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Abstract—After decades of evolution, measuring instruments for
quantitative gait analysis have become an important clinical tool for
assessing pathologies manifested by gait abnormalities. However,
such instruments tend to be expensive and require expert opera-
tion and maintenance besides their high cost, thus limiting them
to only a small number of specialized centers. Consequently, gait
analysis in most clinics today still relies on observation-based as-
sessment. Recent advances in wearable sensors, especially inertial
body sensors, have opened up a promising future for gait analysis.
Not only can these sensors be more easily adopted in clinical diag-
nosis and treatment procedures than their current counterparts,
but they can also monitor gait continuously outside clinics – hence
providing seamless patient analysis from clinics to free-living en-
vironments. The purpose of this paper is to provide a systematic
review of current techniques for quantitative gait analysis and to
propose key metrics for evaluating both existing and emerging
methods for qualifying the gait features extracted from wearable
sensors. It aims to highlight key advances in this rapidly evolv-
ing research field and outline potential future directions for both
research and clinical applications.

Index Terms—Free-living gait analysis, gait analysis, inertial
sensors, insole pressure sensors, medical applications, quantitative
gait analysis, wearable sensors.

I. INTRODUCTION

GAIT analysis is an established research area for many
medical and healthcare applications [1]. These applica-

tions range from evaluating the efficacy of orthoses, prosthetics,
surgical procedures, [2]–[5] or rehabilitation treatment (e.g., for
knee surgery or stroke recovery), through aiding diagnosis and
assessment of neuropathies [6]–[9], to monitoring gait degra-
dation, assessing fall risks, and preventing falls for the elderly
[10], [11].

The quality and validity of these gait analysis applications are
dependent on the measuring instruments used [12]. In current
clinical settings, gait analysis is usually performed by subjec-
tive and qualitative approaches, such as human observation [13]
and patient self-reporting [see Fig. 1(a)]. In this way, the main
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Fig. 1. Gait analysis in common clinical settings: (a) observer-based timing
and visual assessment of gait; (b) use of optical trackers for detailed motion
capture and gait analysis.

quantitative measures that can be derived are cadence, gait
speed, and distance covered. These are oversimplified measures
for assessing human gait – a complex mechanism governed
by the neuromuscular system. Although some severe gait dis-
orders can be observed by human eyes, without quantitative
measures, subtle changes can go unnoticed. Furthermore, these
approaches typically involve significant inter- and intraobserver
variabilities, thus affecting disease staging, severity assessment,
and subsequent treatment planning [14].

Thus far, some specialized centers and clinics have adopted
standard gait analysis tools based on optical motion capture
systems, such as the Vicon (Oxford Metrics Limited, Oxford,
United Kingdom) [see Fig. 1(b)] [15]. With infrared cameras
capturing body motion defined by the reflective markers, these
systems track spatial information and human motion, and pro-
vide high-precision data at a sampling rate of 100–200 Hz. Al-
though such systems can deliver highly accurate human move-
ment analysis, they are relatively expensive and require expert
operation [12]. Furthermore, they are restricted to laboratory
settings, so the information derived may not reflect gait in real-
world settings [16]. They also involve an intrusive and cumber-
some marker setup procedure, hindering normal movement of
the patient [17]. Therefore, although such instruments have gal-
vanized gait analysis research in the past, they are not pervasive
enough among clinics for gait analysis to realize its full poten-
tial. Many studies continue to use goniometers for measuring
joint angles. However, such tools are also cumbersome to use
and can only provide limited types of information.
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TABLE I
CURRENT QUANTITATIVE MEASURING INSTRUMENTS FOR GAIT ANALYSIS

Force plates and electromyography (EMG) systems are two
other quantitative gait analysis tools commonly used in those
specialized centers together with optical motion capture sys-
tems. Force plates measure ground reaction forces (GRFs) dur-
ing walking, and when synchronized with kinematic information
recorded by optical motion capture systems, can provide kinetic
information based on inverse dynamics. EMG systems capture
the electrical activity generated by skeletal muscles, and can be
used to study muscle activity. They are particularly useful for
assessing gait disorders with symptoms such as severe muscle
weakness. Traditional EMGs are inconvenient and cumbersome
to wear, and force plates must be installed in dedicated labo-
ratories. In order for gait analysis to gain popularity in clinics,
it is essential to replace the current gait analysis systems that
provide kinematic information and EMGs, with easier to use,
more economical, and portable platforms.

Recent advances in wearable sensor technologies [18],
especially inertial body sensors, insole pressure sensors, and
wireless EMG sensors, have shown great promise for providing
such a replacement. They are low cost, portable, versatile,
and can supply rich information for real-time gait analysis in
both indoor and outdoor environments, providing seamless gait
analysis from clinics to free-living environments. To highlight
the advantages of wearable sensors over the current laboratory
systems, Table I compares the laboratory gait analysis tools
and their wearable counterparts.

However, before wearable sensors can truly be adopted for
clinical use, their effectiveness needs to be carefully assessed. To
this end, we examine in this paper current gait analysis meth-
ods based on wearable sensors. First, we identify the clinical
applications that could most benefit from portable gait anal-
ysis. Common diseases that are manifested by gait pathology
are described with the corresponding gait characteristics. These
abnormal gait patterns are then characterized and mapped into
quantifiable gait measures. Next, we review existing methods
that can extract such gait measures, demonstrating the feasi-
bility of replacing current optical motion capture systems with
wearable sensors. Finally, metrics for evaluating the methods in
a clinical context are proposed.

Overall, we aim to provide a roadmap for the future devel-
opment of gait analysis based on wearable sensing, including

highlighting current progress, identifying unmet clinical de-
mands, and suggesting potential future research directions. The
main contributions of this review paper are to:

1) establish intrinsic links between gait characteristics (of
gait-manifested diseases) and quantifiable gait measures
that can be captured by wearable sensors;

2) review existing methods for extracting gait measures from
wearable sensors; discuss the feasibility of replicating
the measures used in the laboratory systems; and finally,
lay out a roadmap for extracting relevant gait measures
from inertial sensors, pressure insole sensors, and EMG
sensors;

3) propose tangible evaluation metrics for using wearable
sensor platforms as clinical diagnostic tools.

II. GAIT ANALYSIS IN MEDICINE

As research and technologies evolve, quantitative gait anal-
ysis is proving to be beneficial for the assessment of patient
outcomes. This section provides an overview of gait patholo-
gies commonly seen in medicine, for which clinical research
has proven gait analysis to be useful. These include, for exam-
ple, poststroke rehabilitation, anterior cruciate ligament recon-
struction, and prescribing orthopedic devices for severely gait-
impaired patients. Quantitative gait analysis can also support
clinical decisions and optimize treatment protocols [4], [19],
[20]. As most neurological and neuropsychological diseases
can be manifested by changes in gait, gait analysis can help to
diagnose and assess the severity of these symptoms [21]. In psy-
chiatrics, gait disturbance can reflect “cortical and subcortical
dysfunction” [22], thus gait analysis can be highly informative
in psychiatric diagnosis and assessment [22]. In geriatrics, gait
analysis is playing a more important role [23]. A large body of
research in sports medicine also studies running gait. However,
since this paper focuses on patients and clinical outcomes rather
than athletes and fitness, research work from sports medicine is
not reviewed.

In general, gait pathologies can be classified into four ma-
jor categories: rehabilitation-related gait patterns, neurological
gait disorders, psychiatric gait abnormalities, and gait degra-
dation due to aging. In each category, the gait characteristics
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TABLE II
GAIT ANALYSIS USED IN MEDICAL RESEARCH

associated with each gait pathology are listed in Table II. Mean-
while, to gauge the distribution of research efforts in each area,
papers regarding each pathology are counted by a systematic
search on PubMed. The total numbers returned, along with the

search criteria, are also listed in Table II, which details the most
commonly seen gait pathologies and their related gait character-
istics. Overall, Parkinsonian gait has attracted the most research
attention thus far, with about 850 related papers showing up on
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Fig. 2. Distribution of research efforts on different gait pathologies for papers published between 1970 and 2016.

TABLE III
SUMMARY OF CLINICAL GAIT DISORDERS

PubMed. The most frequently researched gait pathologies are
summarized in the bar chart in Fig. 2. Despite the wide spec-
trum of gait pathologies in medicine, only seven types of gait
pathologies have attracted the majority of research attention
(comprising 80% of the 2906 papers found on gait analysis).

The summary of gait pathologies shown in Table III and Fig. 2
highlights the gaps in current gait research, possibly due to a
lack of portable gait analysis tools and accessible specialized
equipment, and translation between technology advancement
and medical domain knowledge.
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TABLE IV
QUANTIFIABLE GAIT MEASURES FOR CLINICAL USE

Quantifiable Gait Measures Gait Disorders

Gait speed Slow walking
Step length Parkinson gait, small steps, marche à petits

pas (gait with little steps)
Step frequency (cadence) Slow walking, gait efficiency
Stride-stride variability Abnormal rhythm of gait
Step width Cerebellar gait (ataxic gait), wide base,

extremely narrow base
Step height Peripheral neuropathic gait, foot drop,

high stepping gait
Transverse plane signal amplitude Hemiplegic gait, diplegic gait,

circumduction, scissor gait
Knee joint angle Crouch gait, drop foot, equine gait, stiff

knee
Ankle joint angle Equine gait, crouch gait
No. of steps during turning Difficulty with turning
Hip flexion Myopathic gait, waddling gait, excessive

hip sway, drop of pelvis
Heel-strike amplitude, ground reaction
forces

Sensory gait, stomping, stamping

Motion signal distribution Tremor
Stance time Antalgic gait, hesitation
Swing time Difficulty in clearing off at toe off,

difficulty in swinging
Double support time Steadiness
Bilateral sensor comparison Gait asymmetry
Gait stability measure Wobbly gait, unstable gait
Gait complexity measure Choreiform gait, hyperkinetic gait, jerky

gait
Gait regularity measure Reduced gait variability
Moment Weakness during toe off
Muscle force from EMG Muscle weakness, abnormal muscle

activity

As most of the medical literature [50], Hook et al. [51] tend to
provide a qualitative description of gait based on the observation
of clinicians, it is important to quantify these descriptions with
measuring tools. Thus, a translation from medical descriptions
to quantified gait measures that could be tracked by measuring
tools is summarized in Table IV.

III. METHODS FOR EXTRACTING RELEVANT GAIT FEATURES

FROM WEARABLE SENSORS

In this section, we review current research employing wear-
able sensors for gait analysis in clinical settings. First, a system-
atic approach is used for literature review. Then, the methods for
extracting commonly used gait features such as double stance
time, gait speed, gait stability, etc. are reviewed. More general
features, such as gait asymmetry – a comparison between more
specific bilateral gait features – can be derived from the basic
gait features. Finally, flowcharts are presented to outline the
feature extraction processes.

A. Literature Search

For the literature review, five major databases on biomedical
engineering and computing were searched up to June, 2016:
PubMed, IEEE Xplore, ACM Digital Library, EBSCO, and The
Cochrane Library. The search process and criteria are shown in
Fig. 3. Only the search process for papers using inertial sensors

Fig. 3. Systematic search for current research on gait analysis using inertial
sensors.

is shown in this figure. However, by using the same approach,
current research using other types of sensors can also be found.

In this systematic search, first the key words “gait analysis”
were used in order to get an overview of research on gait analysis
from each database. Next, the key words “inertial sensor gait”
are used to identify how many papers have studied human gait
using inertial sensors. Then, the key word “patient” is added to
“inertial sensor gait” in order to select papers that have applied
inertial sensors to gait-related clinical applications. Next, these
papers (i.e., searched by the key words “inertial sensor gait
patient”) are manually screened to eliminate work that has not
yet been applied to patient studies. Finally, all of the manually
screened papers from all five databases are selected again to
eliminate duplication and papers that have not provided enough
insight into gait pathologies.

Fig. 3 allows us to glimpse the distribution of research efforts
in gait analysis. Overall, gait analysis has already become an
established field, given that over 40 000 papers from the five
databases are associated with gait analysis. However, gait anal-
ysis using inertial sensors (669 papers) is no more than 2% of
the entire research field. Of these 2%, although 30% (roughly
200 papers) claim the research is related to patients, less than 90
papers are from real clinical settings. This is only about 0.2%
of gait analysis papers. In other words, despite the extensive use
of gait analysis in medicine as shown in Section II, the majority
of the research has not yet been applied to patient populations.
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Fig. 3 reveals both the great potential in this research field and
the long process involved in applying such research to routine
clinical practice. On the one hand, gait analysis using wearable
sensors must be evaluated in the target patient population to
prove its clinical value, since algorithms developed from control
subject data may not be generalizable to the pathological gait. On
the other hand, only by studying the real pathological gait, using
wearable sensors, researchers can discover and capture subtle
gait abnormalities, which may have been overlooked in the pre-
vious gait studies done using conventional tools. In any case,
although current research is embracing wearable technologies,
there is still a long way to go in terms of their clinical adoption.

The 35 papers detailing research using inertial sensors for
gait analysis are summarized in Table V. The second column of
this table lists the total number of inertial sensors mounted on
the body as a measure of convenience. The clinical applications
and the gait measures extracted in each paper are listed in the
fourth and the third columns, respectively.

Table V is a representative yet not exclusive list of current
research using wearable sensors up to June, 2016. In line with
the more general search results in Section III-A, see Table II,
Parkinson’s gait is also the most studied gait in the field of
wearable inertial sensors.

B. Kinematics

Kinematic information is a well-established set of gait mea-
sures in biomechanical analysis [85]. Accurate orientation track-
ing using inertial sensors has been a major research focus in the
field. Although it may seem intuitive to obtain kinematic in-
formation from inertial sensors, accurate spatial information on
body kinematics is still challenging to obtain. This is caused by
several factors as follows:

1) Signals sensed by inertial sensors are defined in the inertial
frame. In other words, inertial sensors are oblivious to the
global frame. In practice, when mounting inertial sensors
on the human body, it is common to have the inertial frame
and the global frame misaligned, causing a discrepancy
(also known as mounting error) between the information
obtained under the inertial frame and the information ob-
tained under the global frame. Various mounting error
correction methods have been proposed using vision [86]
or prior knowledge (e.g., posing the subject in a predefined
posture).

2) Signals sensed by inertial sensors are derivatives of
displacement, i.e., acceleration and angular velocity. This
will inevitably cause integration drift when converting the
acceleration to velocity and position, or the angular veloc-
ity to angular displacement. Signal processing techniques,
such as high-pass filtering [87], complementary filtering
[88], and Kalman filtering [89]–[91], have been used
to remove the drift. Among these techniques, Kalman
filtering and its variations (e.g., extended Kalman filtering
and unscented Kalman filtering) are frequently used.
This approach characterizes the noise in accelerometers
and gyroscopes, and updates the integration process
accordingly.

C. Temporal Features

Current methods for extracting kinematic information from
inertial sensors preserve the time-series nature of the signal at a
high sampling rate. To relate this to clinical outcomes, more in-
depth information needs to be extracted. As human gait typically
involves repetitive motion, gait signals usually have a pseudope-
riodic nature. This means that repetitive events in a cycle can be
detected and extracted to examine the temporal features that are
characteristic of human gait [92]–[97]. Extracting and analyz-
ing such features helps to segment gait motion in time. In this
section, methods of detecting critical gait events are presented.

Fig. 4 illustrates the decomposed gait events for a normal
gait. Taking the left leg on both figures as an example, to move
forward, the subject lifts her/his left heel off, then pushes back-
wards on the ground in order to provide a counterforce as the
body leans forward until she/he can completely lift her/his toe
up in the air (left Toe-Off). It is worth noting that Toe-Off is a
more widely accepted term, and a broader term used in clinics is
terminal contact, denoting the moment when the foot leaves the
ground (whereas Toe-Off is a special case of terminal contact
when terminal contact is made with the toe). The left leg con-
tinues to swing backward in order for the shank to maximize its
potential energy as a pendulum. Then, after reaching that point,
the left leg swings forward while transforming the potential en-
ergy to kinetic energy without extra effort (left swing phase).
When the left leg reaches the lowest point, the left foot hits the
ground (left Heel-Strike, also known as initial contact), lands to
support the body weight, and waits for the other leg to swing.
This cyclic motion can also be found for the right leg, as the two
legs alternate.

To detect these gait events, a peak detection algorithm is
usually employed [7], [98]. Others have used hidden Markov
models (HMM) and also achieved good accuracy [99]. For
signal waveforms with less prominent peaks, HMM can be a
better solution for extracting gait phases. With the gait events
successfully detected, temporal features – such as double
stance time, swing time, etc. – can be extracted based on
the timestamps of the events. The critical gait phases can be
extrapolated, as shown in Fig. 4.

Fig. 4 illustrates the relationship between the three critical
temporal features: swing time (SWT), double stance time (DST),
and stance phase time (SPT). SWT is the duration between the
Toe-Off gait event and the Heel-Strike gait event of one leg
inside one gait cycle. During this time, the leg first pushes back-
ward and then swings forward, transforming the potential energy
into kinetic energy, and resulting in the highest values in the ac-
celeration and angular velocity signals. To find the duration, a
sorting algorithm can be used to label the two sequential, adja-
cent Toe-Off and Heel-Strike events, and count the number of
samples between these two timestamps to get swing time, as
stated in (1). It is worth noting that this feature only relies on
one leg’s inertial sensor data.

SWT = TToe-Off − THeel-Strike (1)

Another temporal feature worth mentioning is single support
time (SST), which is also the duration between the Toe-Off gait
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TABLE V
CURRENT RESEARCH ON GAIT ANALYSIS USING WEARABLE SENSORS
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Fig. 4. Gait events and gait phases explained.

event and the Heel-Strike gait event of one leg. In fact, one leg’s
single support time is exactly the same as the swing time of the
other leg, as stated in (2). Note that this feature only relies on
one leg’s inertial sensor data.{

SSTLeftLeg = SWTRightLeg

SSTRightLeg = SWTLeftLeg
(2)

SPT is the duration between the Heel-Strike gait event and the
Toe-Off gait event of one leg inside one gait cycle. During this
phase, the foot lands on the ground and the leg gradually rotates,
centered around the foot, until the center of mass of the whole
body moves forward. To find the duration, a sorting algorithm
can be used to label the two sequential, adjacent Heel-Strike and
Toe-Off events, and count the number of samples between these
two timestamps to get single support time, as stated in (3). The
difference between single support time and stance phase time is
that the latter includes the double support time where both feet
are on the ground. Note that this feature only relies on one leg’s
inertial sensor data.

SPT = THeel-Strike − TToe-Off (3)

DST is the phase where both feet are in contact with the
ground during walking. Fig. 4 shows that double stance time is
the duration between the Heel-Strike event of one leg and the
Toe-Off event of the other leg. As this involves coordination
from both legs, the information is tricky to obtain accurately
since its accuracy depends on timestamps from both legs instead
of one. Here, the synchronization between the nodes becomes
critical. However, with a careful examination of Fig. 4, this
feature can be extrapolated as shown in (4).{

DST = SPTLeftLeg − SWTRightLeg

DST = SPTRightLeg − SWTLeftLeg
(4)

Fig. 4 defines these temporal features by incorporating the
gait events and phases, providing a map of the temporal features
depicted. With modern inertial sensors sampled at a frequency
beyond 50 Hz, these gait events can be captured relatively
accurately in time and the temporal features can be extrapolated
accurately too. These temporal features can be considered to be

the most accurate features that can be extracted from wearable
sensors.

D. Gait Speed Extraction by Inertial Sensors

Gait speed is an important measure in gait analysis. In geri-
atrics especially, gait speed has become the number one predic-
tor of mortality in adults over 65 years old, with differences of
just a couple of tenths of a meter per second predicting statisti-
cally significant outcome differences [23]. Therefore, accurate
gait speed estimation from inertial sensors has interested re-
searchers in the field [98], [100]–[111].

Laudanski et al. [104] reviewed the current research (16 pa-
pers in total) on gait speed estimation using inertial sensors,
classifying the current gait speed estimation model into three
categories: abstraction model (i.e., machine learning approach),
human gait model, and numerical integration, shown in Fig. 5.

Previously, work using inertial sensors to estimate gait speed
tended to model human gait as an inverse pendulum [7], [100],
[106], [112]. Miyazaki [100] was the first to devise the method
of using a single-axis gyroscope to estimate stride length and
gait speed, with a single pendulum model. The paper intu-
itively explained how to use a geometric model to extract gait
speed from inertial sensors and achieved an accuracy with rel-
ative errors of 15–25% over a speed range of 0.5–1.7 m/s.
Salarian et al. [7] proposed a more precise model using both
shank- and thigh-mounted inertial sensors with a better defined
geometric model, achieving a root-mean-square error (RMSE)
of 0.06 m/s at a constant treadmill speed (1.11 m/s). While
the initial efforts in [100] seemed to provide an oversimplified
model, the more refined model in [7] requires thigh nodes, which
are more invasive to wear (an issue of both node location and
number). By simplifying the double pendulum model in [7] and
improving on the gait model presented in [100], Chen et al.
[98] used only a shank-mounted inertial sensor and achieved
better accuracy; Salarian et al. [108] also tried to reduce the
thigh nodes required in the double pendulum model in [7] by
predicting thigh measures based on underlying biomechanics.
Chen et al. [98], Nagaragna et al. [106], and Salarian et al. [113]
also employed the double pendulum model, with a Kalman filter
to cancel drift in the gyroscope-integrated signal, achieving a
stride length RMSE of 0.05 m per stride.

Vathsangam et al. [105], [107], [110], [111], [114] resorted
to machine learning approaches for estimating gait speed.
Vathsangam et al. [105] adopted Gaussian process regression
(a nonlinear regression approach) to estimate gait speed from
frequency-domain features, achieving an average RMSE of
0.027 m/s in one subject’s data. Martin [107] and Martin et al.
[110] used the decomposed wavelets from accelerometer signals
as features, and used a linear regression approach to estimate
gait speed, achieving an average error below 5%. Panagiota et al.
[111] estimated gait speed as a feature for energy expenditure es-
timation. With a hip-mounted accelerometer tracking cadence,
it achieved an average error of 0.18 m/s. This early work using
statistical learning methods laid the groundwork for the field
to move from first principles modeling to machine learning for
gait speed estimation. Chen and Lach [101] proposed a novel
feature that is rooted in biomechanics and strongly correlated
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Fig. 5. Methods for gait speed estimation using inertial sensors (see details in Section III-D). Different types of human gait models: (a) Single pendulum model
[100]; (b) Double pendulum model [7]; and (c) Simplified double pendulum model [98]. (d) Direct integration [111]. (e) Machine learning framework [101].

with gait speed, then compared the most commonly used fea-
tures for gait speed estimation by adopting a unified machine
learning framework, showing great estimation accuracy and the
potential for combining features extracted from biomechanical
knowledge and machine learning methods.

Sabatini et al. [102] explored the possibility of using foot-
mounted inertial sensors to obtain linear velocity from ac-
celerometers by leveraging the gyroscope-integrated angular in-
formation, achieving RMSEs across five subjects ranging from
0.03 to 0.06 m/s. Li et al. [112] took a similar approach, but
instead of mounting the sensors on the foot, they used shank-
mounted inertial sensors and achieved an RMSE of 0.05 m/s.
Although integrating acceleration to obtain distance and velocity
seems an intuitive approach, the accuracy can be worse because
the gravitational force is difficult to separate from the inertial
force. Moreover, accelerometers are susceptible to both mechan-
ical and thermal noises. To achieve accurate results using the
methods described in [7] and [112], careful noise reduction and
integration drift cancelation are required, rendering the method
less robust in implementation. The most robust method for gait
speed estimation using inertial sensors needs to be confirmed
by carrying out experiments over a much longer time span in
the free-living environment.

E. Novel Features Extracted Using Nonlinear Analysis
Techniques

Dingwell and Cusumano [115] pointed out that non-
linear analysis techniques might “provide insight into the

neuromuscular control processes that govern locomotion” and
demonstrated that the variability in certain temporal gait fea-
tures must be carefully distinguished from the “gait stability,”
i.e., greater variability does not necessarily indicate less stabil-
ity. Therefore, it is important to investigate nonlinear analysis
techniques from which the measures for analyzing the dynamic
characteristics of a pseudoperiodic system (like human gait) can
be borrowed for gait analysis.

Most of these nonlinear analysis techniques center around
one important presentation of gait signals – phase portrait. A
phase portrait is a geometric representation of the trajectories
of a dynamical system in the phase plane [116]. In this repre-
sentation, the position information is often plotted against its
first time derivative. Certain gait measures can then be extracted
by quantifying this geometric shape, including for example:
gait regularity, gait mechanical energy, gait complexity, and gait
stability. Besides, it is a great visualization tool for data presen-
tation and clinical interface.

A shank segment phase portrait of one healthy gait cycle
is plotted in Fig. 6(a). The gait events are plotted sequentially
clockwise in the figure as the arrows indicate. The closed curve
form reveals the periodic nature of a healthy gait and the sharp
turning point indicates the sudden change in motion [117],
which are the critical gait events detected in the time series,
as discussed in Section III-C.

Visualization: As a visualization tool, phase portrait can rep-
resent a certain dynamic system with unique geometric patterns.
It can characterize the dynamic system in the absence of detailed
equations of motion, when the experimental data for position
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Fig. 6. Gait analysis using phase portrait representation of inertial sensor data (see details in Section III-E). (a) Visualization [80]. (b) Phase portrait area
correlated with mechanical energy [101]. (c) Gain regularity accessed by poincare return map [80]. (d) Gain regularity accessed by Lyapunov exponent [80].
(e) Gait complexity accessed by elliptical Fourier analysis [80].

and its derivative are known – such as the kinematic informa-
tion presented by inertial sensors. More specifically, by directly
displaying both positional information and its first time deriva-
tive simultaneously, it becomes possible to correlate the two
variables. For example, gait motion range is usually of interest
in studies of motion constraints and amplitude [118]. Also, as
pointed out in [101], the area enclosed inside the phase portrait
represents the mechanical energy [see Fig. 6(b)].

Visualization tools, such as phase portrait, can play a vital role
in promoting pervasive gait analysis. First, current gait analysis
results can only be understood by gait experts by reading critical
gait measures from a lengthy report. Since humans interpret
images better than data, a visualization of gait can provide a vivid
and memorable impression of the severity of gait abnormalities
for clinical staff. Second, these phase portraits can even be
quantified to provide more sensitive and precise characterization
of gait patterns.

Gait Regularity: A Poincaré return map (also known as a first
return map) has been used to analyze orbital stability [47], and
can be applied to assess variability between gait cycles as well.
A Poincaré return map samples a particular event in every cycle
in a cyclic signal. In gait analysis in particular, gait events occur
repetitively in gait cycles. Since the data obtained from inertial
sensors are discrete time series, in order to obtain the map, the

magnitude of a gait signal at a particular event of interest can
be sampled as a means of assessing the orbital stability of this
signal, after identifying the critical gait events in the time domain
as described in Section III-C. Taking the shank angle signal, for
example, the mapping shown in Fig. 6(c) plots the shank angle
at the Toe-Off moment in the previous gait cycle, against the
shank angle at the Toe-Off moment of the current cycle. The
more clustered the return points are [the red dots in Fig. 6(c)],
the more orbital stability the signal possesses. Therefore, the
regularity can be quantified by the sum of the distances from
the points to the center of the cluster.

Gait Stability: Gait instability is a major risk factor leading
to falls, and has been recognized as a measure for identifying
potential fallers [119]. In clinics today, the gait stability test is
still largely done by subjective observation, pulling the patients’
shoulders during walking [120]. However, studies usually show
no correlation between an abnormal pull test and a future fall
risk [120]. Therefore, it is important to assess gait stability with
objective and quantifiable measures.

With quantitative data captured by inertial sensors and non-
linear analysis techniques, gait stability can be characterized
by the Lyapunov exponent (LyE), which describes how a pseu-
doperiodic dynamic system (e.g., human gait function) responds
to “very small perturbations continuously in real time” [121].
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Chen et al. [9] demonstrated that this metric exhibits better
sensitivity to the subtle gait differences pre- and postmedical
intervention in the elderly group. Fallah et al. [122] have used
long-term LyE and short-term LyE to assess recovery from knee
replacement surgery.

LyE can be computed by two types of numeric methods: either
the W-algorithm [123] or the R-algorithm [124]. In gait analysis,
the R-algorithm is more commonly used due to claimed accu-
racy with short-term data. However, [125] has argued that the
W-algorithm is more appropriate for assessing local dynamic
stability because of its sensitivity in estimating LyE. Both al-
gorithms quantify the divergence rate between trajectories in
the phase portrait [see Fig. 6(d)]. The faster the trajectories
diverge, the larger the Lyapunov exponent is and the less sta-
ble the gait is. Therefore, gait instability can be quantified and
its severity assessed using LyE extracted from inertial sensor
data.

Gait Complexity: The idea of complexity analysis lies in an-
alyzing the jerkiness of a motion. As approximated by a pen-
dulum model, efficient human gait can be considered as opti-
mized movement for conserving energy during walking. And
the smoothness of the gait motion can reflect the efficiency of
walking. In other words, a complex jerky movement means in-
efficiency in the gait. A phase portrait can visually reflect this
jerkiness [see Fig. 6(e)], and provide a measure of gait efficiency
[126], i.e., gait complexity.

To quantify this complexity, DiBerardino III et al. [126] de-
scribed a quantitative method, computing the number of har-
monics needed to fit the shape of the phase portrait. In [126],
elliptical Fourier analysis (EFA) [127] was used to find the num-
ber of harmonics in two-dimensional (2-D) curves needed to fit a
particular phase portrait. To determine how many harmonics are
required to best describe a phase portrait, DiBerardino III et al.
[126] adopted a pointwise sum of squared errors (SSE) metric
– comparing the difference between the phase portrait to be
tested and a fully fitted phase portrait with 500 harmonics (note
that a zero harmonics fitted phase portrait is a standard ellipse).
Once the SSE is below a predefined threshold, the algorithm
stops searching and registers the current number of harmonics
as the quantitative measure of complexity for the phase por-
trait. Fig. 6(e) demonstrates the advantage of the quantitative
techniques, where the complexity of the left plot in (e) is 11
magnitudes smaller than that of the right plot in (e) which ap-
pears to be more jerky.

F. Kinetics and Muscle Activity

Kinetic information is another set of gait measures essential
for gait analysis [15]. While inertial sensors can provide rich
information about the movement patterns of various body seg-
ments represented by kinematics and its derivative products,
they cannot provide information about the kinetics that gov-
ern the movement, which can shed light on the underlying gait
mechanisms from the perspectives of force and power genera-
tion, muscle activities, and energy cost minimization. Such ki-
netic information usually includes GRFs, joint moments, muscle
activities, and energy costs.

GRF: In gait analysis, this information has been captured
using force plates in order to obtain joint moments and powers.
Nowadays, wearable insole pressure sensors can be used to
obtain the plantar pressure distribution of the foot (i.e., force
per unit area) when it is in contact with the ground and derive
GRFs. Veltink et al. [128], [129] successfully demonstrated that
insole pressure sensors can obtain GRFs as force plates can do,
using mapping techniques with minimal errors. This means that
insole pressure sensors can be a suitable wearable platform to
replace preinstalled force plates in gait laboratories.

GRF alone can also be used to study gait patterns.
Fineberg et al. [130] used the vertical GRF to distinguish the
ground force pattern during the stance phase for spinal cord in-
jury patients with assistance and without assistance, and healthy
controls. Muniz et al. [131] used GRF data to differentiate
Parkinson’s gait from normal gait. Alaqtash et al. [132] used
GRF to classify pathological gaits, such as CP gait and MS gait.
These research efforts have shown the importance of obtaining
GRF as a gait measure distinct from kinematic information.

Joint moment and joint power: Joint moment (also known as
joint torque or joint moment of force) is the moment that a joint
requires for walking. Knowing joint moments, in-depth knowl-
edge such as the power generation mechanism of various joints
can be obtained. Joint moment cannot be directly measured by
sensors. However, it can be deduced from the measured GRF
and kinematic information using inverse dynamics [133], [134].
Then, joint power can be obtained by

P = τ × ω (5)

Muscle Activities and Muscle Force: These two types of infor-
mation can be obtained from an EMG sensor. EMG measures
the electrical activity (i.e., whether the muscle is at rest or fir-
ing at a certain time) of a contracting muscle via either surface
electrodes or fine wire electrodes. The surface electrodes are
attached to the skin, though such a setup is subject to noise from
the nearby muscles. The more accurate and precise measurement
approach is to insert fine wire electrodes into the muscle using
a hypodermic needle, but it is highly invasive and can even
be painful. Either approach can only give information about
whether and when the muscle is firing, but not quantitative in-
formation such as muscle forces or the amplitude of the muscle
activity. However, with mathematical modeling, muscle forces
can also be extracted from EMG signals [135]. EMG measure-
ments can be critical to clinical gait assessment. Gage et al.
[136] used EMG data to guide surgery for children with cere-
bral palsy, during which a muscle tendon may be transferred to
a different location in order to correct the action of the muscle.
For such surgery, EMG must be used in advance so muscular
contraction is corrected accordingly. EMG can also be used with
neuroconduction studies to test peripheral neuropathy. During
such tests, the EMG electrodes release an electric shock in or-
der to stimulate the nerves of the subject, and the speed of the
signals of the nerve response (i.e., nerve conduction speed) is
measured. A significant delay and weakness in the response
signals indicates peripheral neuropathy [137].

Energy costs: Metabolic energy cost during walking is an-
other measure of interest among gait analysis researchers. It is
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Fig. 7. Process of gait feature extraction from inertial sensors.

believed that human gait is an optimized mechanism to achieve
the least energy consumption and smooth movement in space.
Waters and Mulroy [138] demonstrated that energy cost (mea-
sured by oxygen consumption) is directly related to the extent
of a patient’s gait disability. Once joint moments and EMG data
are obtained, energy costs can be deduced from the combination
of EMG and joint moments to further deduce the energy used
for walking – and efficiency is an important sign of healthy gait.

G. Summary of Gait Feature Extraction From Wearable
Sensors

The process of transforming wearable sensor data into rel-
evant gait measures is summarized in Figs. 7 and 8. In both
figures, the gait measures extractable from wearable sensors are
highlighted. For inertial sensors, the raw inertial sensor data
can be filtered and transformed into various kinematic prod-
ucts by tracking techniques. The critical temporal features of
gait can also be extracted from inertial sensor data by event
detection or the HMM. The events detected can also be used
for gait regularity analysis. With both temporal features and
kinematic information, gait speed can be estimated. With both
the kinematic information and the sensor data, nonlinear anal-
ysis can be applied to extract more interesting measures, such
as gait stability and gait complexity. For insole pressure sensor
data, the insole position can first be calibrated with markers by
optical motion capture systems and mapping techniques to ex-
tract general GRF. Then with a link segment model, the joint
moment can be computed using generalized kinematics via op-
timized forward dynamics [139]. From EMG data, muscle force

Fig. 8. Process of gait feature extraction from insole pressure sensors and
EMG sensors.

and muscle moment can be extracted using a combination of
anatomical, muscle activation, and muscle contraction dynamic
models [135]. Finally, with both joint moment and muscle mo-
ment known, mechanical energy of gait can also be obtained.
All in all, wearable sensors can provide as rich, if not more,
information on gait as their laboratory counterparts.

IV. DISCUSSION

In this section, the metrics of accuracy, precision, and sen-
sitivity of a measurement system are discussed with respect to
the impact of wearable sensors on clinical practice for measur-
ing gait. Since few papers in the field have adopted rigorous
metrological terms to evaluate the gait measures extracted using
various methods, it is difficult to provide a like-by-like com-
parison between the state-of-the-art methods. Therefore, in this
section, we focus on establishing the metrological terminology
for evaluation, and discuss how to assess the gait measures ex-
tracted from wearable sensors for clinical use. Practicality and
the clinical interface are also considered.

A. Accuracy and Precision

Accuracy and precision imply different concepts, but are
mostly misused. According to the International Vocabulary
of Metrology [140], accuracy is the “closeness of agreement
between a measured quantity value and the true quantity
value of the measurand,” whereas precision means “closeness
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of agreement between indications and measured quantity
values obtained by replicated measurements on the same or
similar objects under specified conditions,” Accuracy is usually
expressed as the relative error (or rather, its complement),
while precision can be expressed numerically “by measures of
imprecision, such as standard deviation, variance, or coefficient
of variation under the specified conditions of measurement.”
Precision can be affected by repeatability and reproducibil-
ity. Repeatability evaluates whether, given the measuring
instrument, the measurement can be repeated under the same
conditions, including “the same measurement procedure, same
operators, same operating conditions, and same location, and
replicate measurements on the same or similar objects over a
short period of time” [140]. Reproducibility evaluates whether
the measurement can be replicated under the same set of
conditions on the same or similar subjects, but with different
locations, operators, and measuring systems [140].

Accuracy and precision are critical to both clinical diagnosis
and treatment. Because the philosophy of diagnosis in medicine
is rooted in comparing the statistical norm between the control
group and the patient group, the quantitative assessment must
be close to ground truth, so that both the control group and the
patient group can be examined by the same reference. Thus,
intricate calibration procedures are often required prior to data
collection in order to ensure accuracy. Precision is essential
to the quality of assessment as well. When the measurement
uncertainty is higher (i.e., the precision of the system is lower)
than the intersubject difference, the differences shown in the
measurement results cannot be trusted to differentiate the patient
group from the control group. Thus, “it is vitally important that
variation due to imperfect analysis (the analytical uncertainty)
is less than the measurement we are trying to discriminate” and
“as a general principle, it has been widely suggested that the
analytical goal for imprecision of a test method remain below
half the intraindividual variation” [141].

B. Sensitivity and Resolution

Sensitivity and resolution can be used interchangeably, but the
two concepts have subtle differences. Sensitivity is the “quotient
of the change in an indication of a measuring system and the
corresponding change in a value of a quantity being measured,”
while resolution is the “smallest change in a quantity being
measured that causes a perceptible change in the corresponding
indication”[140]. High sensitivity and resolution in a wearable
sensor system mean that subtle gait changes escaping human
observation can be picked up by the sensors. Note that sensitivity
in clinical diagnosis is a different concept, which is used in
binary classification – defined as the rate of correctly detecting
the true positives.

The impact of the evaluation metrics on clinical practice is
illustrated in Fig. 9. Fig. 9 gives the conservative requirements
for data quality for clinical applications. The condition for the
measurement result to serve for diagnosis is the strictest, as
diagnosis requires both high precision and high accuracy from
the measuring instrument. These key metrics can determine
whether a wearable system is qualified to be a gait analysis tool
for clinical applications.

Fig. 9. Example of the impact of wearable sensor data quality on clinical
applications.

C. Practicality and Clinical Interface

Gait analysis is underutilized in clinics and still considered
to be research rather than a standard procedure. For wearable
sensor-based gait analysis to become a commonplace in clinics,
the field needs to consider the practical issues from the following
perspectives.

Operating Cost: Wearable sensor systems can also greatly
reduce the cost of clinical analysis. Currently, in a conven-
tional gait laboratory, “a gait study can cost as much as $2000
USD, with an expected reimbursement of $500 or less” [142].
Moreover, “this is in addition to the extensive costs to set up
a facility, reaching as high as $300 000 if no facility renova-
tions are needed” [142]. Whereas even at the prototyping phase,
a highly customized wearable sensor system would only cost
about $3000 USD, and the cost of each gait study is almost
negligible once the operating procedure is standardized.

Wearability: Designed for continuous monitoring, body sen-
sors must be convenient and comfortable to wear for an extended
period. Therefore, the size of the sensor system, the number of
sensors, and the location of the sensors needs to be considered
in experimental design. The choice of sensors is also likely to
change with the rapid development of integrated circuit, micro-
electromechanical systems, and flexible printed circuit board
technologies. For example, although the current form factor of
inertial sensors (usually limited by battery sizes) does not allow
them to be worn on lower limbs long term, it is possible that the
sensors will become miniaturized enough for patients to patch
them onto lower limbs such as adhesive bandages.

Test Procedure: Using wearable sensors, the process of gait
analysis can be significantly reduced by avoiding marker la-
beling and detailed anthropometrical measurements. The test
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procedure, such as Unified Parkinson’s Disease Rating Score
[143] and Timed Up and Go (TUG) [113], can be predefined
on a computer in advance, targeting different gait pathologies.
The long hallways in clinics can be of great use for conducting
the tests and all the test subjects have to do is to put on the
sensors and walk a predefined distance. The sensor data can be
wirelessly transmitted to a laptop and analyzed in real time with
the gait analysis results reported on the spot.

Clinical Interface: Some commercial off-the-shelf products
provide detailed gait analysis and a software interface to analyze
the data collected from wearable sensors. The results from these
systems are usually presented in lengthy reports with special gait
measures. However, without the results being analyzed in the
context of the gait pathology, it is challenging for clinicians to
understand the gait features extracted [144]. The visualization
effect provided by phase portraits as detailed in Section III-E is
a good example of how impressive analysis results can help gait
patterns to be better understood.

Information Integration: The abundant information that wear-
able sensors can provide also makes it difficult for clinical prac-
titioners to pick out the relevant information quickly. This chal-
lenge can be conquered by targeting the gait analysis results to
different diseases. For example, given different disease etiolo-
gies, hypotheses can be set up and relevant gait analysis results
can be highlighted given the particular disease and presented
to the clinical staff. A well-designed clinical interface should
also integrate relevant diagnostic information given different
gait analysis results. This would help gait analysis to be more
widely adopted in clinical diagnosis and treatment procedures.

V. CONCLUSION

This paper explores the topic of pervasive gait analysis for
medicine using wearable sensors. The review of many types
of gait-manifested disorders demonstrates the importance of
quantitative gait analysis in clinical diagnosis and treatment,
whereas, currently, the expensive and cumbersome laboratory
systems limit gait analysis to specialized centers. By reviewing
the current methods of using wearable sensors for gait analy-
sis, this paper demonstrates that wearable sensors can replace
laboratory gait analysis systems, offering portable, objective,
quantitative, continuous, and rich information for gait analysis
without imposing constraints on the subjects – hence, providing
seamless gait analysis from clinics to the free-living environ-
ment. Finally, the issues of applying wearable sensors to clinics
are discussed by reviewing the practicality issues and metrics
for evaluating measuring instruments, in order to propel wider
adoption of wearable sensor-enabled gait analysis, particularly
for routine clinical use.
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