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Atrial Fibrillation Detection via Accelerometer
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Abstract—We present a smartphone-only solution for
the detection of atrial fibrillation (AFib), which utilizes the
built-in accelerometer and gyroscope sensors [inertial
measurement unit, (IMU)] in the detection. Depending on
the patient’s situation, it is possible to use the developed
smartphone application either regularly or occasionally for
making a measurement of the subject. The smartphone
is placed on the chest of the patient who is adviced to
lay down and perform a noninvasive recording, while no
external sensors are needed. After that, the application
determines whether the patient suffers from AFib or
not. The presented method has high potential to detect
paroxysmal (“silent”) AFib from large masses. In this paper,
we present the preprocessing, feature extraction, feature
analysis, and classification results of the envisioned AFib
detection system based on clinical data acquired with a
standard mobile phone equipped with Google Android OS.
Test data was gathered from 16 AFib patients (validated
against ECG), as well as a control group of 23 healthy
individuals with no diagnosed heart diseases. We obtained
an accuracy of 97.4% in AFib versus healthy classification
(a sensitivity of 93.8% and a specificity of 100%). Due to the
wide availability of smart devices/sensors with embedded
IMU, the proposed methods could potentially also scale to
other domains such as embedded body-sensor networks.

Index Terms—Accelerometer, app, application, atrial fib-
rillation, ballistocardiography, BCG, gyroscope, IMU, iner-
tial measurement unit, seismocardiography, SCG, smart-
phone.

I. INTRODUCTION

IN THIS work, we consider the accurate detection of atrial
fibrillation (AFib) with modern microelectromechanical

(MEMS) accelerometers and gyroscopes embedded into mod-
ern smartphones. Previously, smartphone based AFib detection
has been proposed through the camera of the smartphone while
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illuminating the user’s finger with the camera flash (PPG, pho-
toplethysmography) [1]. Our approach is also based on smart-
phone, while the acquisition of the heart signal is made in an
alternative way. The patient is adviced to lie down in a supine
position and the smartphone is placed on the chest of the pa-
tient. This way, the inertial measurement unit (IMU) is used for
unconventional purpose (typically IMU is used for determining
the orientation of smartphone) namely for registering the tiny
cardiogenic micromovements of the patient’s chest. A measure-
ment with similar duration as in camera based measurement is
taken (approximately 2 min) with the already available MEMS
sensors within the smartphone. We have previously found out
that also the gyroscope has the potential to add robust infor-
mation to the heart signal [2]. Therefore we use both the ac-
celerometer and the gyroscope for signal acquisition.

AFib is one of the most common heart arrhythmia which oc-
curs in approximately 2% of the global population, prevalence
being dependent on factors like sex, age and country [3], [4]. It
is also major cause of stroke, heart failure and other comorbidi-
ties. Occurrence of AFib increases the risk for a stroke, since a
blood clot may form and convey into brain. Up to 90% of in-
termittent AFib episodes are asymptomatic and therefore a vast
number of AFib cases remain unnoticed. Strikingly, acute stroke
is relatively often the first sign of AFib. It has been estimated
that around 70% of strokes due to AFib could be avoided with
pre-emptive medication [5]. Large scale screening of “silent”
AFib has been proposed as a way to reduce the stroke risk from
persons suffering from asymptomatic AFib. The challenge is
that most of the current methods are either too costly or incove-
nient for extensive long-term screening of whole population or
higher risk age groups (60 years and above). A smartphone so-
lution could thus provide cost-efficient means to screen these
persons from the population. As the probability of having AFib
increases with age, for example in the US, the prevalence of
AFib is expected to more than double in the next 50 years as the
population grows older [6]. It has been estimated that currently
the medical cost caused by AFib is $26 billion annually in US
only [7]. Thus, the financial impact of efficient AFib preven-
tion can be significant. The hospitalization rate due to AFib is
concentrated on the east coast of the US thus the costs are not
equally divided [8].

A. Related Work

PPG is based on measuring the blood volume changes through
the skin capillary bed optically (typically fingertip) [9]. The
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measurement is carried out by illuminating the skin e.g. with a
light-emitting diode (LED) and measuring the changes in light
absorption. The previous implementations of smartphone based
AFib detection have relied on the same principle while using
the flash of the smartphone camera to illuminate the finger of
the user and capturing a video of the color changes in the pa-
tient’s finger. Although this is a common approach, the method
needs to handle variations in fingertip placement-which may be
a challenge, especially to elderly people [10]-and camera fo-
cus, which may have a negative effect on the signal acquisition.
Furthermore, while the video recording approach is suitable for
short term measurements it is not well suited as such for long-
term continuous monitoring of AFib in body sensor networks
due to issues such as power consumption.

There exist also smartphone/tablet based ECG devices and
embedded devices, which can be used to detect a variety of heart
conditions, including AFib [11]–[13]. However, also in the case
of smartphone based ECG there is generally a need for physical
contact to the subject’s skin, which may require electrodes po-
tentially irritating the skin as well as other hardware and wires.
In [14], an ECG-based screening system (AliveCor) was pro-
posed for screening of AFib, which was embedded to a smart
casing of the smartphone. The user presses the electrodes within
the casing with two fingers (from different hands) and performs
a short measurement, which is then modulated and transmitted
through an ultrasonic interface to the smartphone and eventually
processed automatically. Despite of being a promising system,
also this method still requires extra hardware in order to be
applied.

Seismocardiography (SCG) [15] is a non-invasive method
based on measuring cardiogenic accelerations of the chest. Al-
though considered as a promising approach, the utilization of
SCG has not reached the level of ECG. The research concerning
SCG has recently still gained more popularity. The emergence
of modern MEMS accelerometers with tiny physical dimensions
(for instance 2 mm × 2 mm or less) have increased interest to-
wards this method. Ballistocardiography (BCG) [16], [17] is
based on measuring the whole body movements induced by
heart movements with an accelerometer. Typically the sensor
is attached below the user into a bed, a chair, or a scale. As
an example of BCG, we would like to mention non-invasive
sleep monitoring [17], which user interface was implemented
on a smartphone. Recent advances in seismo- and ballistocar-
diography have been reviewed in [18]. SCG-based methods are
sometimes referred as BCG since the terminology is not very
well-established.

SCG has been proposed to monitoring left ventricular
function during ischemia in [19] and measuring heart rate
variability [20], [21]. Long-term SCG has been proposed as a
non-invasive method to monitor ambulant subjects [22]. The
potential of SCG-based monitoring using smartphones (and
potentially other smart devices, for instance Google Glass)
have been recently studied in [23]–[26]. Detection of AFib with
ballistocardiography has been previously proposed in [27], and
detection of AFib with seismocardiography in [28]–[30].

We extend here the work of [30], where a single accelerome-
ter axis of a custom built ECG/SCG board was used to separate
between AFib and normal conditions (acquired before and after

cardioversion). The application field proposed in this paper is
to extend to smartphones and we describe a stand-alone App
for AFib detection, which takes advantage of all available ac-
celerometer and gyroscope axes. In addition, we derive a large
number of new features in order to improve the performance
of the AFib detection in comparison with [30] and extend to
(multiple) other and more advanced classifiers for separation
between AFib and normal conditions. In comparison with [27],
where the AFib detection was applied using ballistocardiog-
raphy during sleep/bed measurements, our approach has some
similarities but the application field is different, as we are utiliz-
ing a smartphone-only solution for the screening of AFib using
short-term measurements without any extra hardware.

B. Patient Protocol

The data collected for this study consists of 16 data recordings
of a duration of a few minutes (typically less than five minutes)
taken from AFib patients at hospital settings. Additional data
was captured from a control group of 23 healthy individuals,
taken at the premises of Technology Research Center, University
of Turku, Finland. In both cases, the subjects were adviced to lie
in a supine position, while a smartphone measurement was taken
by placing a standard Sony Xperia Z-series smartphone on the
chest of the patient. A dedicated data collection application used
was responsible for the data acquisition. The data acquisition
was initiated and terminated by pressing a button on the screen
of the smartphone.

The patient tests were carried out at Turku Heart Center, Turku
University Hospital, Turku, Finland. The research protocol was
approved by the Ethical Committee of the Hospital District of
the South-Western Finland. The requirements for the inclusion
of a patient for the study were:

� minimum age 18 years;
� the patient was an authorized representative of him-/her-

self and willing to agree and sign a written informed con-
cent approved by the ethical review board; and

� AFib was diagnosed from the patient via other standard
modality such as ECG.

The criteria for the exclusion of the patient from the study
were:

� the patient suffered from any additional health problems
that would, in the view of the investigator’s opinion, in-
terfere the patients optimal participation to the study;

� age under 18 years old;
� unwillingness or unability of using a smartphone; or
� the patient suffered from severe memory problems.

No information which could be used to identify the patient
was stored to the memory of the smartphone. After data gath-
ering, the data was transferred to a desktop personal computer
to be used for the development and validation of the detection
algorithms reported in this work. The acquisition of the data
did not affect to the quality of care that the patient received in
any way. The condition of the AFib patients was determined by
simultaneous ECG during the smartphone measurements. As a
control group we acquired healthy volunteers with no diagnosed
heart diseases. In Table I a demographic table of the two patient
groups is shown.
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TABLE I
DEMOGRAPHIC TABLE OF AFIB PATIENTS AND CONTROL GROUP ENROLLED TO THE STUDY

AFIB PATIENTS AGE HEIGHT WEIGHT BMI CONTROL GROUP AGE HEIGHT WEIGHT BMI

MEAN 71.4 170 76.9 26.1 MEAN 31.4 180 82.4 25.5
MIN 44 150 45 20.0 MIN 23 172 61 20.5
MAX 89 190 108 33.6 MAX 53 190 125 38.1
STD 12.3 12.0 17.3 3.89 STD 7.85 4.65 15.9 4.39
UNIT (years) (cm) (kg) (kg/m2 ) UNIT (years) (cm) (kg) (kg/m2 )

The total number of persons in AFib group was 16 (11 males) and in control group 23 (all males). The height of three persons in AFib group was
not registered and those are left out from the calculations of this table.

II. SIGNAL PRE-PROCESSING

A. Background for Feature Generation

ECG-based AFib detection is a well established technique
which is based on the detection of the absense of the so called
P-wave in electrocardiogram. The P-wave represents atrial de-
polarization, which precedes atrial contraction. Additionally, ir-
regularity of successive RR intervals in the time (or frequency)
domain can be used as cues to detect AFib using ECG. The RR
interval is defined as the time interval between two successive
R-peaks of the ECG (R-peak being the most prominent peak
in ECG). A good fingerprint of AFib is that the beat timings
in ECG are irregularly irregular. We use the ECG based AFib
detection methods as a starting point for developing IMU-based
techniques for the detection of AFib.

We hypothesize that the beat-to-beat irregularity present in
ECG will also be present in the IMU signal. As R-peaks do not
exist in the SCG or GCG signal, some other fiducial points must
be used instead. Because the AO (aortic opening) is usually the
most prominent peak in SCG/GCG it is natural choice to be
used as a reference. The respective AO-AO interval determines
the beat interval in the case of SCG/GCG. It should be noted
that the R-R and AO-AO intervals are not equal since the elec-
tromechanical delay is not constant [29]. For consistency, the
term RR interval is used in this paper for the AO-AO interval
also. In addition to the timing of the beats, we also use other
indicators related to the shape and the randomness of the heart
signal as potential features for the detection of AFib [29], [30].
The randomness indicators essentially measure the periodicity
and shape of the heart signal.

B. Filtering and Motion Artifact Removal

The pre-processing and feature extraction steps described in
this section contain a review of earlier work implemented with a
custom combination of accelerometer and ECG processing plat-
form [30]. Due to changes in the implementation of the feature
extraction (for example, the change in sampling frequency from
800 Hz in [30] to approximately 200 Hz of the smartphone),
these methods are discussed in the context of the smartphone
application. Also, in [30], a single accelerometer axis was used
to represent the data, whereas in this paper we use six data chan-
nels corresponding to three accelerometer and three gyroscope
axes. The features represented in [30] are further supplemented
by multiple new features.

The signal processing pipeline starts with filtering the data
(all accelerometer and gyroscope axes) by a bandpass brick-wall

filter with pass-band frequencies between 1 Hz and 45 Hz (each
axis separately). Although the heart rate may be lower than
60 bpm, the majority of the spectrum of heart-related SCG is
still above 1 Hz. The purpose of this step is to remove the noise,
bias of the signal and to emphasize the actual cardiac vibration
signal.

For accelerometer Z (ACCZ) data channel, a sliding window
RMS (root mean square) filter is applied to capture the energy
envelope of the data. If the RMS filtered signal exceeds the
median value of the whole signal (in ACCZ axis) more than
an empirically set threshold value, the corresponding section
of the signal is declared as an artifact and it is removed from
the data [30]. The smartphone is placed on the chest of the
patient loudspeaker towards the head and display up so that the
ACCZ channel is parallel to the force of gravity when a person
is in supine position. The justification for using ACCZ axis
is that it has been observed to provide good signal quality in
our previous studies [30], [31]. As a result, the temporal corre-
spondence of all channels is maintained in the motion artifact
removal step. After the noise removal has been completed the
algorithm divides the artifact-free signal into constant length
(10 seconds) 6-channel segments for further processing and
feature extraction.

III. FEATURE EXTRACTION

In order to distinguish between AFib and healthy individuals
we hypothesize that the following types of features could be
helpful. First, heart rate (HR) and heart rate variability (HRV)
differ between these two cases [32], and by calculating the actual
AO-AO or RR interval in SCG it is assumed that an estimation
for these features can be obtained, despite that the ECG’s RR
intervals and SCG’s AO-AO intervals are not exactly the same.
Second, entropy-either approximative entropy [33], or spectral
entropy [30], could provide discrimination, since they measure
the self-similarity and the distribution of the spectral content
within the signal. As the signal waveform becomes more irreg-
ular and aperiodic in AFib, the entropy measures could capture
the intrinsic change in the waveforms. Third, turning-point-
ratios (TPR) have been used as measures of the complexity
of the signal waveform in terms of statistical significance test-
ing, and they have also been previously used to detect AFib
in ECG [12]. By using the above mentioned methods, some of
which already in use in ECG based AFib detection, we hypoth-
esize that the discrimination between the two classes could be
obtained in a supervised manner. In Table II a list of the selected
features is shown.
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TABLE II
THE NUMBER, ABBREVIATION AND DESCRIPTION OF EACH FEATURE

# Description

1 SP_ENT SPECTRAL ENTROPY - calculated by entropy of
the signal FFT at frequency range of [1 Hz 11Hz]

2 HRV HEART RATE VARIABILITY - calculated by
extracting the differences between the consecutive
RR intervals, which have been obtained with
autocorrelation

3 HR HEART RATE - calculated as the median of the
absolute values of RR intervals (RR intervals
obtained with autocorrelation). Unit: sample count
@ 200 Hz

4 TPR1 TURNING POINT RATIO extracted from the
pre-processed signal (measures the number of
consecutive runs in the signal)

5, 11–14 TPR2, 4–7 TURNING POINT RATIO - calculated from a
bandpass filtered signal with an additional absolute
value operation during the filtering (with different
passband ranges applied)

6, 15–18 TPR3, 8–11 TURNING POINT RATIO - calculated from a
bandpass filtered signal without the absolute value
operation (with different passband ranges)

7 RRI-TPR TURNING POINT RATIO - TPR calculated
directly from the extracted RR intervals obtained
with autocorrelation (within a signal segment)

8 AP_EN APPROXIMATE ENTROPY is calculated by
matching of short signal segments of the
subsampled signal to each other and by calculating
a logarithmic entropy

9 HRV2 HEART RATE VARIABILITY 2 - a higher order
HRV calculated using an additional difference
extraction step (applied to the RR interval series)

10 HRV3 HEART RATE VARIABILITY 3 - higher order HRV
calculated with an additional absolute value and
difference extraction step applied to the RR interval
time series

The same features are calculated from each axis separately.

A. Heartbeat Detection

We apply short-term autocorrelation for the pre-processed
data segments. This means that multiple autocorrelation
windows (we use the term window with autocorrelation) are
extracted from the input data specific to a certain axis. By cal-
culating the time-domain autocorrelation and by extracting the
locations of its prominent peaks we obtain the RR intervals of
the IMU signal for each axis [30]. By using the sampling rate
of approximately 200 Hz of the smartphone, and a window size
of 2.5 seconds, the total amount of input samples for a single
autocorrelation becomes 500 samples [30], [34]. Overlapping
(overlap of 1.5 seconds) autocorrelations are repeated in 1 sec-
ond intervals over the full duration of the signal segment (in
this case of 10 seconds). From one signal segment (of length
10 seconds) we obtain eight RR intervals. This is because the
centers of the autocorrelation windows locate 1.25 seconds apart
from the borders of the signal segment and 1 second apart in the
middle of the signal segment. The eight RR intervals returned
by the algorithm are denoted as RR(1):(8) .

B. HR and HRV Features

As notations for the following subsections, we introduce
mean absolute difference (MAD) and its other version called
median absolute difference (here denoted as MEAD). These are

derived by calculating either the mean (in MAD) or median (in
MEAD) of the vector derived by taking the absolute values of
the differences between consecutive samples of a given input
vector x (for instance by using notation MAD(x), where x is
a RR time interval series calculated from a signal segment).
The difference operator D is defined as RR(i)-RR(i−1) across
the whole signal, and it returns the differences between the val-
ues of the consecutive elements. The justifications for using the
median instead of mean is its tolerance to outliers.

The first generated feature set consists of heart rate (HR) and
heart rate variability (HRV) which are attained from the RR
interval series. The features that we use are rather simple in
comparison with more sophisticated measures as in [32], but
allow a more efficient implementation. HR (HR) is calculated
as the median of RR(1):(8) and HRV (HRV1) is calculated as
MEAD(RR(1):(8)). Furthermore, we use two higher order HRV
estimates which are calculated from second order differences
MEAD(D(RR(1):(8))) and MEAD(ABS(D(RR(1):(8)))),
where ABS() calculates the absolute values of the elements.
These are denoted as HRV2 and HRV3 , respectively. Using
short-term autocorrelation in calculation of these metrics
provides also tolerance to inter-personal variations, which are
more significant in IMU signals than in ECG [30].

C. Approximate Entropy Estimate (APEN)

The signal self-similarity paramer AP_EN is inspired by ap-
proximate entropy (ApEn) [33] and it is calculated by first sub-
sampling the signal with 25 sample (0.125 second) steps. As
the initial length of the signal is 2000 samples (10 seconds)
the length of the subsampled signal is 80 samples. For the sub-
sampled signal all-against-all matching is performed twice. At
the first time, the number of matches between short subsequent
signal segments SEGi (of length LD = 2) against all other
signal segments SEGj (of length LD = 2) of the same sig-
nal (i �= j) is calculated. A counter C is updated to contain the
number of matches where max(ABS(SEGi-SEGj )) is less or
equal than 0.2 times the overall standard deviation of the signal
(while going through the whole subsampled signal and all indi-
vidual elements of SEG). Based on C a (logarithmic) counter
ΦM

LD is updated as ΦM
2 = ΦM

2 + log(C) at each instance of the
subsampled signal (initialized to zero at the beginning). For the
second all-against all matching case the LD parameter is incre-
mented with one, and a similar procedure as above is executed.
Finally, the approximate entropy (AP_EN) is calculated from
ΦM

2 − ΦM
3 , where both ΦM

LD have been normalized (divided)
by the total number of samples of the subsampled signal [33].
The reason for the subsampling is to reduce the number of com-
putations. The larger the AP_EN is, the more irregular the signal
is, which is here used as an individual feature to predict AFib.

D. Turning-Point Ratios (TPR) and RRI-TPR

Operator RD extracts the total number of (increasing and
decreasing) runs (i.e. consecutive increasing or decreasing se-
quences of values) in signal segment x. Turning point ratio
(TPR) of x is defined as RD(x) divided by N − 2 where N is
the number of elements in x. The turning point ratio of a RR time
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interval series of signal segment x is denoted as RRI-TPR and
it is defined as TPR(RR(1):(8)) [12]. Additionally, we use a to-
tal of 11 additional TPR features, which are calculated from the
original pre-processed signal without extracting the RR time in-
tervals. We use the pre-processed signal segment and its filtered
versions as such as inputs to the TPR. The justification for this
is that the overall complexity of the signal waveform in different
frequency bands is assumed to convey information of the struc-
ture of the signal. TPR1 is calculated as TPR(x), where x is the
original pre-processed signal segment (of a specific axis). Ad-
ditionally, we use 10 more TPR values calculated from filtered
signals. TPR3,8,9,10,11 are calculated from bandpass fil-
tered signal, each parameter calculated with different passband
range. TPR2,4,5,6,7 are calculated from bandpass filtered
signal that is furthermore passed through absolute value opera-
tion and a long triangular shaped smoothing filter. We believe,
that the number of runs in the signal after pre-processing and
with different filters represent the complexity of the signal wave-
form, which can then be used as an indicator of Afib.

E. Spectral Entropy

The estimation of spectral entropy starts with removing the
breathing component from the acquired signal. This is imple-
mented by substracting a median filtered version (Sm ) of the
signal from the original signal S. The median filter length in
Sm is 60 samples, i.e. 0.3 seconds with 200 Hz sampling rate.
The resulting signal Sn is calculated as Sn = S – Sm . Sn

contains the signal without the breathing component and in the
following step all negative values of Sn are replaced with zero
values. The new signal is denoted as Snz , which contains only
values greater or equal than zero [30], [35].

Then, the signal Snz is multiplied with a Hamming win-
dow (to avoid unwanted side lobes) and a power spectrum is
calculated by taking FFT from the signal. The purpose of this
step is to extract the spectral content of the signal. The fre-
quency interval Fint (in the range [1 Hz, 11 Hz]) is then se-
lected from the resulting signal SF F T and an estimated noise
floor is then removed from the frequency content representa-
tion. The noise floor is extracted by finding frequencies with
energy amplitude values SF F T <1/6∗max(SF F T ) within the
Fint . The purpose of noise floor removal is to avoid frequent
low frequency components affecting to the result. The resulting
SF F T N is normalized to unit probability resulting into proba-
bility density PF F T N . Finally, the spectral entropy of the signal
is calculated according to the formula of entropy as SP_ENT
=−∑

(PF F T N ∗ log(PF F T N )). In general, the largerSP_ENT
is, the more random the signal frequency content is, which im-
plies that the signal may be aperiodic. The signal periodicity (or
lack of it) is then used as an individual feature indicating the
presence or absence of Afib.

IV. CLASSIFICATION AND FEATURE ANALYSIS

A. Classification Principle

Let us assume that two minutes of data has been obtained
with the smartphone and 50 seconds of the captured data was
detected as artifact free (the motion artifact removal procedure

was described in Section II-B). The resulting 50 second data
is divided into five 10 second segments. For each of these 5
segments feature extraction is carried out, so that the same fea-
tures are calculated from each of the 6 data channels. Finally,
the features of each channel are concatenated in a row-wise
form for classification. The total number of features per channel
(axis) is 18 (including 1x HR, 3x HRV, 1x AP_EN, 11x TPR, 1x
RRI-TRP and 1x SP_ENT features). Thus, the total number of
features for one 10 second data segment is 108. Fig. 1 illustrates
the classification process. For classification in Matlab we used
Support Vector Machine (SVM), Kernel SVM (KSVM) and
Random Forest (RF) classifiers [36]. The classifier was used to
assign persons into either AFib or healthy class.

B. Cross-Validation and Majority Voting

We use leave-one-person-out (LOOCV) cross validation to
determine the sensitivity and specificity of the AFib classifica-
tion algorithm. The reason of using LOOCV is that it is well
suited for cases where the amount of data is limited. LOOCV
means that one person at a time is left out from the training set,
so that the training set contains no data specific to the individual
who is being tested (the classifier was not tuned with the test
data of that person). This is possible since, as mentioned, each
data segment is associated with an anonymous label correspond-
ing to an individual. The classification procedure is iterated as
many times as there are test persons in total N_TOT, where
N_TOT=N_HEALTHY+N_AFib. After all iterations, all indi-
vidual data segments have been associated into one of the two
classes. After that, majority voting selects the most common
class for each person (based on multiple successive 10 second
segments of that individual), which is the final prediction result.
Before the classification process, each data segment (feature
vector) was associated with an anonymous label of the indi-
vidual under test. This way it was possible to implement both
the cross-validation and the majority voting in such a way that
multiple data segments are associated to single individual. The
majority voting simply calculates which class (AFib or healthy)
is more common for a specific person and declares this class as
the result of the final classification (see Fig. 1 upper right cor-
ner). The number of signal segments applied to classification
from each person after artifact removal is shown in Table III
(the AFib and healthy classes are shown separately).

C. Classification Results

The confusion matrices of our AFib detection method
are shown in Table IV. The sensitivity is calculated as
TP/(TP+FN) (true positives divided by all positives) and speci-
ficity as 1-FP/(TN+FP) (true negatives divided by all nega-
tives). The corresponding positive predictive value (PPV) is
defined as TP/(TP+FP) and negative predictive value (NPV) as
TN/(FN+TN). The best performing classifier was the KSVM
with a sensitivity of 93.8% and specificity of 100% (with ma-
jority voting). Without majority voting the sensitivity and speci-
ficity of KSVM were 84.7% and 98.7%, respectively. Without
majority voting PPV and NPV for KSVM were 96.7% and
93.3%, respectively, and with majority voting 100% and 95.8%,
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Fig. 1. Overall diagram of the machine learning part of the AFib detection application. The acquired signal in this example consists of 50 seconds
of artifact free data, which is further divided into five 10 seconds segments. For each segment feature extraction is applied. The lower right corner
represents how the feature vector is formed by row-wise concatenation of features specific to each axis. The upper right corner shows the majority
voting, which selects the final class for each of the six test persons based on the feature vectors and classification result from each of the 10 second
segments.

TABLE III
THE NUMBER OF SIGNAL SEGMENTS PASSED TO CLASSIFICATION AFTER ARTIFACT REMOVAL (FROM EACH PERSON OF THE STUDY)

AFIB PATIENTS (ID) #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

Number of segments 13 3 12 14 9 5 19 7 7 5 5 3 12 3 17 3

HEALTHY (ID) #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
Number of segments 17 43 33 22 18 11 2 11 2 11 11 11 11 11 6 11

HEALTHY (ID) #17 #18 #19 #20 #21 #22 #23
Number of segments 11 2 11 11 11 11 10

The total number of AFib segments is 137 and the total number of segments from the control group 298.

TABLE IV
THE CONFUSION MATRICES OF THE SUPPORT VECTOR MACHINE (SVM),

KERNEL SVM AND RANDOM FOREST (RF) CLASSIFIERS WITHOUT AND WITH
MAJORITY VOTING

respectively. PPV measures the probability that a subject with
positive test result have the disease and NPV the probability
that the subject with negative test result do not have the disease.

Person specific LOOCV cross validation was used to obtain the
confusion matrices. It can be observed from the confusion ma-
trices without majority voting that a vast majority of data was
situated in the healthy class, thus the overall classification result
could be made more balanced by for instance, collecting more
AFib data.

In order to highlight the effect of the features applied in this
work for smartphone data in comparison with only two features
used in [30]-i.e. HRV (heart rate variability) and SP_ENT (spec-
tral entropy)-the sensitivity and the specificity of the KSVM
classifier and ACCZ axis only (as in [30] but with smartphone
data) were 60.6% and 87.9%, respectively, without majority
voting, and 75% and 95.7%, with majority voting (using the
two features only). Thus, the applied new features improve
the detection accuracy significantly. By using all six axes and
only features HRV and SP_ENT (a total of 12 features), the
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Fig. 2. The recognition accuracy of different classifiers with feature types. The features used are SPENT (total of 1/axis), HRV (total of 3/axis), HR
(total of 1/axis), TPR (total of 11/axis), RRI_TPR (total of 1/axis), ApEn (total of 1/axis) and all of the (total of 18/axis) features together. In this case
the actual number of features used is 6 times the number of features/axis (i.e. 6x18 for all features). The best feature classes and combined features
(all features) are highlighted in each case.

Fig. 3. Mean and standard deviation (SD) of each of the features (in Table II) in cases of healthy individuals and AFib. The different data axes
are combined so that each mean and SD is based on utilizing data in all axes, i.e. there are six times more values in the calculation than for single
axis. The y-axis scale is normalized against the global maximum value of each specific feature (in healthy and AFib classes jointly). The axes
where p-value calculated with Wilcoxon rank sum test (between AFib and healthy classes) is not below 0.001 are also indicated. According to both
two-sample t-test and Wilcoxon rank sum test, only the feature number 15 does not contain statistically significant difference between the means or
the medians (p > 0.05, considering all axes).

sensitivity and specificity of the KSVM classifier were 70.1%
and 89.6%, respectively, without majority voting, and 87.5%
and 91.3%, respectively, with majority voting.

D. The Prediction Accuracy of Different Features

In Fig. 2 the AFib detection accuracy of the SVM, KSVM
and RF classifiers with majority voting are shown with different
features. The figure contains the sensitivity (SE) and specificity
(SP) of each case as well as the accuracy (ACC), which is cal-
culated as (TP+TN)/(TP+TN+FP+FN). It can be observed, that
in the case of KSVM the TPR (turning-point-ratios), HRV (heart
rate variability) and HR (heart rate) provide the best accuracy.
In the case of SVM HR does not perform as well, but HRV,

TPR and AP_EN compensate for this. The good performance
of HRV in both is not surprising, as AFib generally occurs as
random fluctuations in the RR interval. For the RF classifier
the effects of HR, TPR and RRI_TPR to the classification are
emphasized.

From Fig. 3 it can be observed how the mean and standard
deviation of the different features vary among all axes. Starting
from the left (1st feature), spectral entropy SP_ENT, the mean
is slightly higher in the case of AFib than with normal subjects,
which is expected since the entropy is higher in the case of less
periodic signals such as AFib. The mean of HRV is higher in
AFib in comparison with healthy case and also the standard
deviation of HRV is higher, which corresponds well to the defi-
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Fig. 4. The distribution of the data in two main principal components (bi-
plot) after principal component analysis (PCA). The data has been nor-
malized before applying the PCA. The AFib samples are in red (marked
with an x) and healthy samples in black (marked with dot). As in Fig. 3,
the different data axes are combined so that the dimension of each fea-
ture is 18 (and it is based on utilizing data in all axes, i.e. there are six
times more samples than for single axis).

nition of AFib as having irregularly irregular RR intervals. The
third column from the left HR (heart rate), is measured in sam-
ples within a RR interval. It can be observed that the mean RR
interval is approximately 181 samples for the healthy subjects
and around 158 samples for the AFib patients. These correspond
to the average heart rates of 66 bpm (beats-per-minute) and
76 bpm, respectively. However, during instant paroxysmal AFib
the heart rate may be even much higher. The healthy control
subjects of the study were younger than the AFib patients,
which can explain part of the increase in the HR. However, in the
view of the application of discriminating between AFib persons
and healthy subjects, young control subjects are actually more
challenging, since the HRV tends to smoothen with aging [37].
It is more difficult to distinguish whether a young subject has
AFib than an old subject. Anyway, it is expected that part of the
increase in HR is explained by the nature of AFib. It can be seen
in Fig. 3, that the difference between each feature (except for
the feature number 15) in AFib and normal cases is statistically
significant.

Continuing the examination of Fig. 3, the mean of the RRI-
TPR feature is higher in the case of AFib, which can be expected,
since the signal is more random in the AFib case and the RR
intervals vary more. The interpretation of the other TPR features
is more challenging, but they describe the overall shape of the
signal, while it is assumed that the machine learning algorithm
is capable to select a proper combination of these in order to
distinguish between the healthy subjects and AFib. Finally, the
mean of the approximate entropy AP_EN is higher in the case of
AFib, due to the irregularity in the AFib waveform. In Fig. 4 all
the data samples (by considering each axis separately) are shown
against two most important (largest variance) principal compo-
nents of the data. The healthy samples are in black (marked
with dot) and AFib samples in red (marked with an x). It can
be observed, that all the features facilitate the discrimination of
the data.

E. The Performance of Accelerometer and
Gyroscope Axes

The detection accuracy of different accelerometer and gy-
roscope axes are compared (within the same framework and
classifiers than before) in Fig. 5. The purpose of using features
extracted from several axes is to enable the supervised machine
learning algorithm to take care of the combination of the axes
in a way which maximizes the recognition accuracy. However,
each algorithm’s way of interpreting the data is different, and
it is beneficial to study how they perform in terms of mining
knowledge from separate axes. First, it can be observed that the
GYROX axis is the best in the case of KSVM, and in the case
of SVM the GYROY axis. In the case of RF classifier, both
GYROX and GYROY perform the best. In general it can be
observed that the gyroscope axes are better in terms of detection
accuracy than the accelerometer axes. Thus, the utilization of
the smartphone’s built-in gyroscope indeed seems to be bene-
ficial for the purposes of AFib detection [2]. In the case of RF
classifier, the combining of the axes did not improve the overall
recognition rate to the extent of the other classifiers.

In general, we consider that the combination of the axes pro-
vides tolerance to noise and artifacts (and the best performing
axis is not necessarily known a priori), thus the combined result
(ALL axes in Fig. 5) usually is the best choice. We considered
it as the final classification result. In general, in accounting also
other applications that we have tested, for instance, accelerom-
eter based gating in PET (positron emission tomography) imag-
ing [31] we have noticed that the signal quality of ACCZ axis
is usually the best one when considering the accelerometer axes
only, and when considering all the six data channels the GYROY
axis is usually is the best one.

V. APPLICATION DEVELOPMENT ISSUES

We have implemented a smartphone application, which per-
forms signal acquisition by user’s request, feature extraction,
and KSVM based classification (which was one of the best per-
forming classifiers in this study). All the processing steps are
performed locally on a smartphone. As a result the application
informs the user, whether he/she suffers from AFib or not. How-
ever, there are still some issues that need further investigation
before the application would reach a commercial level in order
to be distributed globally. For instance, as the sampling rate
was stable enough for the smartphone that we used, its base fre-
quency may be different in other smartphone models. There also
exist a varying component in the sampling frequency of a few
Hz, which is most probably related to running other programs on
the same operating system. Furthermore, the IMU devices con-
taining the accelerometer and the gyroscope may have different
device parameters, which vary between smartphone models due
to chip level implementation issues. All these can have an effect
to the overall performance and applicability of the developed
algorithms and thus need to be taken into account.

The mobile application (called SUMM) is based on Android
(mobile) operating system developed by Google. We have tested
the application on smartphones by various vendors. Due to good
sensor signal quality, Sony Xperia Z-series family smartphones
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Fig. 5. The recognition accuracy of different classifiers with a changing accelerometer and gyroscope axes. The total number of features in each
axis is 18. The best axes and combined axes (using all axes) are highlighted in each case.

Fig. 6. Two screenshots from the AFib detection application running in Sony Xperia Z3. On the left a normal subject, and on the right an AFib
subject. The data is shown only in (ACCZ and GYROY) axes. Before starting the measurement, the information of the user is filled in, and after the
measurement the application informs the user whether he/she has AFib. The patient in this case suffered from chronic AFib, where the heart rate is
made lower by medication and therefore the heart rate of the AFib patient is relatively low.

were most frequently used. The device sampling rate detected
for accelerometer and gyroscope in that case was between ap-
proximately 198 Hz and 200 Hz. Apart from Sony Xperia Z-
series, Samsung Galaxy S5 also gave the sensor sampling rate
around 200 Hz. The feature vector used in KSVM classification
was generated with the device specific sampling rate. As men-
tioned, the smartphone specific sampling rate can vary slightly
from the sampling rate used in generating the training set. We
did not encounter any problems due to this slight difference.
Fig. 6 shows two example screenshots from the application run-
ning in Sony Xperia Z3. The two images on the left show the
summary of a person with normal sinus rhythm and the images
on the right show a summary of a person with AFib. Only ACCZ
and GYROY axes signals, which are usually the best axes, are
shown in the figure.

Recent iPhones have a built-in motion co-processor, which
can be expected to decrease the jitter in the sampling rate. In
our initial tests, the maximum base sampling frequency obtain-
able with iPhone was approximately 100 Hz, while the signal

quality observed appeared visually very good. Eventually there
would be a need to implement a solution, which could adapt
to slight differences between the signals (sampling rate, signal
morphology) originating from different devices. Thus, our cur-
rent implementation can be seen as a proof-of-concept work,
which will require further development in order to be applied
more widely. Whether the different base sampling frequency
has an effect to the performance of the envisioned application
in iPhone, and which measures need to be taken, will be left for
future work.

VI. DISCUSSION

In this paper we presented a smartphone-only solution tar-
geted to screening of AFib from large masses. Our solution was
based on the well known principles of seismocardiography [15],
[18], [19], [22], extended with a newly proposed cardiac sensing
modality gyroscope [2]. In [27], in the context of ballistocar-
diography machine learning was used to classify between AFib
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and normal persons using data from bed sensor. In our approach,
IMU signals obtained from a smartphone which is placed on the
chest of the patient are used to detect AFib. In the year 2016
there existed about 2 billion smartphones globally which is es-
timated to increase to more than 2.6 billion in 2019. Thus, this
work is first step towards implementing efficient AFib screening
of the global population.

Despite of this, a lot of research needs to be conducted before
the release of the envisioned AFib screening solution. The ef-
fect of premature atrial beats (premature heart beats originating
from the atria), premature ventricular beats, and other arrhyth-
mias such as atrial flutter to the performance of the develeped
algorithm should be evaluated, as these might be similar in ap-
pearance to AFib. To accomplish this, we will need to extract
data from synchronized ECG and smartphone SCG, to verify
the apprearance and to distinguish between different phenomena
present in SCG and ECG. Also, other arrhythmias will need to
be covered, as this paper only focused on the separation between
AFib and sinus rhythm. As a summary, much research is still
needed in order to develop a final solution for AFib screening
with high clinical value. Also, the sample size of this study was
quite small and more extensive clinical studies will need to be
performed in the future.

We want to emphasize, that the purpose of the applica-
tion is not to make the final diagnosis for a person suffering
from AFib, but to advice to seek for medical care and final
diagnosis by a cardiologist. In an envisioned usage scenario
of the system, a patient (or a person belonging into a risk
group) performs self-measurements to screen for occurrence
of AFib. In the case of a positive result given by a smart-
phone, there would be a need to visit a cardiologist to rule
out the possibility of AFib. In any case, a trained cardiologist
will use ECG (and potentially other modalities) for the final
diagnosis.

This paper concentrated only on AFib detection. We are plan-
ning that in the future there could be more categories to be
classified, corresponding to a more versatile set of heart condi-
tions and abnormalities. This might somewhat lower the perfor-
mance of individual abnormality detection (as in ECG), but on
the other hand better serve the mobile application user’s cardiac
health.

Collecting (Big) data from application users could also be
a viable option for improving the classification performance.
However, as the true classes for this data might not be known, it
would be beneficial to explore the application of unsupervised
learning methods for obtaining the data classes or categories.
We have also initially applied PCA to reduce the dimension of
the feature space (108 features), but at this point an improve-
ment to the classification accuracy was not yet obtained. As the
application gives the classification result very rapidly after the
data collection, we did not see the application of dimension-
ality reduction necessary. As there already exist mobile ECG
devices, which can be used for the diagnosis of various heart
abnormalities, an interesting issue to study in the future would
be the combination of the IMU data and ECG, and whether
it would allow improving the detection of AFib and other
conditions.

VII. CONCLUSION

We have implemented an application for the detection of
AFib, which takes advantage the inbuild IMU unit within
smartphones to acquire a heart signal. This is an alternative
approach to smartphone camera and flash illumination based
AFib detection and has some advantages. The approach that
we propose is based on compact MEMS accelerometer and gy-
roscope, which are being constantly developed by smartphone
component manufacturers keeping in mind the potential health
applications. The IMU based approach could also be scalable to
other wearable devices and even body-sensor networks utilizing
multiple IMUs. We obtained sensitivity of 93.8%, specificity
of 100.0% and detection accuracy of 97.4% in AFib detection,
while excluding any data specific to the person under test
from the training set (leave-one-person-out cross validation,
LOOCV). We are expecting that the final application (either
freely available or commercial) could provide a positive impact
on global cardiac health, due to wide availablity of smartphones
worldwide.

APPENDIX A
TERMINOLOGY

Here we briefly describe some of the most important terms
and abbreviations used in the paper.

Section 1:
� AFIB - Atrial fibrillation;
� ECG - Electrocardiography;
� PPG - Photoplethysmography (acquisition of heart sig-

nal by measuring the blood volume changes in the veins
optically);

� IMU - Inertial measurement unit (3-axis accelerometer
and 3-axis gyroscope);

� BCG - Ballistocardiography;
� SCG - Seismocardiography.

Sections 2 and 3:
� AO - Aortic opening (the most prominent peak in SCG);
� RR INTERVAL - Time interval between two successive

R peaks (or AO peaks in SCG);
� GCG - Gyrocardiography (utilizing 3-axis gyroscope to

supplement the SCG);
� DATA (CHANNELS) - 3-axis accelerometer and 3-axis

gyroscope provide a total of six simultaneous and syn-
chronized series of data;

� DATA SEGMENT - A fixed duration (10 seconds) sec-
tion of a data specific to a certain axis;

� SEGi,j SEGMENT - A caption of data in specific axis
with e.g. a length of 2 or 3 samples;

� (AUTOCORRELATION) WINDOW - A portion of
data segment used to calculate autocorrelation;

� RR(1):(N ) Consists of a N RR time intervals;
� MAD - Mean absolute difference;
� MEAD - Median absolute difference.

Sections 3 and 4:
� HR - Heart rate (used also as feature);
� HRV(1–3) - Heart rate variability feature;
� AP_EN - Approximate entropy feature;
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� TPR(1-11) - Turning point ratio features;
� RRI-TPR - Turning point ratio (TPR) of RR(1):(N ) , i.e.

TPR(RR(1):(N ));
� SP_ENT - Spectral entropy.

Section 4:
� SVM - Support vector machine classifier;
� KSVM - Kernel support vector machine classifier;
� RF - Random forest classifier;
� LOOCV - Leave-one-out cross-validation;
� MAJORITY VOTING - Using multiple subsegment’s

feature vectors to vote for the best class;
� PCA - Principal component analysis.
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