 0.09 and
F-measure of 0.91. These results indicated that the supervised
deep learning approaches were data-driven and the performance
improved with more training data. For many deep learning ap-
plications, there is a requirement for large amounts of represen-
tative training and testing data to be collected to achieve high
accuracies [43].

We have explored the possibility to train on one dataset and
test on the other. When training on Dataset B and testing on
Dataset A using U-Net, the result dropped to a TPR of 0.83,

FP/Image of 0.08 and F-measure of 0.87. When training on
Dataset A and test on Dataset B, the result was 0.70 TPR, 0.66
FP/image and 0.59 F-measure. This experiment shows that it
is not ideal to train on one dataset different from the testing
set. Combining the datasets provides improved training for the
framework.

VI. CONCLUSION

This paper investigated the use of three deep learning
approaches (Patch-based LeNet, U-Net, Transfer Learning
FCN-AlexNet) and a comprehensive evaluation of the most
representative lesion detection methodologies for breast ultra-
sound lesion detection. The performances were evaluated on
two datasets in terms of TPF, FPs/image and F-measure.

Amongst the different methodologies discussed in this paper,
the Transfer Learning FCN-AlexNet achieved the best results
for Dataset A and the proposed Patch-based LeNet obtained the
best results for Dataset B in terms of FPs/image and F-measure.
DPM and deep learning methods are adaptable to the specific
characteristics of any dataset, since these are machine-learning
based and a particular model is constructed for each dataset.
However, the limitation of such methods is that they require
a training process and negative images in the experiment. For
further research, it is our assertion that deep learning approaches
could be adapted to other medical imaging techniques such as
3 dimensional ultrasound or elastography.

Lesion detection is the initial step of a CAD system. Hence,
future work will focus on increasing the accuracy by adding
more training data, extending our works to breast ultrasound
lesion segmentation and classification, and evaluate the perfor-
mance of the complete CAD framework.
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