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Aggregate Features in Multisample
Classification Problems

Robert Varga, S. Marie Matheson, and Andrew Hamilton-Wright, Member, IEEE

Abstract—This paper evaluates the classification of multisam-
ple problems, such as electromyographic (EMG) data, by making
aggregate features available to a per-sample classifier. It is found
that the accuracy of this approach is superior to that of traditional
methods such as majority vote for this problem. The classification
improvements of this method, in conjunction with a confidence
measure expressing the per-sample probability of classification fail-
ure (i.e., a hazard function) is described and measured. Results are
expected to be of interest in clinical decision support system devel-
opment.

Index Terms—Bayes methods, decision support systems, ma-
chine learning, pattern analysis, statistical learning, supervised
learning.

I. INTRODUCTION

TYPICALLY, when a classifier is asked to combine infor-
mation across multiple samples drawn from the same data

source, the results are combined using a strategy such as ma-
jority vote [1]–[3]. The question then arises as to whether the
sample-by-sample classification can be improved by means of
incorporating some sort of information describing the full set of
samples along with the per-sample values. One means of repre-
senting the data from a particular sample in such a set is to allow
a classifier to consider each sample along with data describing
an aggregate measure of all samples.

Problems of this sort arise in a number of milieux, however
one that is of particular interest to the authors is in clinical char-
acterization of disease state, based on quantitative electromyo-
graphic (QEMG) analysis. Here, one must ascertain the correct
characterization of a muscle, in terms of its disease state, based
on EMG signals that are produced by the structural groups of
force production, called motor units (MUs).

An MU is the minimal control structure of a muscle, com-
prised of the set of muscle fibers coupled with, and controlled
by, a single α-motor neuron. These MUs are interleaved with
the other MUs in a muscle, and provide the force generation
capability of a muscle while generating current observable as
action potentials. These motor-unit potentials (MUPs) have a
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stable signature shape related to the fixed morphological struc-
ture of the terminal branches of the associated α-neuron. A sig-
nal composed of these potentials may be decomposed into per-
MU activity [4], and converted into a table of QEMG measures
describing the contribution of all observed MUs, (potentially
among several contractions in a muscle study) which together
are used as a source of diagnostic information [5]–[8] useful in
a clinical decision support system (CDSS).

A CDSS is a particular application in the larger field of de-
cision support systems that helps a clinical professional make
a decision in a more complete, consistent, and informed fash-
ion than they would be able to achieve without such a system.
As clinical decisions are typically high in risk, transparency
and explanatory ability is paramount; without these attributes,
a CDSS will remain unused, even if diagnostic accuracy is im-
proved [9]. Reviews of CDSS technologies are provided in [10],
with an overview of some of the current issues provided in [11].
Recent work has seen the use of machine-learning-based classi-
fication systems in CDSS [12]–[15], however data aggregation
has typically been achieved via summation of classification out-
put information [14], [15], rather than the approach explored
here.

The rest of this paper will be structured as follows. Sec-
tion II will outline the data examined, as well as its preparation
into cross-validation studies, the construction of the several ad-
ditional feature sets examined, and the classifiers used in the
experiments. Section III contains a description of the statistical
examinations used to analyze the results. Results themselves
will be presented in Section IV, followed by a discussion of the
findings in Section V. The paper closes with a summary of the
major points.

II. METHODOLOGY

Using Bayesian learning systems, we evaluate the efficacy
of using additional feature sets (AFSs) on MUP data, where
an overall muscular characterization is required based on the
“study” of the problem, with multiple samples drawn from the
same source. Some further exploration of these ideas using stud-
ies drawn from synthetically generated covaried data were also
performed.

Values for an individual AFS are calculated by using a simple
aggregation of all of the observed values for each feature within
the study, and adding this result as a new feature to all samples,
providing each sample information about the entire study. We
inspect three simple aggregators in this initial examination of
this idea: arithmetic mean, and maximum and minimum value.
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(a) (b)

Fig. 1. Sample simulated data distributions.

A. Preparation of Evaluation Data

Evaluation was performed with two different types of data:
MUP data based on QEMG studies, and synthetic data generated
with specific distribution characteristics.

1) EMG Data: EMG from 21 muscles was produced using
a simulation model [16], and decomposed using the DQEMG
program [4], providing gold-standard data for nine muscles with
neuropathic involvement (i.e., typical of a disease that attacks
the nervous tissue controlling a muscle) nine with myopathic
involvement (the class of diseases that attack the muscle fibers
directly), and three with no involvement (i.e., healthy tissue).
There are a total of 812 samples in these 21 studies, with the
number of samples per study ranging between 18 and 53. Each
sample has measures of the following features, described in [5]:
amplitude, duration, phases, turns, area-to-amplitude ratio, size
index, mean MU voltage.

2) Synthetic Data Distributions: In addition to the MUP
data, further evaluation was performed based on data gener-
ated from four-class, four-feature synthetic distributions. These
are partially overlapping normal distributions, arranged either
unimodally or bimodally as indicated in Fig. 1, at various sepa-
rations. These data are described fully in [17]. These synthetic
data were used to validate the findings based on the MUP data
described in this paper.

3) AFS preparation: Experimental treatments were con-
structed for each study, containing the original feature data,
and additional columns containing the AFS data. Each AFS
type (mean, min, max) was evaluated singly, in pairs, and
as a triplet, for seven treatments with AFSs, and an eighth
control treatment AFS(NONE) with no additional feature sets
added.

These aggregator operators were chosen for their simplicity;
arithmetic mean will provide a measure of central tendency of
the study and min and max provide the range. As each individual
sample in a study is classified, the presence of these AFS will
allow comparison of the measured feature value against the
distribution of values found in the study itself. This provides a
mechanism by which a sample in a study can be identified as
an outlier, information that has been noted to be important in
correct QEMG classification [18]–[21].

The cost of this approach is clear, as each aggregator adds
an extra feature for each original feature, greatly increasing
the dimensionality of the search space, and therefore raising
the issue of the “curse of dimensionality” [22], suggesting that
significantly more training data may be required in order to
successfully train the classifier. It may be noted, however, that

as the aggregate values are based on other values within the
grouped sample set, there is not independence between these
values, implying a grouping within the data space and indicating
that the “curse” may be somewhat ameliorated.

4) Discretization and Cross Validation: All data were quan-
tized using maximum marginal entropy [23] in order that
Bayesian event probabilities may be constructed on the data
as quantized into ten bins.

Leave-one-out cross validation was used to better estimate
classification accuracy, using each complete study as a single
cross-validation set; this will ensure that all of the related AFS
values from each study are grouped together into either testing or
training datasets. While cross validation is known to produce an
overestimate bias for accuracy [24], [25], as this is a comparative
study based on identical data, the relative biases will be on
average equal, and a relative comparison may meaningfully be
made.

B. Classifiers Used

Several Bayesian classifiers were compared. PD/FIS*, a
rule-based classier, and three Bayesian networks: naı̈ve Bayes
(NAÏVE-BN), tree-augmented naı̈ve Bayes (TAN-BN), and an
evolutionarily constructed Bayesian network (EVOLVED-BN).

1) PD/FIS*: This classifier [26] has previously been used
with QEMG data [7], [27]–[30]. It functions by evaluating the
frequency of occurrences of associations between values of the
label and observed features in one or more of the input columns.
By comparing these, using the adjusted residual [31], [32], one
may detect associations that differ significantly from those ex-
pected by a model of random chance; these “patterns” are then
used as rules for classification, weighted by their information
content using the “occurrence/all” mechanism [33].

Classification is then the calculation of a weighted sum re-
sulting in a set of assertions (Ak ε [−1 . . . 1]) representing a
spectrum from total refutation (−1) to total support (1) for a
given labeling. By comparing the Ak values for each label, one
can identify τ , the highest value asserted for any label, and δ,
the difference between the two highest assertion values. These
provide access to internal measures of the amount of relative in-
formation used in calculating the class label, and have been used
to construct a confidence measure CPD/FIS∗ for use in CDSS by
observing how often the system is correct for similar τ and δ
values.

The PD/FIS system by default will attempt to construct a la-
beling of “UNKNOWN” if τ ≤ 0, or if δ approaches 0. As this
refusal-to-label behavior is not available in the other Bayesian
systems used here, we will have suppressed this feature, label-
ing all input data regardless of the system confidence in the
labeling; we therefore denote these results as PD/FIS*, to note
the distinction in behavior relative to the original PD/FIS.

2) Bayesian networks: A Bayesian network (BN) is a di-
rected acyclic graph-based representation of a probability dis-
tribution, using nodes to represent observable events, such as
particular input values or class labels, and relations between
events as arcs. Searching for an optimal graph based on training
data is difficult, both due to the need to establish the degree



488 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 2, MARCH 2015

of dependence between observed events, and the computational
complexity of the search. We examine three common algorithms
for obtaining a nonoptimal graph in a feasible manner.

Confidence may be measured for all Bayesian networks by
examining the fraction of probabilistic support for the winning
class: this fraction is then used as the confidence in the assigned
classification, for CNAÏVE−BN , CTan−BN , and CEvolved−BN .

3) Naı̈ve Bayesian networks: Naı̈ve Bayesian networks
(NAÏVE-BN) [34], [35], based on the assumption of complete
independence between input values, are surprisingly effective
classifiers, frequently outperforming more complex classifiers
[36]. An important weakness of NAÏVE-BN in CDSS design is
that a failure to accurately reflect the probability distribution of
the underlying data leads to a poor measure of decision confi-
dence, and undermines transparency and understandability.

4) Tree augmented Naı̈ve Bayesian networks: Tree aug-
mented naı̈ve Bayesian networks (TAN-BN) [37], [38] attempt
to exploit the strengths of NAÏVE-BN classifiers by relaxing the
independence assumption, allowing the feature nodes in a net-
work to form a fully dependent tree, creating systems that can
outperform NAÏVE-BN systems [39].

5) Evolutionary algorithms: Further utilizing randomized
search, an evolutionary algorithm can be used to construct the
network, by using tournament selection randomization to select
networks for merging, and by swapping arcs, and finally prun-
ing by the use of a Markov blanket based on the class node as
described in [40].

C. Computational Environment

All algorithms discussed were run on SHARCNET, a portion
of the Canadian academic supercomputing network. Each train-
ing run was given a maximum runtime of 7 days. Any run that
did not complete in that time was terminated, and not included
in the results below.

III. ANALYSIS

A. Classification Accuracy

Classification accuracies are compared on a sample-by-
sample basis, to examine the degree to which each individual
classification may be improved by the addition of an AFS.

The total number of correct samples classified in each cross-
validation run was tallied for each dataset. The Durkalski formu-
lation of the McNemar test [41] was then applied to the counts
of correct and incorrect classifications produced, repeated over
each of the cross-validation sets. The McNemar test focuses on
the cells on the secondary diagonal, which captures occasions
when only one classifier is correct observing the difference be-
tween the marginal proportions of correctness of each system.
Using this method, one can calculate the differences between
the marginal proportions of correct classification of each system
(ΔMcN ) and establish a 95% confidence interval on the improve-
ments made by choosing one classifier over another across all
data examined.

In order to determine whether the addition to the data of
one or more AFS columns made a significant improvement

to classification accuracy for a given classifier, the per-sample
classification results were evaluated by applying the nonpara-
metric Kruskal–Wallis [42] one-way analysis of variance to the
classifications made. Separate results were constructed for each
dataset investigated (MUP, unimodal covariate, and bimodal
covariate). Note that the standard parametric ANOVA is inap-
propriate in this case, as the measured accuracies do not follow
a Normal distribution, nor are the variances near equal. Minitab
15 (Minitab, Inc., State College, PA, USA) was used to calculate
all Kruskal–Wallis (K–W) results.

B. Classification Confidence

Due to our interest in using this system as a CDSS, we mea-
sure not only classification accuracy, but additionally classifica-
tion confidence: the estimated probability that the classifier has
arrived at the correct labeling. This may be based on some mea-
sure of the classifier’s internal state based on a particular input
data value, and thus may be seen as analogous to the hazard func-
tion modeling the risk of failure in a physical system. As an aid
to transparency, confidence is suggested in the design of clinical
decision support systems regularly [1], [33], [43]–[48], and is
incorporated in some form in now-available rule-based, general
purpose clinical decision support construction tools [49], [50].

By incorporating the probabilistically based (and therefore
[0 . . . 1] bounded) C(System) values described above with an in-
dicator of correctness, we can obtain a measure of the error in
confidence, EConfidence

(System) , as follows:

EConfidence
(System) =

{
1 − C(System) if correct, and
C(System) if incorrect.

A confidence error close to 0 implies that either the system
is very confident in its correct classification or very uncertain of
its incorrect classification. This reflects the situation that as the
risk of error rises, the confidence decreases, and therefore if an
error is likely to be made, this fact can be accurately indicated
to a human decision maker.

We will calculate changes in confidence error both on indi-
vidual samples, and also on a per-study level, by calculating a
mean confidence for the study. This is expected to be useful in
a CDSS context, as it is the study-level decision, and its related
confidence, that will be of most interest to a decision maker.
This will be referred to as “study-level confidence error.” K–W
statistics were computed to identify significant changes, as with
classification accuracy.

IV. RESULTS

We shall explain the MUP results found in detail, and then
summarize the relationship between these results and the syn-
thetic distributions.

McNemar results are shown in Fig. 2, where one can see that
the difference in observed marginal proportion for the NAÏVE-
BN versus TAN-BN systems is defined by a confidence interval
ΔMcN = (0.105, 0.109). All classifier names have been ordered
so that the first mentioned classifier outperforms the second,
to avoid confusion due to unnecessary sign changes. A lower
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All Results
PD/FIS* -vs- Evolved BN

PD/FIS* -vs- TAN BN
Evolved BN -vs- TAN BN

PD/FIS* -vs- Naive BN
Evolved BN -vs- Naive BN

TAN BN -vs- Naive BN

 0  0.05  0.1  0.15
McN confidence interval

Fig. 2. Results from pairwise McNemar tests of the systems.

number for ΔMcN indicates more similarity in performance;
zero is identical performance. In all instances, p < 10−5 for
ΔMcN . Note the groupings in performance in which all NAÏVE-
BN system comparisons are similar (all values > 0.1) while in
all other comparisons ΔMcN < 0.05.

If the NAÏVE-BN system is disregarded, the ΔMcN values for
the remaining pairs are much smaller, falling within 0.05 of each
other. It is clear then that the NAÏVE-BN systems perform much
more poorly than any other system, which are competitive in
their ability to classify MUP data correctly.

A. Independent MUP Sample Classification Accuracy

Analysis using K–W found that a significant improvement in
per-sample classification accuracy was observed when any AFS
was added to the system (p < 0.0005), when considering each
dataset separately, or as a pool.

Additionally, the effect of adding any AFS was so strong
that it was not possible to distinguish between the various AFS
measures for NAÏVE-BN or TAN-BN. Both the EVOLVED-BN
and PD/FIS* systems were observed to have a number of very
low accuracies, as indicated by the boxplots for the MUP tests
presented in Fig. 3, however the addition of an AFS still signif-
icantly improved the performance. In all tests p < 0.0005.

B. Independent MUP Sample Confidence Error

Both NAÏVE-BN and TAN-BN significantly reduced their con-
fidence error based on the addition of an AFS, with p < 0.0005,
again as measured independently on any of the datasets ex-
amined. Conversely, for the EVOLVED-BN case, there were no
significant effects noted due to the addition of an AFS. In the
case of PD/FIS*, AFS(MEAN) showed improvement in confi-
dence error with p < 0.001; AFS(MAX) and AFS(MIN) however
showed no such improvement; results for PD/FIS* on MUP data
are shown in Fig. 4.

C. Study-Level MUP Confidence Error

The study-level confidence error drops to near zero for NAÏVE-
BN and TAN-BN strategies, with p < 0.0005. In contrast, for
PD/FIS* the result is particularly sensitive to the AFS used,
and those involving the arithmetic mean are the values with
the best result (in each dataset examined). This is shown in
Table I which provides for each AFS the median value for the
measured confidence error associated with that AFS, as well as
the mean of the rankings computed on all values corresponding
to this AFS within the ordered sequence of all results. N refers
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Fig. 3. Independent MUP sample classification accuracies. (a) EVOLVED-BN
Systems. (b) PD/FIS* Systems.

to the number of successful runs in this set (time limited, as
indicated in Section II-C). For the EVOLVED-BN system, there
is no significant effect (p = 0.594).

D. Synthetic Covaried Data Results

These results are largely corroborated by the analysis of the
covaried synthetic data; the rankings and relative strengths of
the AFS classifiers remain the same when examined on covaried
synthetic data with similar amounts of distribution overlap as the
MUP data results. As the distributions become more separate,
the effect is weakened as the overall classification accuracy rises
toward unity; similarly as the distributions are moved together,
the effect weakens as overall classification accuracy moves to-
ward random chance.

E. Overall Results Summary

Table II displays the overall results found, showing, for each
classifier, the AFS with the most significant effect for each test,
or no effect if no significant effect was observed.
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Fig. 4. Independent sample confidence error for the PD/FIS* systems.

TABLE I
KRUSKAL–WALLIS TESTS ON PD/FIS* CONFIDENCE ERROR

TABLE II
SUMMARY OF RESULTS

V. DISCUSSION

The NAÏVE-BN systems are shown to perform poorly com-
pared to all of the other systems, likely because of feature de-
pendence. The TAN-BN and EVOLVED-BN systems are shown to
perform similarly to each other, but not as well as the PD/FIS*
-based systems. There are a couple of different possible reasons
that the PD/FIS*-based systems perform better than the BN sys-
tems. It is possible that the BN structures imposed or found do
not truly represent the distribution of the training data. For exam-
ple, the features in the networks are definitely not independent,
and so the assumptions that the NAÏVE-BN systems make do
not hold. Another potential explanation is that the BN systems
are unable to apply Occam’s Razor and find simple, generalized
patterns. The PD/FIS*-based systems only keep patterns in the
rule-base that are found as significant, whereas the BN systems
keep full observed probability distributions for dependencies
from the training data, and apply them when classifying.

When the systems are trained with MUP data, with various
AFSs added, different strengths show in the results. The BN
systems do not appear to have difficulty in learning problems
with multifeature AFSs added to the original data, whereas the

PD/FIS*-based systems have increasing difficulty as the size of
the AFSs increase.

These results imply that, while the BN systems perform worse
than the PD/FIS*-based systems, they can be trained with more
complex datasets in a reasonable period of time. If the addition
of AFSs to the original MUP data shows a significant increase
in classification accuracy, then BN systems may have the ad-
vantage because they are able to handle the larger datasets. This
result is not limited to simple data with AFSs added, but to any
data that has a large number of features.

It is also interesting to note that, for most of the metrics
discussed, the EVOLVED-BN systems behave inconsistently with
the addition of AFSs as any of the other systems. Independent
sample classification accuracy does improve with the systems
using AFS(MEAN+MIN), but there is no statistically significant
effect on sample classification confidence error observed from
the addition of any of the AFSs to the original MUP data.

As EVOLVED-BN systems are trained, there is no requirement
that every feature node is included in the systems. This means
that they are the only BN learning approach investigated in this
paper that performs feature selection. There are two different
potential benefits of adding AFSs to data: there will be more
information, and there will be better information. Since the
EVOLVED-BN systems are more likely than the other systems
to disregard features inherently, they lose the potential benefit
of there being more information. However, the fact that there
is better information does allow the EVOLVED-BN systems to
classify more accurately on a per-sample basis. However, these
improvements are not enough to translate to better overall study
classification accuracy.

A. Sample Classification

All systems have at least one AFS that tends to cause an
improved independent sample classification accuracy, with a
confidence of 99.9%. Additionally, but with the exception of
the EVOLVED-BN systems, all systems have at least one AFS
that tends to cause a decreased independent sample confidence
error, with a confidence of 99.9%.

The TAN-BN(MIN) systems appear to discriminate against
samples that the TAN-BN(NONE) systems have difficulty in
classifying correctly. In other words, for samples classified with
low accuracy but high confidence by TAN-BN(NONE), the TAN-
BN(MIN) system could correctly represent a low confidence
for these samples. The same effect occurs with the addition of
several different AFSs to the PD/FIS* systems, with confidences
of at least 90%. This means that the additional information
provided by the AFSs gives the systems enough information to
recognize samples that may be more difficult to classify. This
can potentially be used to flag problematic classifications, and
alert a clinician of these, rather than make an error; we hope to
address this question more fully in future work.

This effect, however, is limited to the two aforementioned
systems—the other systems either do not have trouble classify-
ing, or do not differentiate between samples that the AFS(NONE)
systems have difficulty with.

Some of the systems just simply have problems classifying
systems with AFSs added to the original MUP data. As AFSs are
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added, and more complex datasets are thus created, it becomes
less likely that patterns seen in the training data will appear in
the testing data. When a pattern never seen by a BN during
training appears in testing, a classification cannot be made be-
cause the probability assigned to that pattern is 0, causing the
probability of any class being correct as 0. The PD/FIS* sys-
tems are designed so that they find patterns in the training data
that appear more often than random chance should allow. When
patterns that have never been seen before appear in testing data,
these two systems simply do not use those patterns as part of
the classification process. However, as there are more patterns
available in the training data, it is likely that more significant
patterns will be found. Not all of these patterns are necessarily
useful—some of them may even be misleading. When a classi-
fication is made, rules that would otherwise have been integral
in classifying the sample correctly may be weighted too low due
to the large number of other rules that are also triggered.

In other words, the AFSs analyzed in this paper add infor-
mation about how individual samples relate to the studies in
which they are a part of. With each additional aggregator in
an AFS, the number of features added to the original dataset
increases, which provides more and more information about
how exactly each individual sample relates to the whole. This,
however, also results in a larger number of possible relation-
ships between the individual samples and the studies as a whole
because of the larger total feature space. In turn, this requires
more data to cover the space—this is the well-known “curse of
dimensionality.” Due to this increased number of patterns, the
number of apparently significant patterns also increases causing
truly significant and useful patterns to get lost in less useful
patterns.

The most obvious solution to this dilemma is to add more
training data. As training data are added, it becomes more prob-
able that significant relationships between samples and the stud-
ies they are part of are found. Also, more data will decrease
the statistical variability in significance when finding patterns
in the data for the PD/FIS* systems, allowing them to be more
confident that the found statistically significant patterns are truly
statistically significant. However, this poses two more problems.

First, it is still not a guarantee that all significant patterns will
be found. This problem is not unique to systems using datasets
that have AFSs—the job of a learning algorithm is to find general
patterns in training data that it can use to classify new samples.
If any system is given patterns that it does not recognize from
the training data, then it will be unable to classify. This would
imply that the system was either unable to find general patterns
in the data, or there are no general patterns in the data. If the
system is unable to find general patterns, then different systems
need to be investigated. However, if no general patterns exist
in the data, then it may become a very difficult classification
problem that needs further study.

The second problem is that more data may not be available.
In a clinical setting, data can be hard to acquire. It could involve
getting a large number of people to participate in potentially
obtrusive tests. Data could potentially be generated by using
computer simulations of human functions, but this poses the risk
of introducing biases if the simulations do not mimic the human

functions in their entirety. Ultimately, real data are preferred for
training real systems to classify real problems, and so acquiring
more data just may not be possible.

B. Study Classification

Section IV-C and Table II show that there exists at least
one AFS for every group of systems, excluding the EVOLVED-
BN systems, where overall confidence error is lower than the
AFS(NONE) systems, with a confidence of 99.9%. This is not
surprising, since the same systems tend to have increased in-
dependent sample classification accuracies, and decreased in-
dependent sample confidence errors, when certain AFSs are
added. It is not surprising that the EVOLVED-BN systems do
not show a decreased confidence error, either, as the addition
of AFSs to the original MUP data did not improve independent
sample confidence error.

C. Transparency and Confidence

The addition of an AFS shows a significant improvement
in classification accuracy, confidence, and in confidence error.
This significant effect indicates that use of an AFS in decision
support systems has multiple benefits, both in terms of system
accuracy and in terms of system transparency.

VI. CONCLUSION

While the inclusion of an AFS may provide a significant clas-
sification benefit for multisample problems, different classifiers
are sensitive to different AFS choices, as seen in Table II. The
use of the AFS(MEAN) is generally found to be advantageous.
This may relate to the fact that MUP data have been noted to
have a great deal of information in its outliers [18]–[21], indi-
cating that other choices of AFS that take this into account, such
as a trimmed mean, or quartile measure, may be of interest.

The addition of AFSs to the original MUP data increases
independent sample classification accuracy, but that does not
translate into an increased study classification accuracy. When
trained and tested with AFS(MEAN), the PD/FIS* systems show
a reduced confidence error. When AFS(MAX) is used to train and
test the PD/FIS* systems, confidence error remains unchanged.
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