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Detection of Nocturnal Scratching Movements in
Patients with Atopic Dermatitis Using
Accelerometers and Recurrent Neural Networks

Arnaud Moreau

Abstract—Atopic dermatitis is a chronic inflammatory
skin condition affecting both children and adults and is as-
sociated with pruritus. A method for objectively quantifying
nocturnal scratching events could aid in the development
of therapies for atopic dermatitis and other pruritic disor-
ders. High-resolution wrist actigraphy (three-dimensional
accelerometer sensors sampled at >20 Hz) is a noninva-
sive method to record movement. This paper presents an
algorithm to detect nocturnal scratching events based on
actigraphy data. The twofold process consists of segment-
ing the data into “no motion,” “single handed motion,” and
“both handed motion” followed by discriminating motion
segments into scratching and other motion using a bidirec-
tional recurrent neural network classifier. The performance
was compared against manually scored infrared video data
collected from 24 subjects (6 healthy controls and 18 atopic
dermatitis patients) demonstrating an F; score of 0.68 and
a rank correlation of 0.945. The algorithm clearly outper-
formed a published reference method based on wrist actig-
raphy (F; score of 0.09 and a rank correlation of 0.466). The
results suggest that scratching movements can be discrim-
inated from other nocturnal movements accurately.

Index Terms—Accelerometers, actigraphy, atopic der-
matitis, long short-term memory, pruritus, recurrent neural
networks, scratch.

|. INTRODUCTION

TOPIC dermatitis, along with other pruritic conditions,
manifests itself in the sensation of itching resulting in
scratching behavior. A practical method for quantifying the
scratching behavior would greatly improve the ability to detect
treatment efficacy in smaller clinical trials and thereby advance
the drug development process.
The gold standard scratching assessment method is by scoring
video recordings of patients [1], but this method is not practical
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for clinical trials or routine monitoring because of several limi-
tations: its cost due to laborious scoring, the invasion of the pa-
tient’s privacy and the possibility of visual obstructions [2]. Con-
sequently, the current clinical standard for assessing scratching
behavior in clinical trials is the use of patient reported outcomes
(e.g. questionnaires) [3], [4] but these measures are imprecise
and often do not agree well with objective measures [5].

Investigators have used a variety of objective measures to as-
sess scratching including measurement of bed movements [6],
finger flexation [7], sound detection [8], actigraphic assessment
of sleep quality and quantity [9], [10], actigraphic measures of
motion [2], [11]-[13], and attempts to actigraphically identify
scratching events [14]-[16], but none of these methods have
demonstrated sufficient accuracy and practicality in real-world
situations to be accepted for routine use in clinical trials of ther-
apies for pruritus. Therefore, the ability to quantify scratching
in clinical trials remains an unmet medical need that hampers
the development of effective therapies [17].

This paper describes the use of high resolution 3D actigra-
phy and recurrent neural networks to develop an assessment of
nocturnal scratching that was developed and tested in a clinical
setting against the gold standard measure with video recording.

Recurrent Neural Networks (RNNs) - specifically with long
short-term memory architecture - have been used successfully
to solve numerous tasks involving spatio-temporal data model-
ing (the interested reader may refer to [18] or [19] for a review).
This type of model was frequently not only used to classify
hand-crafted feature sequences, but also to learn feature rep-
resentation directly from the raw data. Thus, the (often very
tedious) process of finding suitably discriminating features that
are extracted from the raw data in a precursory step can be
replaced by the model directly learning features from the raw
data automatically. Also in this work, the RNNs were applied
directly to the resulting scratching event candidate raw data af-
ter the data were pre-segmented to determine whether motion
was occurring at all and the motion was occurring in only one
wrist or in both wrists simultaneously. We have employed Bi-
directional RNNs with LSTM architecture described in [20],
[21]. RNNs have been applied previously to accelerometer data
in the context of gesture recognition in [22] (combining data
from both an accelerometer and a gyrometer) or human activity
recognition in [23], [24] (combining convolutional and recurrent
units).
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We propose a novel algorithm integrating data segmentation
and RNNs that was evaluated on clinical data from 24 subjects
(6 healthy controls, 18 atopic dermatitis patients) recorded in
a sleep laboratory with IR video and compared against manual
video scoring. Additionally, the algorithm proposed in [15] was
run against the same data to provide baseline results for direct
comparison.

This paper is organized in the following way: Section II ad-
dresses the data set and the algorithm that detects scratching
episodes. In Section III the method is evaluated using a 6-fold
cross-validation and the performance is compared to the algo-
rithm outlined in [15]. Finally, Section IV discusses the obtained
results.

Il. METHODS

This section describes the data collection and analysis and
the scratching detection algorithm.

A. Data Sets

For training and validation of the algorithm a data set con-
sisting of 24 recordings was collected. Participants wore 2 ac-
celerometer devices (GeneActiv, Activinsights Ltd.) on each
wrist for 2-5 nights, one of which they spent in a sleep lab-
oratory while simultaneously being recorded on IR video. In
this study, only the data collected during the night spent in
the sleep laboratory was used. The raw 3-D accelerometer data
from both wrists in units of g sampled at 100 Hz were read
into Matlab (The MathWorks Inc., Natick, MA) as described
in [25], synchronized with one another and down-sampled to
20 Hz.

The IR video was independently scored visually by an expert
to identify individual scratching events that occurred through-
out the night. A total of 24 participants completed the trial,
6 healthy controls (HC), numbered HOO1-HO06 and 18 with
atopic dermatitis (AD) numbered AO01-A018, who fulfilled the
Hanifin/Rajka diagnostic criteria [26] for atopic dermatitis. 9
were males and 15 were females. The average age of partici-
pants was 35.9 & 15.1 and the average body mass index (BMI)
was 25.5 = 5.1. Of the 18 atopic dermatitis participants 7 were
Asian, 5 were Caucasian, 5 were Hispanic or Latino and one
identified as other. Of the 6 healthy volunteers 3 were Asian,
one was Caucasian, one was African American and one identi-
fied as other. The study was approved by Schulman Institutional
Review Board, number 201500381.

Scratching scoring was evaluated by IR video on the sleep
lab night during the period in which the subject was lying in bed
and at least attempted to sleep (e.g. excluding periods where
subjects were reading or watching TV). The scoring was pro-
vided in Excel (Microsoft, Redmond, WA) files indicating start
time, duration, dominant hand (left, right or both) and intensity
(mild, moderate or severe). The scoring was synchronized to the
actigraphy raw data using clapping movements executed by the
subject on camera at the beginning and the end of the recording.
Times where the subject was off-camera (e.g. bathroom breaks)
and where the video scorer marked a scratching event as unclear
were excluded from the analysis.
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Fig. 1. Flow chart outlining the segmentation process, which was ex-
ecuted for each 1-s segment of data. P denotes the power calculated
per wrist as defined in (1), A is the asymmetry index defined in (2) and
thnoise denotes the background noise power level.

B. Segmentation

The purpose of the process described hereinafter was to iden-
tify scratching candidates (i.e. signal segments that contain mo-
tion caused by a single hand or both hands). Subsequently, these
segments were classified as non-scratching motion or scratching
motion (see Subsection II-D).

The acquired accelerometer raw data consisted of 3 dimen-
sions denoted as a, (t), a, (t) and a. (). It contained the accel-
eration caused by body movement along with the acceleration
caused by gravity, which was assumed to be present in the low
frequency components of the individual axis signals. There-
fore, the gravity components g, (t), gr, (¢) and gr. (t) were ex-
tracted by applying a median filter of length 2 s to each dimen-
sion separately and then subtracting the resulting signal from
the original b, (t) = a,(t) — gry(t), b, (t) = a,(t) — gry(t),
b.(t) = a.(t) — gr.(t) to obtain an estimate of the body move-
ment alone.

The next step was to segment the data into the following cat-
egories: “no motion”, “single handed motion in the left wrist”,
“single handed motion in the right wrist” and “motion in both
wrists” according to the flow chart depicted in Fig. 1. For this
purpose, a power measure (mean vector magnitude) was derived
for each consecutive 1-s window for both left and right wrist
signals using the following equation:

1 s
P= ﬂ;\/bz(t)Q b, ()2 + b (1), )

where f; denotes the sampling frequency. We empirically de-
termined a minimum power threshold th,s that needs to
be exceeded in order for a segment to be considered as mo-
tion. Each segment (duration >3 s), where Py < thpeise and
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Pright < thpoise Was thus excluded as no-motion (no scratching
candidate). The next step was to separate asymmetric motion
from motion in both wrists. For this purpose an asymmetry in-
dex for each consecutive 1 s window was calculated according

to the following equation:

_ Plen — Pright

= 2
Biegt + Pright

Segments where |A| > % were assigned to either left wrist
motion or right wrist motion depending on the sign. Gaps
with duration <3 s in between left or right segments were
closed. “Both wrist” candidates were defined as segments
that belong neither to the left wrist nor right wrist motion
category.

In order to increase the precision of finding meaningful
“movement” borders, changes in hand orientation were esti-
mated by calculating the derivative of the previously extracted
gravity signals gr, (t), gr,(t), gr.(t) and then calculating the
vector magnitude C(t).

C(t) = \/Agra (1) + Agry (12 + Agr- (1) (3)

A thereby denotes a smoothed differentiation operator (imple-
mented by discrete convolution). The underlying assumption
is that the gravity vector gr(t) = (gr.(t), gry(t), gr.(t)) cor-
responds to the rotated gravitational field vector and thus in-
dicating yaw, pitch and roll of the wrist. The threshold ¢hgien
was empirically derived to describe a minimum change in hand
orientation required to constitute a new “movement”. Any local
maximum Cieg(t) + Cight (t) > thorient Was considered to be a
boundary of a scratching candidate segment. The new bound-
aries were applied additionally to the previous segmentation
(left, right and both wrists).

C. Recurrent Neural Networks

RNNs differ from feed-forward neural networks by re-
directing outputs back to inputs. This enables the model to
consider context from the past (as well as the future when us-
ing bi-directional RNNs), which makes it especially suitable
for modeling spatio-temporal data. Traditional RNNs however,
suffer from the problem of exponential gradient decay (aka van-
ishing gradient problem) which limits the amount of context
that can be considered severely [27]. Sepp Hochreiter et al.
[28] proposed the so-called long-short-term-memory (LSTM)
architecture as a solution to overcome this problem. Multiple
additions to the LSTM architecture have been proposed since
then, such as forget gates and peepholes [29].

Fig. 2 depicts a single LSTM unit. It consists of a memory
cell controlled by gates, which enables the cell to learn when to
recall the cell’s content (output gate), when to update it (input
gate) or when to overwrite it (forget gate). All the gate values
are dependent on the same input data x; and the previous out-
puts h_1, each associated with a different set of weights. The
direct connections between the cell and its gates are known as
“peepholes” and enable the gates to consider the cell’s previous
content ¢;_j.

N
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/
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Forget Gate
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Fig. 2. The LSTM unit architecture (reproduced from [21]). Input data
are propagated to 3 gates (input, output, forget) additionally to the input
(on the left hand side). The cell corresponds to the memory that is
updated on every time step (controlled by the gates). The output is
shown on the right hand side.
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Fig. 3. Bidirectional RNN architecture unfolded in three illustrative time
steps (adopted from [20]). The two LSTM layers in this architecture
process the data in opposite directions.

D. Classification

We trained two bi-directional RNN (BRNN) models, one
for asymmetric single handed movements, considering only the
data from the active wrist, and another for both wrist move-
ments. Any candidate scratching segment with duration > thqy,
was presented to the trained BRNN models for classification.
thau thereby denotes the minimum duration of a segment to
be considered a scratching candidate; the value of this thresh-
old was empirically derived. Candidate segments with dura-
tion >3.5 s were further split into subsegments of approxi-
mate duration 3 s. The task of the models was to differentiate
between non-scratching motion and scratching motion as no-
motion segments have previously been excluded by the segmen-
tation process (see Subsection II-B). Note that all empirically
determined thresholds thppise, thorient and thgy are set globally
and thus do not vary by subject. The architecture of both mod-
els is depicted in Fig. 3. Each LSTM layer contains 3 (single
wrist) or 4 (both wrists) LSTM units. The single wrist model
input is z; = (b, (t),b,(t),b-(t)) and the both wrists model
inputis z, = (BIT(£), DI (¢), B (2), BEE (2), =" (2), BI"(2)),
where the data has been normalized as determined during
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training (see Subsection II-F). The model output for each se-
quence consisted of a probability (0 < p < 1) that the motion
sequence was caused by scratching. We applied a threshold of
0.5 to the output probability in order to obtain a final decision.
The LSTM architecture included forget, input and output gates
as well as peephole connections (for details see [21]). The total
number of trainable weights was 193 (single wrist model) and
385 (both wrists model).

E. Cross-Validation

In order to use the entire 24 subject data set for both train-
ing and validation and still obtain an objective estimate of its
performance on previously unseen data we performed a 6-fold
cross-validation in the following way: The pre-segmentation
procedure described in Subsection II-B was applied to all la-
belled recordings. Segments that were determined to be single
handed scratching candidates and overlapped with a labelled
scratching event were collected as scratching sequences. Anal-
ogously, segments that were determined to be single handed
scratching candidates and did not overlap with a labelled
scratching event were collected as no-scratching sequences. The
both handed scratching candidates were handled in the same
manner.

The collection of scratching and no-scratching sequences was
further split into a test, training and validation data set. First,
a test set was extracted, which contained 20% of all sequences
chosen randomly from every subject, for the purpose of com-
paring models (independent of cross-validation folds). The re-
maining data were split randomly in 6 folds (each containing
3 AD and 1 HC subject). The performance was measured on 1
fold and the algorithm was trained on the other 5. This data set
was divided by subject in order not to over-estimate the perfor-
mance based on potential intra-subject scratching characteristic
similarity.

To address the class imbalance problem [30], where the target
classes are unequally distributed in the training, validation and
test data sets, each set was re-sampled to achieve a distribu-
tion of 50% scratching sequences for single-hand sets and 33%
scratching sequences for both-hands sets in the following way:
for each subject, randomly chosen sequences from the major-
ity class were removed proportionally to the target rate. If after
this procedure too few sequences were left such that the target
rate was too low, an adequate number of randomly chosen se-
quences that had been removed before were put back into the
set.

F. Training

Training is the process of determining a set of weights for
the BRNN model such that the error is minimized over the
training data set. During the training, a given scratching candi-
date sequence x is presented to the input layer of the BRNN
step-by-step and the activations are updated layer by layer (for-
ward pass). Obtaining the net’s output y(x) for all training se-
quences (x,t) € T (as described in Subsection II-E), where
t =1 ort = 0 depending on the target class (scratching or non-
scratching), the cross-entropy error function [20] was computed

by
E=- Z tlny(x) + (1 —¢)In(1 — y(x)). (4)

(x,t)eT

The error was propagated backwards through the net (back-
ward pass) by computing the partial derivatives of (4) using
the standard back-propagation through time (BPTT) algorithm
[31] and subsequently updating the network’s weights using the
stochastic gradient descent algorithm with momentum = 0.9
and learning rate = 2 x 10~* [32]. Training was performed us-
ing the software RNNLib by Alex Graves [33]. The raw data
have been normalized to have standard deviation 1 as suggested
in [20, section 3.3.3] (note that the data had a mean ~ 0 because
of the gravity component removal). To prevent over-fitting the
following two strategies were applied: Adaptive weight noise
using the minimum description length error function [34] was
used as a regularization mechanism during training. Also, the
training was terminated when no improvements in the validation
set error were found for the last 50 epochs (iterations through
the training set). Typically, both the classification error over the
training and validation set go down in the beginning, but as the
training progresses, the error on the training set further reduces,
whereas the error on the validation set stabilizes [20], which is
when the model is over-fitting. The weights were initialized ran-
domly (uniformly distributed in the range [—1, 1], therefore this
training procedure was run 32 times for both the single-hand and
the both-hands network and the networks with the lowest error
rate on the validation set were selected to be the final models.

G. Evaluation

Video and actigraphy scratching events were compared on
a 1-s epoch basis, because video scratching was also scored
on this time scale. The segmentation parameters were set to
thpoise = 0.02 g (differentiating no movement from movement),
thorient = 0.25 g (refining segment boundaries) and thgy, =
1.75 s (determining the minimum segment length). Scratching
events shorter than 2 s scored by video (in total about 1.6% of
1-s epochs) were removed. Ebata et al. [1] only used scratching
bouts lasting more than 5 s to study the characteristics of noc-
turnal scratching in patients with atopic dermatitis. The clinical
relevance of shorter bouts is an open research question.

In order to measure the performance of the algorithm to score
scratching events based on high-resolution actigraphy data, its
results were compared to the gold-standard measurement (IR
video scored by experts). Three objectives were pursued when
developing the algorithm (in order of increasing rigor):

1) The total duration of scratching in a recording obtained
by the algorithm shall be as close as possible to the total
duration of scratching obtained by the video scoring.

2) The separability between groups (atopic dermatitis and
healthy controls) shall be maximized.

3) The scratching events obtained by the algorithm shall
be placed as closely as possible to the scratching events
obtained by the video scoring (temporal distribution).

The algorithm’s performance was compared to the method
detecting nocturnal scratching from actigraphy data published
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TABLE |
PERFORMANCE MEASURES PER RECORDING RESULTING FROM 6-FOLD CROSS-VALIDATION AND, FOR THE PURPOSE OF COMPARISON, THE EQUIVALENT
MEASURES FOR THE PETERSEN et al. ALGORITHM IN BRACKETS

Scratching duration (s) Total (s)
Rec TP (s) FP (s) EN (s) Sensitivity Precision F score Video Actigraphy duration
A001 1086 37) 133 (79) 105 (1154) 0.91 (0.03) 0.89  (0.32) 090  (0.06) 1191 1219 (116) 24825
A002 445 (34) 59 (70) 245 (656) 0.64 (0.05) 0.88  (0.33) 0.75  (0.09) 690 504 (104) 25257
A003 278 (15) 73 (147) 70 (333) 0.80 (0.04) 0.79  (0.09) 0.80  (0.06) 348 351 (162) 23077
A004 124 (16) 182 (314) 104 (212) 0.54 (0.07) 0.41 (0.05) 046  (0.06) 228 306 (330) 23155
A005 735 (18) 383 (144) 250 (967) 0.75 (0.02) 0.66  (0.11) 0.70  (0.03) 985 1118 (162) 25294
A006 449 (45) 178 (259) 160 (564) 0.74 (0.07) 072 (0.15) 0.73  (0.10) 609 627 (304) 24935
A007 45 9) 53 (171) 42 (78) 0.52 (0.10) 046  (0.05) 049  (0.07) 87 98 (180) 23533
A008 14 (1) 62 (141) 14 27) 0.50 (0.04) 0.18 (0.01) 0.27 (0.01) 28 76 (142) 23311
A009 456 (27) 232 (237) 96 (525) 0.83 (0.05) 0.66  (0.100 074  (0.07) 552 688 (264) 26677
A010 1318 (82) 618 (587) 681 (1917) 0.66 (0.04) 0.68  (0.12)  0.67  (0.06) 1999 1936 (669) 25469
A011 551 (25) 145 (109) 170 (696) 0.76 (0.03) 0.79  (0.19) 0.78  (0.06) 721 696 (134) 27454
A012 598 (90) 251 (192) 402 (910) 0.60 (0.09) 0.70  (0.32)  0.65 (0.14) 1000 849 (282) 25443
A013 3934 (557) 826 (422) 2968 (6345) 0.57 (0.08) 0.83  (0.57) 0.67 (0.14) 6902 4760 (979) 25198
A014 262 (8) 290 (109) 71 (325) 0.79 (0.02) 047  (0.07) 059  (0.04) 333 552 (117) 25509
AO015 15 0) 67 (59) 5 (20) 0.75 (0.00) 0.18  (0.00) 029  (0.00) 20 82 (59) 25159
A016 70 3) 71 (115) 85 (152) 0.45 (0.02) 0.50 (0.03) 047  (0.02) 155 141 (118) 26296
A017 27 4 80 (70) 26 (49) 0.51 (0.08) 025  (0.05 034  (0.06) 53 107 (74) 25553
A018 565 (8) 320 (106) 145 (702) 0.80 (0.01) 0.64  (0.07) 0.71 (0.02) 710 885 (114) 30077
HO01 0 0) 108 (122) 0 0) NaN  (NaN) 0.00 (0.00) 0.00 (0.00) 0 108 (122) 24336
H002 14 2) 38 (100) 34 (46) 0.29 (0.04) 027  (0.02) 028  (0.03) 48 52 (102) 23986
H003 19 9) 102 (205) 38 (48) 0.33 (0.16) 0.16  (0.04) 0.21 (0.07) 57 121 (214) 24841
HO004 0 (0) 23 (100) 4 4) 0.00 (0.00) 0.00  (0.00) 0.00 (0.00) 4 23 (100) 26360
HO005 2 3) 50 (133) 4 3) 0.33 (0.50) 0.04 (0.02) 0.07 (0.04) 6 52 (136) 26362
H006 38 (8) 171 (134) 13 (43) 0.75 (0.16) 0.18  (0.06) 029  (0.08) 51 209 (142) 23814
Total 11045 (1001) 4515  (4125) 5732 (15776) 0.66 0.06) 0.71 (0.20)  0.68  (0.09) 16777 15560  (5126) 605921

in [15]. The authors fully specified their algorithm which en-
abled its execution on the new data set. It works by extracting
two features (peak frequency and 1-lag autocorrelation) from
consecutive 3-s windows of a 1-D composite signal (1-s over-
lap) and then making a decision with a trained logistic regression
classifier. As it was designed to be run on single-wrist data at
40 Hz we re-sampled the raw data from 100 to 40 Hz and exe-
cuted it on both recorded wrists separately. A TP was counted
if scratching was assigned in any of the two wrists.

Additionally, in order to evaluate the effect of our integrated
algorithm (segmentation based on data characteristics and sub-
sequent RNN classification), we trained and applied both-wrist
RNNs, however without the segmentation step described in Sub-
section II-B. For the RNN-only analysis we subdivided the data
from both wrists in consecutive 3-s windows with 1-s overlap.

Based on the objectives listed above the following measures
were derived to quantify the algorithms performance.

1) Comparison of Total Scratching Duration: In order

to determine the total scratching duration, the amount of 1-s
epochs scored as scratching was counted for each measurement
method (video, proposed method, RNN-only method and Pe-
tersen et al. [15]) per recording. To measure general deviation,
the median of the differences median?? | (dur® — dur)id) was
calculated, where » = 1...24 denotes the 24 subjects, dur?®
denotes the total duration of scratching for subject r determined
using the proposed method or RNN-only method or Petersen
et al. method and dur!® denotes the total duration of scratch-
ing for subject r determined by video scoring. Additionally, the
spearman-rank correlation coefficient was calculated between

the total scratching durations of each subject measured by video
and the proposed method, RNN-only method and Petersen et al.

2) Comparison of Separability: In order to measure sep-
arability between AD and HC groups, the scratching rate was
determined (total scratching duration as defined above divided
by the recording length). For each measurement method (video,
proposed method, RNN-only method and Petersen et al.) the re-
ceiver operating characteristic (ROC) was calculated (by vary-
ing a threshold separating the two groups and plotting the true-
positive rate versus the false-positive rate). The area-under-the-
curve (AUC) of the ROC can be interpreted as the probability
that a classifier will rank a randomly chosen AD subject higher
than a randomly chosen HC subject and thus is used as a measure
of classification performance [35].

3) Comparison of Temporal Distribution: Each 1-sepoch
in a given recording, ignoring those where no scratching was
scored in both scorings, was counted either as true positive
(TP), false negative (FN) or false positive (FP) independent of
the wrist. Based on those counts, sensitivity and precision were
calculated.

TP
TP+ FN

TP

Sensitivity = m

precision =
Both of these measures are summarized in the F score, which is

a harmonic mean of sensitivity and precision and thus a measure
of overall accuracy. It is determined as

2TP

P = .
" 2TP+FP+FN

&)



1016 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 22, NO. 4, JULY 2018
7000 . 1
1500 7 e
s ’
% ’ 09
’ ’ S
6000 - 4 1 A7
kel [ ] ’ o 4
o e - . f
= 1000 Pt 1 . 08| H
5 . 5 [ S
£ o 7 & ’ ! i
B 5000 - [ 7 P I i
2 o .67 , e =07 :
o 0. s e 1
Q - Pia =
o o R e =
£ 500 e L 7
- 4000 &7 o & 06
@ .. L @
p e g 2
S P ’ T 05
£ 2000 g
oo _ H
2 0 500 L7 1000, 1500 2.1
£ e e A 8_ 0.4
= . L 12 = 0.97545
S , e o
© ’ -
§ 2000 - -~ 2
3 ,® ’_,/ =03
s -
g e
b |
1000 O,:./ ~ = = Identity Line 0.2
e | | mem—— Regression Line y(x)=0.697x+161.1 Video, AUC=0.9259
[ ) }.‘ ®  Atopic Dermatitis | = = = Proposed method, AUC=0.8796
% B Healthy Control L RNN only, AUC=0.8426
0 L ! ! ! ! ! | e Petersen et al, AUC=0.6019
0 1000 2000 3000 4000 5000 6000 7000 0 L I I I ! | | | I

Total scratching duration (s), Video

Fig. 4. Scatter plot showing the total scratching duration (video versus
the proposed method). The AD subjects are shown in blue circles, the
HC in red squares. Due to the outlier recording A013, the majority of
recordings is confined in the lower left corner, therefore this section is
again shown as an inset enlarged in the upper left corner. In addition,
the identity and regression lines are shown, along with the coefficient of
determination 2 as a goodness-of-fit measure.

To determine a measure over all recordings, the number of TP,
FN and FP are summed and sensitivity, precision and F} score
are determined as defined above based on the summed counts.

[ll. RESuLTS

Table I shows the results for the 6-fold cross-validation per
subject both for the proposed and the Petersen er al. method.
The models applied to a given subject were trained on data from
other subjects as described in Subsection II-E. The TP, FP and
FN counts (in s) are summarized in the Sensitivity, Precision
and F} score columns. The scratching duration (in s) column
lists the amount of scratching scored in a given recording. It is
additionally shown in a scatter plot in Fig. 4. The total duration
denotes the duration (in s) of the analyzed rest period. Further-
more we report the equivalent results for the RNN only method:
0.93 (total sensitivity), 0.41 (total precision) and 0.57 (total F}
score).

The deviation of total scratching duration from the gold-
standard (video scoring) as determined by Spearman-Rank-
Correlation coefficient was 0.945 for the proposed method,
0.914 for the RNN-only method and 0.466 for the method by
Petersen et al. The median of differences was +37 s for the pro-
posed method, +682 s for the RNN-only method and —112 s
for the method by Petersen et al. Additionally, the ROC curves
that reflect the ability of the scratching rate endpoint to separate
between AD and HC subjects are shown in Fig. 5 along with the
area-under-the-curve values.

As 12 models were trained (2 per fold) for the proposed
method, their performance was evaluated on the independent
test set (see Subsection II-E) in terms of error rates (number
of wrongly classified sequences divided by total number of se-
quences in percent). In Tables II and III the error rates are listed
per fold.

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate (1 - specificity)

Fig. 5. Receiver Operating Characteristic (ROC) curve that illustrates
the ability of the four scoring methods (video, proposed method, RNN
only and the method by Petersen et al.) to discriminate atopic dermatitis
patients from healthy controls. The corresponding ROC area-under-the-
curve values are: 0.9259, 0.8796, 0.8426 and 0.6019, respectively.

TABLE Il
ERROR RATES ON DATA SETS FOR SINGLE-HAND MODELS (BY FOLD)

1 2 3 4 5 6
training 26.09  29.81 30.57 2937 2024 29.32
validation ~ 26.12 1594 21.79 18.60 3048  21.38
test 2844  30.16  30.08  28.77 27.21  28.36
TABLE Il

ERROR RATES ON DATA SETS FOR BOTH-HANDS MODELS (BY FOLD)

1 2 3 4 5 6
training 21.09 2019 2384 2034 1727 2247
validation 9.82 19.42 19.51 1282 2526  20.02
test 19.18  20.08 2299 2048  21.49 19.98

[V. DISCUSSION

The results of the validation study prove that the goal of de-
veloping a detection algorithm for nocturnal scratching move-
ments from actigraphy data that shows good performance when
compared to the IR video method was met.

The total scratching duration as determined by the gold-
standard and the proposed method had a rank correlation of
0.945, with a median of differences of +37 s. Those results sug-
gest good agreement, with a slight over-estimation of scratching
in the proposed method. Table I, on the other hand (16777 s for
video versus 15560 s for actigraphy), shows a mean difference
of —51 s. The discrepancy, however, was entirely explained by
subject A013. This subject exhibited 3.4 times more scratching
than the subject with the second-most scored scratching.

The F} score of 0.68 as compared to 0.09 for the Petersen
et al. method also demonstrates that the algorithm not only
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Fig. 6. Two excerpts of left-handed scratching movements: (a) A 15 s

excerpt out of a pronounced 59 s scratching movement (signals from
top to bottom: x, y, z) where subject AO01 scratched the whole length of
his leg. (b) A 15 s excerpt out of a subtle 174 s scratching movement
(signals from top to bottom: y, x, z) where subject AO13 uses only her
finger.

correctly estimated the total amount of scratching throughout
a recording, but also accurately predicts when the scratching
movements were occurring, which could be helpful for deter-
mining when during the night a treatment is most effective.
While the performance of the Petersen et al. method [15] was
reported to be quite remarkable (sensitivity = 0.955) on their
published dataset, the sensitivity drops dramatically to 0.06 (pre-
cision = 0.20, F; = 0.09) on the present data set. There are
several hypothetical explanations for this discrepancy: Firstly,
simulated scratching movements may exhibit different char-
acteristics than spontaneous scratching that might make them
easier to discriminate from other movements. Specifically large-
area and rhythmical scratching shows quite pronounced features
such as periodicity (as can be seen in Fig. 6(a)); it is unclear
which types of movements healthy subjects tend to produce
when asked to simulate scratching. Secondly, the devices used
to record scratching movements were different (the PAM-RL
device used by Petersen et al. was specifically designed to cap-
ture periodic leg movements). Furthermore, the objective of the
method by Petersen ef al. was different: to discriminate defined
30 s excerpts containing scratching from 20 to 30 s excerpts
containing restless sleep or walking movements as opposed to
detecting scratching movements in a continuous recording.
Scratching movements can be carried out in manifold ways.
Large-area scratching involving arm movement (see Fig. 6(a))
can clearly be picked up by the wrist-worn accelerometer sen-
sors, whereas subtle movements of just one finger might not (see
Fig. 6(b)). In our method, the th,;s. threshold was used to detect
motion and if its power is so small that it is completely buried
in the background noise, the algorithm will not get to classify
that particular movement. These are the instances that our al-
gorithm is “blind” to because of the underlying limitations of

the sensor placement. In the entire data set (excluding A013) on
average about 3% of the total video scored scratching time was
affected (which puts an upper limit to sensitivity of about 0.97).
The clear outlier recording A013 exhibited large amounts of this
kind of subtle scratching (often ranging up to continuous 5 min,
see Fig. 6(b)). Here, an unusually high amount of about 13%
of scored scratching happened below the ¢/ threshold. This
recording demonstrates the limitations of the proposed method
in detecting rather subtle scratching events with little to no arm
movements. However, the clinical significance of this type of
scratching movement is an open research question.

Tables II and III demonstrate that the models generalized very
well, which can be seen on the small differences of error rates
on the test set across folds. Nevertheless, the models exhibiting
the lowest error rates (27.21 for the single hand model and 19.18
for the both hands model) were chosen to be incorporated in the
final algorithm.

The comparison between the integrated approach and RNN-
only confirmed the value of our pre-processing segmentation
step for identifying scratching candidates. Note that these can-
didates are characterized not only by increased activity, but also
stable wrist orientation. Thus, a major change in the wrist ori-
entation (based on the evaluation of the gravity acceleration
vector) terminates a scratching candidate. Indeed our analysis
comfirmed an improvement in all performance measures: from
0.57 to 0.68 (F} score), from 0.914 to 0.945 (Spearman-Rank-
Correlation), from 682 s to 37 s (median of differences) and
from 0.8426 to 0.8796 (ROC area-under-the-curve).

A. Limitations and Future Directions

This study has several limitations: The efficacy of the pre-
sented algorithm was evaluated on a limited set of subjects,
with a low number of healthy controls. This is due to the effort
of data acquisition, specifically the manual scoring of IR video.
Therefore a replication study with a larger set of subjects in-
cluding patients with scratching events and healthy controls as
well as patients with movement disorders during sleep such as
periodic limb movement disorder is advisable. A further lim-
itation is the sensor placement as discussed in Section IV, an
alternative sensor placement might be explored.

V. CONCLUSION

A novel algorithm to detect nocturnal scratching from ac-
celerometer signals was presented. The proposed algorithm was
validated on video data from 24 subjects and produced results
comparable to the gold-standard video scoring, which demon-
strates its effectiveness. It enables cost effective, unobtrusive
and longitudinal data collection using wrist worn actigraphy de-
vices to objectively quantify nocturnal scratching with proven
accuracy in a clinical setting.
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