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A Novel Continuous Blood Pressure Estimation
Approach Based on Data Mining Techniques
Fen Miao , Nan Fu, Yuan-Ting, Zhang, Fellow, IEEE, Xiao-Rong Ding , Xi Hong, Qingyun He,

and Ye Li

Abstract—Continuous blood pressure (BP) estimation
using pulse transit time (PTT) is a promising method for un-
obtrusive BP measurement. However, the accuracy of this
approach must be improved for it to be viable for a wide
range of applications. This study proposes a novel con-
tinuous BP estimation approach that combines data min-
ing techniques with a traditional mechanism-driven model.
First, 14 features derived from simultaneous electrocardio-
gram and photoplethysmogram signals were extracted for
beat-to-beat BP estimation. A genetic algorithm-based fea-
ture selection method was then used to select BP indicators
for each subject. Multivariate linear regression and support
vector regression were employed to develop the BP model.
The accuracy and robustness of the proposed approach
were validated for static, dynamic, and follow-up perfor-
mance. Experimental results based on 73 subjects showed
that the proposed approach exhibited excellent accuracy
in static BP estimation, with a correlation coefficient and
mean error of 0.852 and −0.001 ± 3.102 mmHg for sys-
tolic BP, and 0.790 and −0.004 ± 2.199 mmHg for diastolic
BP. Similar performance was observed for dynamic BP es-
timation. The robustness results indicated that the estima-
tion accuracy was lower by a certain degree one day after
model construction but was relatively stable from one day
to six months after construction. The proposed approach
is superior to the state-of-the-art PTT-based model for an
approximately 2-mmHg reduction in the standard derivation
at different time intervals, thus providing potentially novel
insights for cuffless BP estimation.

Index Terms—Continuous blood pressure (BP), feature
selection, multivariate linear regression (MLR), support vec-
tor regression (SVR).
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I. INTRODUCTION

HYPERTENSION is one of the most critical predictors of
cardiovascular disease (CVD), which is the leading cause

of death worldwide. Each incremental elevation of 20/10 mmHg
in systolic blood pressure/diastolic blood pressure (SBP/DBP)
over 115/75 mmHg doubles the risk of CVD [1]. Ambulatory
blood pressure (BP) and related BP variability have been shown
to be more reliable predictors of CVD than BP measured in
a clinical setting [2], [3]. Although traditional 24-hour BP de-
vices can monitor BP at regular intervals through repeated in-
flation with a cuff, such methods are discontinuous and un-
suitable for daily use. Developing an unobtrusive device for
high-resolution BP monitoring is thus of great significance for
real-time hypertension detection and would thus benefit CVD
prevention [4].

Several continuous BP measurement methods have been pro-
posed, but all of them are performed either manually or with a
cuff and are thus impractical for constant monitoring [5], [6].
Pulse transit time (PTT) is a potential indicator for BP estima-
tion, referring to the time for a pulse wave to travel between
two locations in the cardiovascular system. PTT can be calcu-
lated from two pulse signals generated by the cardiovascular
system, such as electrocardiogram (ECG) and photoplethysmo-
gram (PPG) signals [7]. The mechanism-driven BP estimation
approach of using PTT has been extensively studied over the
past 15 years [8]–[13]. In 2001, Chan et al. proposed a linear
model for estimating BP with PTT [8]. A nonlinear model was
proposed by Poon et al. [10] in 2005, and it attained an accuracy
of 0.6 ± 9.8 mmHg for SBP and 0.9 ± 5.6 mmHg for DBP. In
2015, Ding et al. [14] proposed the PPG intensity ratio (PIR)
as a crucial DBP indicator. In that study, the combination of
PIR with PTT (PTT+PIR) outperformed previous PTT algo-
rithms, achieving an accuracy of −0.37 ± 5.21 mmHg for SBP,
−0.08 ± 4.06 mmHg for mean BP, and −0.18 ± 4.13 mmHg
for DBP. In a 24-hour correlation study between BP and PTT
[13], PTT correlated closely with BP at night time, but the cor-
relation was limited during the daytime because of confounding
factors such as vascular tone [15] and the pre-ejection period
(PEP) [16]. Therefore, extant mechanism-driven BP estimation
approaches that use PTT have limited accuracy. Additionally,
frequent calibrations must be performed to ensure the estimation
accuracy [17]. In that study, the impact of the length of the cali-
bration interval on the estimation accuracy of the PTT-based BP
approach was also studied over 15-min, 2-week, and 1-month
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periods. The experimental results showed that longer calibra-
tion intervals reduce the accuracy of both the SBP and DBP
estimates. Overall, PTT-based BP mechanism models are infe-
rior in accuracy and robustness, especially in long-term tracking
performance, because the fixed relationship hypothesis is highly
influenced by various factors such as vascular tone, physiologi-
cal status, and individual variability.

Data mining can be used to automatically and accurately re-
construct relationships between variables and response values
from big data. It provides an efficient means for overcoming the
weaknesses of the mechanism-driven model [18]. Data mining
has been widely applied over the past few decades, including
in investigations of factors influencing BP [19]–[21]. Moreover,
numerous features extracted from PPG signals as well as the
acceleration of PPG signals have been proposed for quantify-
ing vascular tone, and these factors correlate favorably with BP
[22], [23]. Multivariate analysis using data mining techniques
might improve the accuracy of mechanism-based BP estimation
approaches by including more features reflecting vascular tone
and physiological status. Only a few researchers have attempted
to develop a BP estimation model through multivariate analy-
sis [24]–[26]. A random forest-based BP estimation approach
was recently proposed by He [27], who used the Multi param-
eter Intelligent Monitoring in Intensive Care research database.
All of these approaches, however, lack an intrinsic mechanism
analysis, and their long-term tracking performance has not been
validated over different time intervals.

In this paper, we describe a novel approach for estimating
continuous BP, which involves a combination of data mining
techniques with traditional mechanism-based models. This
study adds several contributions to the field of continuous BP
measurement methods. First, in contrast to previous mechanism-
driven models based on the fixed hypothesis of the PTT–BP
relationship for different subjects, the proposed personalized BP
model is based on individual patterns derived from data mining.
Second, compared with previously proposed methods, our
method extracts more BP indicators from simultaneous ECG
and PPG signals for each subject and determines the relative
importance for each subject by using a genetic algorithm-based
feature selection method. Finally, the robustness of the pro-
posed approach was fully validated at different time intervals
after model construction. The accuracy and robustness of the
proposed approach were verified by comparing them with the
state-of-the-art mechanism-based method presented in [14].

II. METHODOLOGY

A. Basic Principles and Feature Extraction

As presented in [28] by Hughes et al., vascular elasticity, E,
can be expressed as

E = E0e
αP (1)

where P is the mean BP, E0 denotes the vascular elasticity when
the pressure is 0, and α is a correction factor. Equation (1) can
be transferred using the following logarithm:

P =
1
α

ln
E

E0
(2)

TABLE I
DEFINITIONS OF THE SELECTED FEATURES

Features Definitions

f1 : Heart rate Time span between two adjacent ECG R wave
f2 : PTT_ppgBottom Time span between the ECG R wave and the

bottom of the simultaneously collected PPG
f3 : PTT_ppgPeak Time span between ECG R wave and the peak

of the simultaneously collected PPG
f4 : PTT_MaxDeri Time span between ECG R wave and the

maximum first derivative of the simultaneously
collected PPG

f5 : Systolic time Ascending time from PPG foot to PPG peak
f6 : ppgFirstDeriHeight Intensity of the first derivate of the PPG

waveform
f7 : ppgFirstDeriWidth Time width of the first derivate of the PPG

waveform
f8 : ppgSecondDeriHeight Total intensity of the second derivate of the

PPG waveform
f9 : ppgSecondDeriPeakHeight Peak intensity of the second derivate of the

PPG waveform
f1 0 : ppgSecondDeriFootHeight Foot intensity of the second derivate PPG

waveform
f1 1 : ppgSecondDeriWidth Time width of the second derivate of the PPG

waveform
f1 2 : PIR Ratio of PPG peak intensity to PPG bottom

intensity
f1 3 : Diastolic time Descending time from PPG peak to PPG foot
f1 4 : ppg_k PPG characteristic value

From (2), we can see that P depends on E/E0 , which in-
dicates the degree of arteriosclerosis. According to a previous
study [22], arteriosclerosis can be evaluated using factors ex-
tracted from the second derivative of the PPG signal (2nd PPG).
Therefore, features extracted from the 2nd PPG might be indi-
cators for BP measurement.

Alternatively, the degree of arteriosclerosis can be inferred
from the Moens–Korteweg (M–K) equation, which shows that
the pulse pressure, PP (i.e., the difference between SBP and
DBP), is proportional to 1/PTT2 [10], [13], [15]; that is,

PP = PPo.

(
PTT0

PTT

)2

(3)

where PP0 and PTT0 are the initial calibrated PP and PTT ,
respectively.

The two-element Windkessel model presented in [29] shows
that DBP is proportional to the reciprocal of PIR:

DBP ∝ 1
PIR

(4)

With the initial calibrated PIR0 and DBP0 , the following
highly accurate BP estimation model was proposed in [14]:

DBP = DBP0
PIR0

PIR
(5)

SBP = DBP0
PIR0

PIR
+ PP0

(
PTT0

PTT

)2

(6)

Based on the aforementioned studies, 14 features that poten-
tially influence BP were considered in the present study and are
depicted in Fig. 1. The definitions of the selected features are
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Fig. 1. Extracted features.

Fig. 2. Block diagram of the feature selection process.

listed in Table I, with ppg K defined as

ppg K =
pm − pd

ps − pd
(7)

where pm = 1
T

∫
ptdt.

B. Feature Selection

Because of the possibility of introducing irrelevant and redun-
dant features, a feature selection process should be employed
before model construction to determine the optimal feature sub-
set and avoid over-fitting. Genetic algorithms can identify near-
optimal solutions for such optimization problems [30]. Genetic
algorithms use iterations to evolve a candidate solution with
a satisfactory fitness level. Fig. 2 presents a block diagram of
the feature selection process using a genetic algorithm. This
process can be considered a combination of a search technique
for generating a new feature subset and a fitness function for
scoring different subsets and selecting the optimal one. First,
a subset of features is randomly generated from the extracted
feature set presented in Table I. In each generation, the fitness

Fig. 3. Filter and wrapper feature selectors [32].

of each feature in the population is evaluated on the basis of
the value of fitness function in the optimization problem. The
features with a closer fit are selected and modified to form a
new generation. This new generation of candidate solutions is
then used in the subsequent generation. The algorithm termi-
nates when either a maximum number of generations has been
reached or a satisfactory fitness level has been achieved.

The adopted search technique and proposed fitness function
are detailed as follows.

1) Search technique: the search technique is a “survival of
the fittest” process. In our study, we adopted the roulette
wheel selection method, which is the simplest and most
common method used in genetic algorithms [31]. The
probability of selection is proportional to the fitness level.
If fi is the fitness value of an individual,i,in the popula-
tion, its probability of being selected is

pi =
fi∑N

j=1 fj

(8)

where N is the population size.
2) Fitness function: an appropriate fitness function is an es-

sential step for feature selection using genetic algorithms.
According to different fitness functions, a feature selec-
tor can be divided into filter- and wrapper-based selectors
[32], as depicted in Fig. 3. Filter-based selectors evalu-
ate the fitness of a feature subset by using the intrinsic
properties of the data by ignoring the classifier, whereas
wrapper-based selectors evaluate the fitness of a feature
subset on the basis of accuracy estimates from subsequent
data-mining processes. Wrapper-based selectors are con-
siderably slower than filter-based selectors because they
must repeatedly call the data-mining algorithm and re-
run while switching to a different algorithm; therefore, a
filter-based selector was considered in the present study.

Therefore, a correlation coefficient-based fitness function,
which is independent of a specific type of classifier, was pro-
posed for the regression model. Let the response values be
y1 , y2 , · · · , yN and the corresponding n-dimensional feature
sets be X1 ,X2 , · · · ,XN respectively. For each pair of {yi, yj},
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the distance for the response values can be computed as follows:

Dy = dyi ,yj
= yi − yj (9)

Concurrently, the distance of the corresponding feature sets
can be denoted as the Euclidean distance:

If Dy ≥ 0,

DX =dXi ,Xj

=

√
(Xi,1 − Xj,1)

2 +(Xi,2−Xj,2)
2 +· · · (Xi,n−Xj,n )2

n
(10)

If Dy < 0,

DX =dXi ,Xj

=−
√

(Xi,1 − Xj,1)
2 +(Xi,2 − Xj,2)

2 +· · · (Xi,n−Xj,n )2

n
(11)

The correlation coefficient between DX ,Dy can be expressed
as follows:

R =
SDX Dy√
SDX

SDy

(12)

where

SDX Dy
=

∑
i (DXi

− D̄X )(Dyi
− D̄y )

n − 1

SDX
=

∑
i (DXi

− D̄X )2

n − 1
, SDy =

∑
i (Dyi

− D̄y )2

n − 1
(13)

As the goodness of fit improves, the correlation coefficient be-
comes larger. Therefore, the optimization problem in our study
was defined as the maximization of the fitness function R.

C. Model Construction and Validation

Two multivariate analysis methods, namely multivariate lin-
ear regression (MLR) and support vector regression (SVR),were
adopted to construct the BP model on the basis of the features
selected by the genetic algorithm. MLR is the most commonly
used method because of its low computational complexity and
easily interpretational power. However, because the extracted
features often have nonlinear effects on the BP value, MLR
is prone to low accuracy and high instability. Therefore, a
nonlinear regression model, SVR [33], an efficient method for
reconstructing nonlinear relationships between variables and es-
timation results, was employed in our study. We validated the
performance of the proposed models by comparing them with
the PTT+PIR-based model presented in [14].

1) MLR: As the most widely used regression method, MLR
models the relationship between a response variable and
explanatory variables by fitting a linear formula from
observed data. In our study, BP was the response variable
and f1 , f2 , · · · fp were the independent variables derived
from feature selection process. The relationship between
BP and the features can be expressed as follows:

BP = β0 + β1f1 + β2f2 + · · ·βpfp (14)

Fig. 4. Experimental scenario.

where β1 , β2 , · · ·βp denotes the regression coefficient, which
can be fitted from a training dataset and then used for estimation.

2) SVR: Support vector machines are specific class of
algorithm that can be applied to both classification prob-
lems and regression by using kernels to reflect nonlin-
ear relationships. In SVR, the input feature set, f, is
first mapped to an m-dimensional feature space through
nonlinear mapping, wherein a linear model is then con-
structed. The linear model in the feature space for BP
estimation in our study is expressed as follows:

BP =
m∑

j=1

ωjgj (f) + b (15)

where gj (f), j = 1, . . . ,m denotes a set of nonlinear trans-
formations, and b is the bias term.

D. Experiment

To validate the proposed MLR-based BP estimation model,
three experiments were conducted, namely a static experiment,
a dynamic experiment, and a follow-up experiment. We con-
ducted the static BP estimation experiment on 73 healthy adults
(40 men and 33 women) with a mean age of 26.41 ± 4.26 years
(range, 21–43 years). Fig. 4 shows the experimental scenario. A
continuous blood pressure monitor (Finpres R© NOVA, SMART
Medical, UK) was used to measure the reference BP with the fin-
ger cuff on the left middle finger and the brachial cuff on the left
upper arm. ECG and PPG signals were acquired simultaneously
using a multi-parameter monitor (Biopac system). I-lead ECG
signals were collected with ECG electrodes placed on the left
and right arms and right leg. PPG signals were collected from
the left index finger. All tests lasted 10 min and were performed
with the subjects in a seated position. The sample rate was set
to 1000 Hz. In the dynamic experiment, 35 available subjects
(20 men and 15 women) with a mean age of 27.89 ± 4.98 years
(range, 22–42 years) were required to perform rope skipping for
5 min to produce dynamic BP changes. The same experimental
procedure was adopted for each subject. The overall mean SBP
for all subjects was 114.88 ± 16.04 mmHg (static experiment)
and 132.98 ± 19.81 mmHg (dynamic experiment). The corre-
sponding means were 65.98 ± 11.32 and 74.78 ± 13.09 mmHg
for DBP and 260.39 ± 24.37 and 235.25 ± 24.29 ms for PTT.
In the static and dynamic experiments, the original dataset was
separated into two subsets, each 5 min in length. The subset
from the first 5 min was used to develop the BP model for each
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Fig. 5. Improvement in feature set fitness over time.

subject, whereas that from the final 5 min was used for per-
formance validation. In the follow-up experiment, 10 available
subjects were followed up at 1 day, 3 days, and then 6 months
after the first experiment to investigate the robustness of the
proposed approach, with the same experimental procedure used
each time. The dataset from the follow-up experiment was used
to validate the robustness of the model constructed from the
static experiment in tracking long-term BP.

The study was approved by the Institutional Ethics Committee
of the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences. Informed consent was obtained from all
subjects before the experiment.

III. EXPERIMENTAL RESULTS

A. Feature Selection Results

The aforementioned feature selection method was employed
to select the most critical features for each subject. Fig. 5 shows
an example of the evolution of a subject’s mean and highest
correlation coefficient as a function of generations. The overall
increase in the mean correlation coefficient demonstrates that
using the genetic algorithm eliminates models with low predic-
tive power while supporting those with high predictive power.
The predictive power stabilized after 10 generations, as indi-
cated by the optimal correlation coefficient curve.

Additionally, we found that the selected features differed be-
tween subjects as a result of individual variability, as presented
in Table II. To evaluate the importance of each variable in the
population, a weight-based strategy was proposed. The impor-
tance level for feature fi can be expressed as

FIi =
N∑

n=1

ωi,n

/
N (16)

where N is the total number of subjects in the experiment and
ωi,n is the weight of fi for the nth subject. If fi is not selected as
a critical feature, ωi,n= 0; otherwise, ωi,n is the relative weight
for improving the fitness value in the genetic algorithm, which

TABLE II
SELECTED FEATURES FOR 10 RANDOMLY SELECTED SUBJECTS

can be determined as follows:

ωi,n = Ri,n

/
K∑

j=1

Rj,n (17)

where Ri,n is the fitness value of the selected feature fi for the nth
subject, and K is the total number of selected features. Table III
presents the feature importance of each variable in the static
and dynamic experiments. The table shows that the distribution
of feature importance was similar between the static and dy-
namic experiments. Specifically, the dominant features for SBP
were found to be PTT_MaxDeri, ppg_k, PIR, ppgSecondDeri-
Width, and ppgSecondDeriFootHeight, whereas the dominant
features for DBP were PIR, ppg_k, ppgSecondDeriWidth and
ppgSecondDeriFootHeight (see Discussion for further details).

B. Accuracy Performance of the Proposed Models

We evaluated the overall accuracy performance of the pro-
posed BP models according to Pearson’s correlation coefficient
(CC), the mean difference (MD), and the difference in the stan-
dard derivation (SD) with the Finapres BP measurement as the
reference. The CC is a measure of consistency from a mathemat-
ical perspective, MD is a measure of bias in the BP estimation,
and SD is a measure of error variability. Formulas for these
indices are as follows:

CC =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

(18)

MD =
∑n

i=1 (yi − xi)
n

(19)

SD =

√∑n
i=1 (yi − xi−MD)2

n − 1
(20)
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TABLE III
STATISTICAL RESULTS FOR THE FEATURE IMPORTANCE OF EACH VARIABLE.
(A) STATIC EXPERIMENT FOR 73 SUBJECTS. (B) DYNAMIC EXPERIMENT FOR

35 SUBJECTS

(a)

Features SBP DBP
f1: Heart rate 0.01 0.05
f2: PTT_ppgBottom 0.07 0.05
f3: PTT_ppgPeak 0.04 0.01
f4: PTT_MaxDeri 0.19 0.08
f5: Systolic time 0.03 0.02
f6: ppgFirstDeriHeight 0.07 0.06
f7: ppgFirstDeriWidth 0.05 0.08
f8: ppgSecondDeriHeight 0.05 0.02
f9: ppgSecondDeriPeakHeight 0.05 0.07
f10: ppgSecondDeriFootHeight 0.11 0.11
f11: ppgSecondDeriWidth 0.10 0.12
f12: PIR 0.13 0.16
f13: Diastolic time 0.01 0.06
f14: ppg_k 0.14 0.11

(b)

Features SBP DBP
f1: Heart rate 0.08 0.09
f2: PTT_ppgBottom 0.07 0.05
f3: PTT_ppgPeak 0.03 0.02
f4: PTT_MaxDeri 0.20 0.07
f5: Systolic time 0.04 0.01
f6: ppgFirstDeriHeight 0.02 0.05
f7: ppgFirstDeriWidth 0.02 0.08
f8: ppgSecondDeriHeight 0.01 0.03
f9: ppgSecondDeriPeakHeight 0.01 0.03
f10: ppgSecondDeriFootHeight 0.10 0.10
f11: ppgSecondDeriWidth 0.10 0.11
f12: PIR 0.12 0.16
f13: Diastolic time 0.05 0.05
f14: ppg_k 0.15 0.15

TABLE IV
STATISTICAL ANALYSIS FOR PERFORMANCE WITH MLR (A) STATIC

PERFORMANCE FOR 73 SUBJECTS. (B) DYNAMIC PERFORMANCE FOR 35
SUBJECTS. (C) LONG-TERM (6 MONTHS) PERFORMANCE FOR 10 SUBJECTS

(a)

Index Mean Standard derivation Max Min
SBP (mmHg) CC 0.824 0.084 0.939 0.538

MD (mmHg) 0.0016 0.0199 0.0896 -0.004
SD (mmHg) 3.449 1.069 8.101 1.695

DBP (mmHg) CC 0.754 0.120 0.919 0.368
MD (mmHg) 0.0017 0.017 0.099 0.0004
SD (mmHg) 2.468 0.779 6.238 1.369

(b)

Index Mean Standard derivation Max Min
SBP (mmHg) CC 0.941 0.038 0.969 0.794

MD (mmHg) -0.046 0.136 0.063 0.001
SD (mmHg) 4.705 0.843 5.949 3.300

DBP (mmHg) CC 0.923 0.093 0.970 0.557
MD (mmHg) -0.071 0.056 0.279 -0.021
SD (mmHg) 2.839 0.228 3.459 2.406

(c)

Index Mean Standard derivation Max Min
SBP (mmHg) CC 0.619 0.154 0.857 0.373

MD (mmHg) -1.267 4.678 6.813 0.569
SD (mmHg) 5.98 1.753 8.852 2.680

DBP (mmHg) CC 0.549 0.175 0.814 0.178
MD (mmHg) -1.38 5.926 9.83 0.806
SD (mmHg) 5.49 0.934 8.184 2.751

where {x1 , x2 , · · ·xn} are the BP values from the Finapres
device and {y1 , y2 , · · · yn} are the estimated BP values.

1) Multivariate Linear Regression-Based Model: Ta-
ble IV gives the statistical analysis results of the aforementioned
performance indices with MLR. In the table, the static perfor-
mance in 73 subjects is shown in Panel (a), the dynamic per-
formance in 35 subjects is given in Panel (b), and the long-term
tracking performance at 6 months in 10 subjects is given in Panel
(c). For the static experiment, the mean CC, MD, and SD for
SBP and DBP are 0.824 and 0.754; 0.0016 and 0.0017 mmHg;
and 3.449and 2.468 mmHg, respectively. For the dynamic ex-
periment, the estimation results also exhibited favorable perfor-
mance, with a mean CC, MD, and SD for SBP and DBP of 0.941
and 0.923; −0.046 and −0.071 mmHg; and 4.705 and 2.839
mmHg, respectively. For the long-term tracking experiment, the
performance was lower to a certain degree, with a mean CC,
MD, and SD for SBP and DBP of 0.619 and 0.549; −1.267 and
−1.38 mmHg, and 5.98 and 5.49 mmHg, respectively.

Fig. 6 gives a typical example of the correlation and Bland–
Altman plot for the proposed SBP and DBP estimations rel-
ative to the Finapres BP measurements. The correlation plot
shows that the CCs for the static estimation between the SBP
and DBP estimates and the Finapres measurements were 0.91
and 0.77, respectively, indicating a high correlation between
the estimated BP and the reference. Similar results were ob-
tained for the dynamic estimation, with CCs of 0.92 and
0.75, respectively. The long-term estimation underperformed
the static and dynamic estimations by approximately 20% in
CC. The Bland–Altman plot indicates that most of the esti-
mated points for SBP and DBP are within the limits of agree-
ment (bias ± 1.96 × SD), demonstrating that the estimated
BP with the proposed method approximate those measured
by the Finapres system in the static, dynamic, and long-term
estimations.

2) SVR-Based Model: Table V(a)–(c) respectively shows
the statistical performance of the static, dynamic, and long-term
BP tracking approach with SVR. Panel (a) indicates that, in the
static estimation, the mean CC, MD, and SD for SBP and DBP
were 0.852 and 0.790;−0.001 and −0.004 mmHg; and 3.102
and 2.199 mmHg, respectively. The estimation results from the
dynamic experiment also showed favorable performance, with a
mean CC, MD, and SD of 0.946 and 0.929; −0.085 and −0.077
mmHg; and 4.493 and 2.735 mmHg, respectively. Similar to the
proposed approach with MLR, the long-term tracking perfor-
mance was lower to a certain degree, with a mean CC, MD, and
SD for SBP and DBP of 0.617 and 0.554; −1.148 and −1.194
mmHg; and 5.79 and 5.29 mmHg, respectively.

Fig. 7 presents a typical example of the correlation and Bland–
Altman plot for the proposed SBP and DBP estimations com-
pared with the Finapres BP with SVR. The CCs between the
SBP and DBP estimates and the Finapres measurements were
0.92 and 0.82, indicating very high correlations between the
BP estimates and the reference for the static estimation. Sim-
ilar results were obtained for the dynamic estimation, which
attained CCs of 0.92 and 0.78 for SBP and DBP, respectively.
The Bland–Altman plot also indicates that the estimated BP
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Fig. 6. Correlation and Bland–Altman plots of SBP and DBP with the
reference Finapres BP using MLR. (a) Static estimation. (b) Dynamic
estimation. (c) Long-term (6 months) estimation.

TABLE V
STATISTICAL ANALYSIS OF PERFORMANCE WITH SVR. (A) SHORT-TERM
PERFORMANCE FOR 73 SUBJECTS. (B) DYNAMIC PERFORMANCE FOR 35

SUBJECTS. (C) LONG-TERM (6 MONTHS) PERFORMANCE FOR 10 SUBJECTS

(a)

Index Mean Standard derivation Max Min
SBP (mmHg) CC 0.852 0.127 0.952 0.574

MD (mmHg) -0.001 0.027 0.090 -0.001
SD (mmHg) 3.102 0.992 7.861 1.493

DBP (mmHg) CC 0.790 0.135 0.95 0.420
MD (mmHg) -0.004 0.017 0.043 -0.0001
SD (mmHg) 2.199 0.770 1.315 5.897

(b)

Index Mean Standard derivation Max Min
SBP (mmHg) CC 0.946 0.034 0.972 0.819

MD (mmHg) -0.085 0.092 -0.455 -0.005
SD (mmHg) 4.493 0.780 5.618 3.156

DBP (mmHg) CC 0.929 0.082 0.973 0.599
MD (mmHg) -0.077 0.069 -0.349 -0.018
SD (mmHg) 2.735 0.233 3.314 2.267

(c)

Index Mean Standard derivation Max Min
SBP(mmHg) CC 0.617 0.1523 0.848 0.3321

MD (mmHg) -1.148 4.566 7.962 0.3785
SD (mmHg) 5.79 1.831 8.718 2.767

DBP (mmHg) CC 0.554 0.231 0.817 0.192
MD (mmHg) -1.194 5.926 7.757 0.806
SD (mmHg) 5.29 0.929 8.202 2.712

approximated the reference value for the static, dynamic, and
long-term estimates.

C. Robustness Performance of the Proposed Models

We evaluated the robustness performance of the proposed
approach by comparing the estimation accuracy of different
physical states and at different time intervals; that is, the static
and dynamic estimates and the estimations 1 day, 3 days, and 6
months after model construction. We used a two-sample t test
to verify whether the estimation error means differed at dif-
ferent calibration intervals, with p < 0.05 indicating statistical
significance. With the proposed MLR-based models, no signif-
icant difference was observed in the estimation error between
the static and dynamic experiments. However, the overall esti-
mation error for SBP and DBP for the 10 subjects increased sig-
nificantly 1 day after model construction: from −0.001 ± 3.102
to 0.85 ± 5.78 mmHg for SBP and from −0.004 ± 2.199 to
−1.24 ± 4.63 mmHg for DBP, respectively. From 1 day to 3
days and then to 6 months, the estimation error was relatively
stable for both SBP and DBP. Fig. 8 shows the trend in the SBP
and DBP estimation error with the proposed MLR- and SVR-
based models compared with the PTT + PIR-based approach
presented in [14] (based on our dataset). The figure indicates
that the estimation errors increased significantly 1 day after
model construction, but there was no significant change from
1 day to 6 months. For the MLR and SVR methods, the ex-
perimental results demonstrated that the SVR method slightly
outperformed the MLR method, indicating nonlinear effects be-
tween the selected variables and BP value. However, considering
the low-power, low-complexity requirements in continuous BP
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Fig. 7. Correlation and Bland–Altman plots of SBP and DBP with the
reference Finapres BP using SVR. (a) Static estimation. (b) Dynamic
estimation. (c) Long-term (6 months) estimation.

measurements and the similar estimation accuracy patterns be-
tween the two models, we recommend using MLR as the optimal
approach.

To further verify the effectiveness of the proposed BP
model with MLR, we also compared the performance with
the PTT+PIR-based BP estimation approach presented in [14]

Fig. 8. Estimation error for SBP and DBP at different time intervals
(∗ and ∗∗∗ indicate statistical significance at the 0.05 and 0.001 levels,
respectively). (a) SBP estimation. (b) DBP estimation.

Fig. 9. Typical example of beat-to-beat SBP estimated with the pro-
posed methods and the PTT+PIR method with the Finapres SBP as a
reference. (a) Beat-to-beat SBP (b) SBP error.

(see Section II). Figs. 9 and 10 present typical examples of the
comparison between the reference BP and the BP estimates de-
rived from the different approaches. For both SBP and DBP,
the BP estimates obtained from the proposed models tracked
the Finapres BP values more accurately than did the PTT+PIR-
based approach. The SBP estimation errors were −0.54 ± 3.39,
−0.61 ± 3.11, and −0.23 ± 8.57 mmHg for the MLR-, SVR-,
and PTT+PIR-based models, respectively. The corresponding
DBP estimation errors were −0.002 ± 2.60, −0.03 ± 2.44,
and −0.61 ± 5.51 mmHg. This evidence further verifies that
the BP estimates obtained using the proposed approaches at-
tained a closer correlation with the Finapres BP than did the
PTT+PIR-based method.

Fig. 8 shows the trend in the estimation error with the
PTT+PIR approach. Compared with this approach, the pro-
posed MLR- and SVR-based methods obtained significantly
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Fig. 10. Typical example of beat-to-beat DBP estimated with the pro-
posed methods and the PTT+PIR method with the Finapres DBP as a
reference. (a) Beat-to-beat DBP (b) DBP error.

higher estimation accuracy for both SBP and DBP at differ-
ent time intervals. Specifically, the proposed approach out-
performed the PTT+PIR-based model with an approximately
2-mmHg reduction in SD for the different time intervals. How-
ever, the proposed approach exhibited slightly higher robustness
of performance compared with the PTT+PIR-based approach.
For the proposed approach, the estimation error was stable from
1 day after the initial calibration, whereas for the PTT+PIR-
based model, the estimation error continued to deteriorate from
1 day to 3 days.

IV. DISCUSSION

In this study, we proposed a continuous BP estimation ap-
proach that combines data mining techniques with a mechanism
model. This differs from traditional PTT-based models, in that
personalized BP features can be identified with high predictive
power. The experimental results demonstrate that the proposed
MLR model with selected individual features improved the ac-
curacy of mechanism-based BP approaches using PTT.

A. Features Selected for BP Estimation

Physiologically, several factors are responsible for BP
changes, including peripheral resistance, vessel elasticity, car-
diac output, and blood volume [34]. One of the main factors
affecting BP is peripheral resistance, because more pressure is
needed to maintain blood flow when the resistance increases.
Apart from peripheral resistance, vessel elasticity also affects
BP. A healthy elastic artery expands to absorb the peak systolic
pressure and maintain blood flow during diastole. Anything that
decreases the cardiac output also decreases the BP because of
less pressure on the vessel walls. Blood volume affects BP in that
more fluid presses against the arterial wall because of a greater
volume of fluid resulting in greater pressure. In our study, the
selected features for BP estimation are related to one or two of
these factors.

Our study results confirm the findings of prior studies regard-
ing PTT as a critical indicator of BP. It can be inferred from the
M–K equation that PTT is related to the elastic modulus of the
vessel wall and thus BP. However, the definitions of PTT differ
between studies, especially regarding the definition of the foot

location in PPG waveforms. The efficacy of these definitions has
been compared in [35] and [36], but the overall results have been
inconclusive. The most widely used definitions of the foot of the
PPG pulse are the diastolic minimum time and the maximum
derivatives time. Our study compared three definitions of PTT
for estimating BP, namely PTT_ppgBottom, PTT_ppgPeak and
PTT_MaxDeri (see Table I for definitions). Experimental results
show that the most available indicators differ between subjects
as a result of individual variability. Thus, the traditional SBP
model based on a fixed definition of PTT exhibited low accu-
racy when applied to a large population. However, the statistical
results for the feature importance in the static and dynamic ex-
periments (Table III) indicate that PTT_MaxDeriwas the most
useful indicator for SBP estimation among the three definitions,
with a feature importance of 0.19.The feature importance was
0.07 for PTT_ppgBottom and 0.04 for PTT_ppgPeak.

PIR was recently proposed by Ding et al. [14] as a novel
indicator for DBP estimation; thus, the accuracy of PTT-based
models can be improved considerably by using the combination
of PIR+PTT. That study showed that PIR can reflect changes
in arterial diameter in one cardiac cycle, which is one of the
main sources of peripheral resistance. Our study further supports
evidence that PIR is the dominant feature for DBP estimation, as
indicated by the feature importance value of 0.16. Furthermore,
its impact on SBP estimation was also remarkable, with a feature
importance value of 0.13.

Previous investigations have demonstrated that vascular tone
and PEP exert a large effect on the PTT–BP relationship [13],
[14], [37]–[40]. PTT with PEP included was used for BP es-
timation in our study. Many related studies have demonstrated
that this combination has a positive effect on BP estimation.
For example, a study conducted in 1981 [37] demonstrated that
the correlation between PTT with PEP included and BP was
larger than that obtained without PEP included. Furthermore,
an investigation by Philips Research Laboratories (Europe) [38]
suggested that PEP has a prominent role in SBP estimation.
Additionally, a recent study by our group [39] showed that BP
estimation was more accurate with PTT including PEP. A plau-
sible explanation is that PEP, as an intra-cardiac component of
PTT, can reflect the sympathetic cardiac influence, which would
contribute to a change in BP. This is one of the most crucial rea-
sons for why we included PEP in the calculation of PTT. A
more recent clinical study [40] that used intra-arterial BP as
a reference demonstrated that PTT (calculated from ECG and
PPG, including PEP) correlated strongly with the gold standard
of BP measurement, especially for SBP. Impairment of arterial
vascular tone in hypertensive patients can be identified by the
PPG waveform, as described previously in [41]–[44]. Takazawa
et al. [41] reported that vascular function can be characterized
by the 2nd PPG. A reflective index obtained from noninvasive
PPG was also demonstrated to determine and quantify vascular
tone in [45]. Therefore, a feature selection method was pro-
posed in [27] for estimating SBP by using features extracted
from the 1st and 2nd PPG. As demonstrated in previous studies,
we found that multiple features extracted from the 2nd PPG,
such as ppgSecondDeriWidth and ppgSecondDeriFootHeight,
are crucial BP indicators with high feature importance values
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of 0.10 and 0.11 for SBP estimation and 0.12 and 0.11 for DBP
estimation, respectively. Additionally, the pulse characteristic
value, K, was first studied to estimate cardiac output by using
a three-element model [46], [47]. Furthermore, in [48], the re-
searchers demonstrated that vascular elasticity can be quantified
using K. Our study results confirm the importance of ppg_K in
BP estimation with feature importance values of 0.14 for SBP
and 0.11 for DBP. Therefore, the proposed model is significantly
more accurate in combination with features extracted from the
PPG signal.

B. Influence of Time Intervals on the Accuracy of the
Proposed Approach

Although various studies have demonstrated the reliabil-
ity of PTT-based methods for cuffless BP measurement [13],
[49], [50], most of them have been validated on for very
short time periods. The accuracy would deteriorate when ap-
plied to long-term estimates after the initial calibration [51].
In [18], a significant increase in the estimation error (from
−1.44 ± 10.69 to −1.87 ± 14.42 mmHg for SBP and from
−1.21 ± 5.07 to −0.11 ± 8.51 mmHg for DBP) was observed
at 1 month after the initial calibration. Therefore, recalibration
is the most challenging problem for improving estimation ac-
curacy and must be resolved for this approach to be realized in
widespread applications [14]. Frequent calibrations are neces-
sary to ensure the accuracy of the PTT-based approach for BP
estimation.

Except for static and dynamic validations within a short time
of the initial calibration, our study also evaluated the proposed
model in long-term BP tracking at different time intervals to ana-
lyze the robustness of the proposed models. Experimental results
show that the proposed MLR-based model exhibited excellent
performance in static and dynamic BP estimation, which was
attributed to the consideration of multiple factors that influence
BP changes. However, similar to previous studies on long-term
BP validation, the accuracy of the proposed model was lower
to a certain degree when used in long-term tracking. Specif-
ically, the estimation error increased from −0.001 ± 3.102
to 0.85 ± 5.78 mmHg for SBP and from −0.004 ± 2.199
to −1.24 ± 4.63 mmHg for DBP at 1 day after the initial
calibration. However, with longer time intervals (i.e., from 1
day to 3 days and then to 6 months), the estimation error be-
came relatively stable. This finding supports the results reported
in [17] that for healthy subjects, the estimation accuracy de-
creased significantly 2 weeks after the initial calibration, but
no significant change was observed from 2 weeks to 1 month.
There are three reasons for this. First, the dataset for training
the BP model was collected with subjects in a seated position
with lower BP variability; consequently, the robustness of the
data-driven model is low, especially for BP estimations derived
from the test dataset, which varied considerably from the train-
ing set. Second, a previous study stated that the gold standard
of the Finapres System is prone to substantial variability [52],
which would introduce instability into the model. Finally, the
contribution of the dominant features identified from the short-

term dataset diminished over time when applied in long-term
tracking.

V. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a novel BP estimation approach
by combining data mining techniques with a mechanism-driven
model. Through the combination of multiple factors that can re-
flect changes in BP, a feature selection method based on a genetic
algorithm was employed to obtain the most promising indica-
tors for each subject. MLR and SVR were employed to develop
the BP model. We validated the effectiveness of the proposed
approach according to the estimation accuracy and robustness of
the model. The experimental results show that compared with
the PTT+PIR-based model, the proposed approach achieves
significantly higher estimation accuracy for different states and
time intervals and slightly improved robustness performance.
Overall, the proposed model provides potentially novel insights
for unobtrusive BP estimation.

In the future, we will endeavor to provide a continuous BP
model that conforms to the IEEE 1708 standard, which was
proposed specifically for wearable and cuffless BP devices
[53]. First, some effective solutions to overcome the low
accuracy of long-term estimations should be considered. For
example, the training dataset should comprise data that spans
different time lengths and includes different physical states;
this would enable the data mining algorithm to identify domain
features in long-term tracking. Second, an invasive method
for continuous BP measurement should be referred to as the
gold standard. Finally, the accuracy should be verified in a
large, heterogeneous population—especially for hypertensive
patients and long-term validation—to evaluate the applicability
of the proposed approach.
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