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Predictive Monitoring of Mobile Patients by
Combining Clinical Observations With Data From

Wearable Sensors
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Abstract—The majority of patients in the hospital are ambu-
latory and would benefit significantly from predictive and per-
sonalized monitoring systems. Such patients are well suited to
having their physiological condition monitored using low-power,
minimally intrusive wearable sensors. Despite data-collection sys-
tems now being manufactured commercially, allowing physiologi-
cal data to be acquired from mobile patients, little work has been
undertaken on the use of the resultant data in a principled man-
ner for robust patient care, including predictive monitoring. Most
current devices generate so many false-positive alerts that de-
vices cannot be used for routine clinical practice. This paper
explores principled machine learning approaches to interpreting
large quantities of continuously acquired, multivariate physiolog-
ical data, using wearable patient monitors, where the goal is to
provide early warning of serious physiological determination, such
that a degree of predictive care may be provided. We adopt a one-
class support vector machine formulation, proposing a formulation
for determining the free parameters of the model using partial area
under the ROC curve, a method arising from the unique require-
ments of performing online analysis with data from patient-worn
sensors. There are few clinical evaluations of machine learning
techniques in the literature, so we present results from a study at
the Oxford University Hospitals NHS Trust devised to investigate
the large-scale clinical use of patient-worn sensors for predictive
monitoring in a ward with a high incidence of patient mortality.
We show that our system can combine routine manual observa-
tions made by clinical staff with the continuous data acquired from
wearable sensors. Practical considerations and recommendations
based on our experiences of this clinical study are discussed, in the
context of a framework for personalized monitoring.

Index Terms—E-health, novelty detection, personalized moni-
toring, predictive monitoring.
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I. INTRODUCTION

THE majority of patients in the hospital are ambulatory, and
thus, they are well suited to be monitored using wearable

sensors for the purposes of predictive care. The goal of such sys-
tems is to provide early warning of physiological deterioration
such that preventative clinical action may be taken to improve
patient outcomes. However, the current state of the art is not at
a level suitable for wide-scale adoption, and there is a perceived
“plague of pilots” in unvalidated data collection systems [1]–[3],
whereby the majority of published studies are concerned with
the demonstration of algorithms using small numbers of sub-
jects, who are often not representative of actual patient groups.

Despite wearable patient monitors now being manufactured
commercially, allowing the collection of continuous physiolog-
ical data from ambulatory patients, the resulting quantity of data
acquired each day is large, and a “data deluge” effect occurs.
The workload of clinicians and healthcare workers prevents
them inspecting long time-series of multivariate patient phys-
iological data to a high degree of accuracy, and the predictive
aspect to patient monitoring is lost. “Intelligent,” online process-
ing of these large datasets is, therefore, required for predictive
monitoring, the results of which should then focus the limited
resources of human experts to those subsets of patients who are
deemed to be most at risk of being physiologically unstable, and
who are in need of expert review. However, existing clinically
validated devices often simply compare physiological data to
heuristically determined, univariate thresholds and generate an
alert if those thresholds are exceeded (e.g., “alert if heart rate
(HR) exceeds 130 beats/min”). Such simplistic schemes result in
large numbers of false alerts, which make these devices largely
unusable in clinical practice [4]–[6]. Due to the difficulty of
acquiring large datasets of patient physiology in clinical trials,
there have been few attempts to investigate the large-scale clin-
ical use of wearable patient sensors for predictive monitoring,
and this area of e-health remains largely unexplored. A review
of existing methods may be found in Section III.

A. Contributions of This Paper

1) We address the perceived lack of evidence for the large-
scale clinical adoption of “intelligent” predictive monitor-
ing systems by describing (in Section II) a study in which
wearable sensors are used for the routine care of a large
population of high-risk, ambulatory patients.

2) We adopt a machine learning approach to cope with the
large quantity of vital-sign data acquired from monitoring
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ambulatory patients in real time, comparing four tech-
niques, the majority of which have not been applied to the
predictive monitoring of patient data. A survey of existing
methods is described to set the context of this study, given
in Section III.

3) Existing methods for automatically determining the pa-
rameters of machine learning models (as required in
online patient monitoring) suffer from many disadvan-
tages; these problems, and a novel method for estimating
suitable model parameters for the unique constraints in-
volved in predictive patient monitoring, are introduced in
Section III. Results are presented in Section IV.

4) A discussion and conclusions are presented in Section V,
in which we describe how the work described in this paper
makes a step toward the ultimate goal of personalized
predictive monitoring.

II. BACKGROUND

We undertook a clinical study approved by the local Research
Ethics Committee1 of 200 patients in a postoperative ward of
the Cancer Centre, Oxford University Hospitals NHS Trust,
Oxford, U.K. Patients were discharged to the ward following
upper-gastrointestinal (GI) cancer surgery. This group of pa-
tients was selected for our study because of the high incidence
(up to 20%) of postsurgical complications, whereby patients can
deteriorate physiologically, resulting in adverse outcomes such
as readmission to the intensive care unit (ICU) or death. Read-
mission to the ICU is prolonged and the mortality rate of such
patients is high. These adverse events may occur when the phys-
iological condition of the patient is not recognized or acted upon
early enough [5], motivating the need for predictive monitoring
patient vital signs (HR, measured in beats per minute, respi-
ratory rate RR, measured in breaths per minute, blood oxygen
saturation SpO2 , measured as a percentage, and systolic blood
pressure SysBP, measured in mmHg). The goal of such “predic-
tive” systems is to provide early warning of physiological dete-
rioration, such that preventative clinical action may be taken.

A. Existing Manual Monitoring

Clinical guidance in the U.K. [6] recommends the regular
observational recording of vital signs, combined with the use
of early warning score (EWS) systems. The latter involve the
clinician applying univariate scoring criteria to each vital sign
in turn (e.g., “score 3 if HR exceeds 130 beats/min”). Care is
then escalated to a higher level if any of the scores assigned to
individual vital signs, or the sum of all such scores, exceed some
threshold.

The length-of-stay of patients in our study is shown in
Fig. 1(a), where the mean length-of-stay is nine days follow-
ing surgery. However, the distribution shown in the figure has
a long tail, extending up to 60 days, corresponding to patients
for whom earlier discharge is not possible. This is typically due
to continued physiological instability of the patients, and con-
cern on the part of the ward staff such that the patient cannot

1Mid & South Bucks Research Ethics Committee reference 08/H0607/79.

(b)
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Fig. 1. (a) Histogram of the length-of-stay of 200 studied patients in the
Cancer Centre. (b) Histogram of time between manual observations, over all
patients.

be discharged. Such patients can accumulate several hundred
manual vital-sign observations during their stay on the ward; a
histogram of the time between consecutive manual observations
(across all patients) is shown in Fig. 1(b). The latter shows that
most observations are taken at intervals of several hours, with a
mean of 4.1 h between observations (but often rising to as long
as eight h between observations).

This current standard of care for “predictive monitoring,”
involving manual observation, has a number of disadvantages.
1) The EWS assigned to each vital sign, and the thresholds
against which the scores are compared, are typically heuristic
[7]. 2) EWS systems are used with periodic observation of vital
signs, which may be made as infrequently as once every 12 h
in some wards. Patients may deteriorate significantly between
observations. 3) There is a significant error rate associated with
manual scoring, especially in the high-workload setting of a
high-dependence clinical ward. 4) Each vital sign is treated
independently and correlations between vital signs are not taken
into account. The approach described in this paper attempts to
address these disadvantages.

B. Continuous Wearable Monitoring

Patients in our study are connected to conventional bed-side
monitors during the first day after their surgery. However, as
is common in most hospital wards, the majority of patients are
mobilized after the first day, to gain exercise by walking around
the ward. This demonstrates the difficulty of monitoring the
majority of patients in hospital (and at home), because they
are mobile, and which therefore strongly motivates the use of
wearable monitors to perform predictive monitoring.
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Fig. 2. (a) Histogram of continuous data completeness as a percentage of the
total time that the patient was equipped with a wearable patient monitor. (b)
Time that patients were equipped with a wearable patient monitor (sorted in
ascending order and shown in black) with actual time of acquired data (shown
in gray).

Continuous wearable monitoring devices are widely avail-
able, despite the disadvantages of high false-alarm rates de-
scribed in Section I. The system deployed in the study described
by this paper used mobile pulse oximeters manufactured by
Nonin Medical, Inc. (for the acquisition of the photoplethys-
mogram or PPG, from which SpO2 and HR may be derived).
Mobile ECG sensors manufactured by Corscience GmbH & Co.
KG. (for the acquisition of the ECG, from which HR may be
derived) were also used. We note that the alarm functions of
these wearable monitors were deactivated, and the devices were
used only for continuous data acquisition, to which the machine
learning methods described in Section III were then applied
retrospectively.

These wearable devices were configured to communicate
via Bluetooth to a patient-worn PDA, which collected ECG
at 256 Hz and the PPG at 75 Hz. These waveforms, along with
derived estimates of HR and SpO2 , were transmitted to a cen-
tral server via wi-fi. The central station stored data along with
anonymized patient information for later analysis.

There are few reliable methods for acquiring blood pressure in
a nonintrusive continuous manner, and so manual measurements
of SysBP made by the ward staff were entered into the patient
PDA, along with measurements of RR. After entry into the PDA,
these manual measurements were automatically transmitted to
the central station, where they were then associated with the
continuous data described above.

Fig. 2(a) shows a histogram of the percentage of the total mon-
itoring time for each patient (defined to be the time for which
wearable sensors were attached to the patient) for which actual
data were acquired. It may be seen that the completeness of data

acquisition is far below 100%, with a mean of 62%. The major
causes of data incompleteness were infrequent malfunction of
the wearable sensors and PDAs, failures in the hospital wi-fi net-
work, occasional crashes of the central server, and expiration of
batteries in the wearable sensors and PDAs. A team of research
nurses was responsible for ensuring that patient compliance and
device readiness was kept as high as possible.

A plot of total monitoring times (sorted into ascending order)
is shown in Fig. 2(b), where the actual monitoring time for each
patient is also shown. Comparison of this figure with Fig. 1(a)
shows that patients were typically connected to the wearable
patient monitors for a proportion of their stay on the ward, with
a maximum total monitoring time of approximately 25 days
(compared with a maximum length-of-stay of approximately
60 days). There was a mean total monitoring time of approx-
imately 5.2 days (compared with an average length-of-stay of
approximately ten days).

Much of the difference between total stay on the ward and
total monitoring time is due to the patient compliance; the ECG
sensors were particularly unpopular with patients, despite their
small size, probably due to their positioning on the chest fol-
lowing upper-GI surgery. The pulse oximeters were tolerated
much better by patients, being attached to the fingertip. How-
ever, patients typically removed the pulse oximeters prior to
eating or showering and often failed to replace the devices af-
terward. This was particularly evident during weekends, when
research nurses were unavailable to check the connectivity of
each patient. Due to the perceived discomfort of the ECG sen-
sors, they were discontinued from use after 52 patients had been
continuously monitored.

The total quantity of continuous data acquired for all
200 patients was 63.8 GB, and subsequently used for investi-
gating our machine learning approach to analyzing the data for
demonstration that predictive monitoring could be performed
by early identification of deterioration.

III. METHODS

Monitoring complex, high-integrity systems (such as patients
in the hospital or at home) can be confounded by the variabil-
ity between individual systems of the same system type. In our
case, patients of similar demographic backgrounds can exhibit
significantly different “normal” physiology. The few examples
of “abnormal” behavior (e.g., physiological deterioration) that
may exist for some population are, therefore, often inapplicable
to the analysis of previously unseen individuals. For example, an
HR of 50 beats/min may be indicative of considerable physiolog-
ical abnormality in one hospital patient, while it may be entirely
normal for a fitter patient of the same age and background.

Furthermore, high-integrity systems also typically exhibit a
high degree of structural complexity and can often comprise
many subsystems that interact in a nonlinear manner. Thus, the
potential space of “abnormality” is extremely large, and so the
large resultant number of failure modes is often poorly under-
stood. For example, the exact response of a particular human’s
physiology to a given failure mode (such as deterioration leading
to myocardial infarction) will vary significantly between
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patients. Those data that do exist are typically insufficient for
constructing accurate models of these failure states, because the
data are usually obtained from a small number of patients, with
differing comorbidities, lifestyles, etc. We have demonstrated
in the previous section some of the difficulties that arise in col-
lecting large datasets of physiological data from patients.

A. Existing Work

Much existing work has focused on the development of com-
munications infrastructures, platforms and protocols for data
transfer, and decision support frameworks, extended reviews of
which may be found in [2], [3], [8], and [9]. The application
of machine learning techniques to the predictive monitoring of
patient physiological data at large scale is limited; reviews may
be found in [10] and [11].

Much existing work takes a “novelty detection” approach.
This method attempts to avoid the problems described earlier
by modeling the “normal” mode of operation of the system,
which is often well understood because most high-integrity sys-
tems function “normally” most of the time. The classifier then
looks for deviations from that normal model, which are classified
“abnormal.” This approach is appropriate for the predictive mon-
itoring of physiological condition in patients, because sufficient
data exist from “stable” patients such that a model of the well-
understood “normal” state of these patients may be constructed.
Physiological deterioration may then be detected as being cor-
responding departures in the vital signs from that “normal”
state. The use of novelty detection for predictive monitoring
of patients is particular appropriate, because the manual EWS
systems described earlier (the use of which is standard clini-
cal practice) are essentially novelty detection schemes, where
the EWS may be directly interpreted as a novelty score that
increases as patient physiology deviates from “normality.”

While the field of novelty detection is well explored in jet en-
gine condition monitoring [12], signal segmentation [13], and
FMRI analysis [14], among many others (a review of which may
be found in [15]), its use for tracking patient physiological con-
dition remains largely unexplored, possibly due to the difficulty
of acquiring and labeling physiological data. Key papers include
the use of kernel estimates with patient vital-sign data [16]: a
low-dimensional approach based on Kalman filtering for neona-
tal ICU patients [17], a support vector machine (SVM) [18],
neural networks in univariate sleep analysis [19], and univariate
Gaussian processes (GPs) for denoising HR data [20].

This paper compares four methods of performing novelty de-
tection: two discriminative methods (using one-class SVMs and
one-class GPs) and two generative methods (using Gaussian
mixture models, or GMMs, and a kernel density estimate). We
describe a novel parameter selection technique for the SVM-
based approach, suitable for training the model for novelty de-
tection with patient physiological data.

B. One-Class SVMs

We briefly recap the formulation of the one-class SVM to
introduce our notation, and refer the reader to the original for-
mulation [21] for further details.

A quantity l of d-dimensional data {x1 , . . . ,xl} ∈ Rd are
mapped into a (potentially infinite-dimensional) feature space F
by some nonlinear transformation Φ: Rd → F . A kernel func-
tion k provides the dot product between pairs of transformed
data in F , such that k(xi ,xj ) = Φ(xi) · Φ(xj ). A Gaussian
kernel allows a point to be separated from the origin in F [22],
hence is chosen for us in the work described by this paper:
k(xi ,xj ) = exp (−‖xi − xj‖2/2σ2), where σ is the width pa-
rameter associated with the Gaussian kernel.

The decision boundary between “normal” and “abnormal”
subspaces in F is z(x) = wo · Φ(x) − ρ0 , with parameters

wo =
Ns∑

i=1

αiΦ(si) (1)

ρo =
1

Ns

Ns∑

j=1

Ns∑

i=1

αik(si , sj ) (2)

where si are the support vectors, of which there are Ns , and
where k is the Gaussian kernel. Here, wo ∈ F , ρo ∈ R, and that
αi are Lagrangian multipliers used to solve the dual formulation,
more details of which may be found in [22] and which are
not reproduced here. Test data x are classified as being either
“normal” or “abnormal” according to the sign of z(x).

C. Proposed Parameter Optimization for a One-Class SVM

For the case of a Gaussian kernel k(xi ,xj ), it is important
to choose an appropriate value for the bandwidth parameter
σ. Larger values of σ result in smoother decision boundaries,
which therefore tend to exhibit lower variance at the expense
of increased bias (using the standard terminology from prob-
abilistic modeling). Conversely, smaller values of σ provide
decreased bias, but at the expense of increased variance. The
“optimal” value for σ will depend on the distribution of the par-
ticular dataset under consideration, and it is not usually obvious
how one should choose the value of σ. For a Gaussian kernel
k(xi ,xj ), the quantity − log k(xi ,xj ) is the Euclidean distance
between two observations scaled by a factor 1/2σ2 . Based on
this link between σ and Euclidean distance, we propose the
following three-step method to determine an appropriate value
for σ, estimated directly from the available training data. The
following is an SVM-based extension of the popular method
proposed by Bishop [23], originally for use with multilayer per-
ceptrons.

A1: Calculate the local average Euclidean distance Δi of
K nearest neighbors from each observation in the training set,
where K =

√
l, Δi = 1

K

∑
j∈D ‖xi ,xj‖, ∀i = 1 . . . l, and

where D is the set of K nearest neighbors for xi .
A2: Calculate the global average distance ΔG by averaging

Δi over all the training data, ΔG = l−1 ∑
i Δi .

A3: ΔG provides a guide for the range of σ, where we define
σ = κ × ΔG , and where κ is a linking constant between the
value of σ and the global average distance ΔG of any dataset.
Therefore, κ provides a guide for the appropriate value of σ,
which is independent of the size of the dataset l. Once an ap-
propriate value of κ is chosen for one dataset, it provides a
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good starting point for another dataset with similar dynamics
(e.g., for another patient vital-sign dataset), allowing the value
of κ to be reused from previous analyses, when the dataset has
changed. This is of particular importance for the online pre-
dictive monitoring of patients, in which such prior information
gained from previous studies can be useful in parameter opti-
mization for new patient-monitoring studies.

The other parameter to optimize in a one-class SVM is ν,
defined below. The support vector constraints in terms of the
SVM penalty parameter (typically denoted C in the literature)
are

∑
i αi = 1, 0 ≤ αi ≤ C, allowing us to state2 that 1/l ≤

C ≤ 1. We may equivalently write C = 1/νl [21], so we have
1/l ≤ ν ≤ 1. Therefore, ν and C take values in the same range.

The parameter ν serves as an upper bound on the proportion
of training observations that lie on the “wrong” side of the hy-
perplane, and is also a lower bound on the fraction of support
vectors among normal training data [22], i.e., ν ≤ Ns/l. Pa-
rameter ν is used in this investigation instead of C, due to its
clear meaning, as described above; the value of C can be easily
recovered using C = 1/νl.

We, therefore, need to optimize SVM parameters (κ, ν) and
propose the following novel method to do so, which exploits the
nature of the physiological datasets typically acquired during
patient monitoring applications:

B1: Choose a pair of parameter values (κ, ν).
B2: Use the chosen (κ, ν) to train a one-class SVM, which is

dependent on a training set of “normal” data.
B3: Use the resulting SVM to classify a validation dataset,

which comprises both “normal” and “abnormal” data in equal
quantity.

B4: Compute partial AUC, defined below, using the validation
results obtained in the previous step.

B5: Repeat B1–B4 using different values of (κ, ν), typically
using a grid search. Choose the (κ, ν) with the maximum partial
AUC, where the latter is defined below.

The performance of a two-class decision rule can be summa-
rized in a receiver operating characteristic (ROC) curve, which
plots the true-positive rate on the vertical axis against the false-
positive rate (FPR) on the horizontal axis, as the decision thresh-
old varies. One possible comparison of different ROC curves is
to consider the area-under-the-ROC-curve (AUC), which inte-
grates the FPR over varying thresholds. AUC is independent of
a fixed decision threshold and is invariant to prior class prob-
abilities [24]. AUC represents the probability that a randomly
chosen positive observation is correctly classified, and there-
fore, a higher value of AUC indicates better separation between
the two classes. Most practical novelty detection systems re-
quire low FPRs, and so we are primarily interested in the ROC
curve for low values of FPR when evaluating the performance
of a novelty detector. (Its performance at higher FPRs is irrele-
vant, and possibly confounding, because these represent choices
of decision threshold that would never be used in practice.)
We, therefore, consider partial AUC in our proposed algorithm

2where the lower constraint arises because, in the worst case, we have all
training data as support vectors and Ns = l, and therefore C ≥ 1/l in order for∑

i
αi = 1. The upper constraint arises because αi ≤ C .

above, to restrict evaluation of the classifier to those ranges of
decision threshold that are likely to be used in practice. Partial
AUC is defined as the integral area between two FPRs [25].
Unlike AUC, whose maximum value is always 1, partial AUC
depends on the two chosen FPRs, over which the ROC curve is
integrated.

Note that our proposed method exploits the typical case en-
countered in physiological monitoring and assumes the presence
of some examples of “abnormal” behavior, which are placed
within the validation set for the purposes of parameter opti-
mization. However, as noted previously, these are likely to be
small in quantity compared with the number of “normal” ob-
servations, and hence, the training set is entirely comprised of
“normal” data, and a one-class approach is taken.

A commonly employed alternative which uses only “normal”
data [21], [26] is to vary the SVM parameters until some fixed
value of the false-positive classification rate α is achieved (e.g.,
α = 0.05) when presented with the training set of “normal” ex-
amples. However, as demonstrated in [12], the overall expected
performance of the one-class SVM can be improved by setting
parameters by taking into account any available examples of
“abnormal” data that may be available, even if they are few
in comparison to the number of “normal” training data. There-
fore, we adopt our proposed approach and include any available
“abnormal” data in our validation set. A comparison with the
conventional one-class method of [21], [26] is provided in the
next section.

D. Other Novelty Detection Schemes

We compare results obtained with the SVM, and its proposed
training scheme, to three probabilistic methods.

The GMM is a semiparametric technique [27] and is defined
by the pdf p(x) =

∑M
i=1 πi p(x|θi), which is comprised of M

component distributions, each of which has a prior probability
πi and a likelihood p(x|θi) = N (x|μi ,Σi), where μi and Σi

have their usual meanings of the center and covariance matrix
for multivariate Gaussian i, respectively. The maximum likeli-
hood estimates of the model parameters were determined using
expectation maximization [24].

The kernel density estimate is a nonparametric method that
has been used previously for vital-sign monitoring [16], which
is essentially a GMM with a kernel placed on each of the
training data, and where each kernel has the same (isotropic)
covariance, σ.

The one-class GP is that proposed by Kemmler et al. [28],
details of which will not be replicated here due to the limita-
tions of space. This method uses the familiar GP classification
framework [29].

E. Classifier Training Methodology

All four candidate approaches will, therefore, be trained using
4-D inputs, corresponding to HR, SpO2 , RR, and SysBP, where
the former two are collected from wearable sensors. Manual ob-
servations include measurement of all four variables, although
SpO2 was measured using the pulse oximeter because no manual
method exists for estimating this vital sign. Input vectors of the
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absolute values of the vital signs (after zero-mean, unit-variance
normalization, using coefficients derived from the training set)
were provided to the classifiers by updating the inputs whenever
new data were available. This approach directly replicates the
use of manual EWS systems, which perform a heuristic version
of novelty detection as noted previously. Additionally, mem-
bers of the clinical staff are encouraged to measure HR, RR,
and SysBP using manual methods (counting pulses, counting
movements of the chest wall, and use of a sphygmomanome-
ter, respectively). For those patients with both ECG and PPG
measurements, HR was estimated using the pulse oximeter to
allow fair comparison with those patients who had no ECG
measurements.

Thirty-seven patients were deemed by clinicians to be suffi-
ciently “abnormal” that the patient would require clinical review.
This labeling occurred retrospectively, with clinicians reviewing
all manually acquired patient data, but not those data acquired
from the wearable sensors. The remaining patients were thus
classified as being “normal.” The available “abnormal” data are
insufficient to train a multiclass classifier, being small in com-
parison with the number of “normal” data, and therefore, the
novelty detection approach is justified for this application.

The available examples of abnormality must be split between
the validation set (to enable parameter optimization, as described
in Section III-C) and the test set (to allow out-of-sample evalu-
ation of the results). However, it is important that each of the 37
“abnormal” patients contributes to either the validation set or the
test set, but not both. If one patient contributed data to both sets,
the test set would no longer be independent of the training and
validation sets, due to the dependence between observations for
a single patient. Results could, therefore, be unfairly skewed in
favor of correct classification, and any poor performance of the
classifier would not be discovered until it is applied to classify-
ing truly independent test data, from further patients. Therefore,
the 37 “abnormal” patients are split equally between validation
and test sets, where the partition of the “abnormal” patients into
two disjoint subsets is random, giving {validation} ∩ {test}= ∅
as required.

Similar numbers of “normal” data are required for each of the
validation and test sets; again, no “normal” patient should con-
tribute data to more than one set, similarly giving {training} ∩
{validation} ∩ {test} = ∅.

Table I shows how patients were assigned to each of the
training, validation, and test sets. The split between the training,
validation, and test sets was performed randomly. In order to
test the variability of the results to this random partitioning,
50 experiments were performed, each experiment containing
a different random partition of patients between the training,
validation, and test sets. Each experiment, therefore, included
retraining of the classifier, revalidation, and retesting, in order
to obtain fully independent results for each experiment. Partial
AUC was determined over the range FPR = [0, 0.15].

F. Classifier Evaluation Methodology

There is no “gold standard” for the labeling of time-series
physiological data, which makes the application of machine

TABLE I
DATASET PARTITIONS, ACROSS 200 PATIENTS (COMPRISING 163 NORMAL,

37 ABNORMAL)

learning techniques to such datasets a particular challenge.
For this study, retrospective clinical review of the manual obser-
vations and patient case-notes resulted in 1-h intervals that were
identified as being indicative of patient deterioration, which
occurred within the 37 “abnormal” patient time-series, as de-
scribed previously. These 1-h intervals are, therefore, the “pos-
itive” cases that the candidate classifiers will attempt to iden-
tify. We subsequently partitioned data from the remaining 163
“normal” patients into 1-h intervals which will be treated as
“negative” cases.

All available data, both manual observations and those from
patient-worn sensors when available, are provided to each of
the candidate algorithms. Where data are missing or incomplete,
missing channels are not provided to the classifiers, but replaced
by the mean of that channel.

Note that each of the 50 experiments results in model retrain-
ing and revalidation, and the models therefore have different
“optimal” novelty detection thresholds for each experiment, ac-
cording to which threshold provided the best performance on
the validation set for that experiment. Results on the test set
for each experiment are reported in the next section. We follow
previous work in this area [16] in deeming a novelty detection
to have occurred if a novelty threshold is exceeded for four or
more minutes in any 5-min window of data.

Defining true-positive, true-negative, false-positive, and
false-negative to be TP, TN, FP, and FN, respectively, a TP will
occur if a 1-h “positive” interval contains a novelty detection,
or FN otherwise. Similarly, a TN will occur if a 1-h “negative”
interval contains no novelty detection, or FP otherwise.

We will consider accuracy, defined to be (TP + TN)/(TP + TN
+ FP + FN), sensitivity as being TP/(TP + FN), and specificity
as being TN/(TN + FP).

IV. RESULTS

A. Classifier Performance

Table II shows the overall results after 50 experiments, at the
“optimal” threshold for each experiment (that threshold deter-
mined from the validation set in each of the 50 experiments).
Here, we have included the results for conventional SVM pa-
rameter optimization [21], [26], referred to as “SVM-0” in the
table, for comparison with results obtained using the proposed
parameter optimization technique exploiting partial AUC, re-
ferred to as “SVM” in the table. The SVM using the proposed
optimization method achieves the highest accuracy and partial
AUC in comparison to the other methods when evaluated using
the independent test data. This is confirmed by the ROC plots
shown in Fig. 3, in which it may be seen that the (mean) ROC
curve for the SVM is higher than that for comparator methods
throughout most of the interval on the horizontal axis.
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TABLE II
NOVELTY DETECTION PERFORMANCE, ± ONE STANDARD DEVIATION

Fig. 3. ROC curve for novelty detection results. The mean of 50 experiments
has been shown at each point on the ROC curve.

B. Case Studies

We now demonstrate the performance of the generative and
discriminative approaches to novelty detection for predictive
monitoring with case studies from “abnormal” patients who
were known to deteriorate, ending with ICU readmission, and,
in some cases, death. As described previously, the goal is to
identify this deterioration as early as possible, to provide maxi-
mum opportunity for preventative action to be taken in advance
of subsequent emergency conditions.

An example of the application of the techniques to patient
vital-sign data is shown in Figs. 4 and 5. The first example shows
an “abnormal,” deteriorating patient for whom manual observa-
tions were taken throughout the patient stay. Only the fifth set
of observations (indicated by the black box) caused the con-
ventional EWS system to alert. Excursions of abnormally high
HR peaking at 130 beats/min prior to this were not observed by
staff (the abnormality falls between the third and fourth manual
observations, shortly after 18.00 hours). However, this deterio-
ration is clearly represented by increases in novelty scores for
both the SVM and GMM. It may be seen that the scores for the
kernel estimate and GP are constantly above threshold for large
periods of the interval shown.

The remainder of the manual observations for this patient
were deemed “normal” by the manual EWS system, but increas-
ingly frequent desaturations in SpO2 may be seen throughout
the time-series (decreasing as low as 84%, which is highly ab-
normal), while periods of tachycardia (elevated HR) increasing
to approximately 130 beats/min were not observed by the man-
ual method. The patient was immediately admitted to the ICU
under emergency conditions after the period shown in the fig-
ure. While the majority of time for this patient was considered
“normal” by the conventional EWS system, frequent corre-
sponding increases of the novelty scores of the SVM and GMM

Fig. 4. Upper plot shows time-series of vital signs for an exemplar patient,
showing HR, RR, SpO2 , and BP in green, purple, blue, and red, respectively,
with time (in hours, with midnights of successive days marked as 00:00) shown
on the horizontal axis. The lower plots show novelty scores derived from GMM
and kernel density outputs − log p(x), SVM output z(x), and GP output on the
same time-base. Horizontal lines in the lower plots show the decision thresholds
for each classifier. Manual observations are shown using circles. (Note that all
RR and SysBP data are manually observed, while the time-series of HR and
SpO2 are continuous data from wearable sensors.)

Fig. 5. Upper plot shows time-series of vital signs for a second exemplar
patient, showing vital signs and novelty detection output as in the first example.
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may be seen throughout the time-series, indicating that these pe-
riods of deterioration were successfully identified by the clas-
sifiers acting on the continuous data acquired from wearable
sensors.

We observe in passing that the similarity of the GMM, kernel
estimate, and SVM output is not accidental, as the − log p(x)
scaling of the GMM and kernel density output makes it a compa-
rable score to the SVM z(x), because the latter asymptotically
approaches the level sets on the pdf in its tails [30].

The second example (see Fig. 5) shows a patient who is simi-
larly unstable at the start of their admission to the Cancer Centre
ward, following surgery. This patient exhibits immediate desat-
urations in SpO2 , decreasing to approximately 85%, and sus-
tained tachycardia increasing to approximately 130 beats/min.
However, the first manual observation for this patient does not
occur until four hours into the period shown, and these physio-
logically abnormalities are not observed by the manual method.

All of the manual observations made for this patient were
deemed to be “normal” by the conventional EWS system. How-
ever, this patient died immediately after the period shown in
the figure. Both the initial deterioration at the start of the time-
series and the elevated HR and desaturations at the end of the
time-series were correctly identified by all four novelty detec-
tion methods, as indicated by the increase of their outputs over
their corresponding decision thresholds. In both examples, the
novelty detection methods used to classify the continuously
acquired data from wearable sensors identify deterioration in
abnormal patients, which is not identified by existing manual
methods. This demonstrates that predictive monitoring is fea-
sible using mobile sensors and offers significant advantages to
manual observation of the patient, which is the current standard
of care in many hospitals.

V. CONCLUSIONS AND DISCUSSION

Advances in principled approaches to predictive patient mon-
itoring have been limited by the difficulty of collecting physio-
logical data from a mobile population of patients. This has been
demonstrated in the context of our study by the technological
and clinical (and, in the U.K., ethical) obstacles that must be
overcome. For the 200 patients that were studied, with an aver-
age length-of-stay of nine days, the average time that wearable
health monitors were worn by was five days. Patient compli-
ance was generally high, with patients being informed of the
potential benefits of wearing their sensors, in terms of identify-
ing any deterioration in their condition. Even so, ECG sensors
were deemed to be unacceptably uncomfortable for prolonged
wear, such that the sensors had to be removed from the study.
While finger-mounted pulse oximeters were more acceptable
to patients, the devices were frequently removed and often not
returned to the finger.

Data dropout was a significant challenge, mainly due to in-
frastructure problems (interruptions in the hospital wi-fi service)
or expired batteries. The ECG sensor had the bare minimum bat-
tery life required for use on the ward (at approximately 24 h),
such that nurses could change the device once per day. Any
shorter battery life would require several changes per day, which

is deemed unrealistic for clinical practice. However, the actual
quantity of data ultimately collected was large.

We note that we have used manually observed estimates of
blood pressure and RR. On-going work aims to provide ro-
bust methods for determining the latter from the ECG and PPG
waveforms acquired from the ECG sensors and pulse oximeter,
respectively. Work exists in this area [31], but trial implemen-
tations have demonstrated that resulting RR estimates are not
robust, and cannot yet be used in clinical practice without further
improvement of the estimation algorithms.

We have demonstrated that automated methods can be used
to identify patient deterioration, fulfilling the aim of predic-
tive monitoring, and automatically parse the large quantities of
data acquired from the trial. We have shown that such meth-
ods accurately identify “abnormal” physiological data, arising
due to patient deterioration, which makes mobile approaches
to predictive monitoring more realistic. We have proposed a
parameter-estimation method for the SVM that takes advantage
of the type of data encountered in patient vital-sign monitoring,
exploiting the notion that the classifier performance is only rel-
evant within a subset of the AUC curve conventionally used for
parameter selection, and which has been demonstrated to out-
perform other methods over the large quantity of clinical data
that we have acquired.

The results of automated novelty detection show that an FPR
(1 − specificity) between 7% and 16% per patient-hour. These
results compare favorably with those of, for example, a can-
didate manual EWS system for national adoption in the U.K.,
which has an FPR of approximately 20% [32]. We note that, as
with EWS systems, the availability of clinical resources would
allow a different “operating point” to be adopted by changing the
novelty threshold—that is, each system could be made more or
less sensitive by adjusting its novelty threshold, as is performed
by changing the threshold score in EWS systems.

The on-going next phase of the clinical study will result in
further data on which to confirm these preliminary findings,
and aims to determine if patient outcomes are improved by
revealing the output of the machine learning process to ward
nurses, online, during the patient stay on the ward.

This next phase of the work makes possible the extension
of the predictive monitoring described in this article to person-
alized predictive monitoring, whereby novelty detection may
be performed using models constructed from the patient’s own
physiology. This approach is of particular interest in the high-
risk group of mobile patients described in this study, while
they are recovering from upper GI surgery, and where the re-
sponse of each patient to surgery is likely to differ significantly
between individuals. However, the construction of models of
normality requires significant quantities of data, and it may be
that a suitable approach to take is one in which prior models
of patient condition are used initially (when few examples of
patient-specific data have been collected), which are then used
as the basis for posterior models that take into account the sub-
sequently observed patient data. It is anticipated that the models
constructed using data from the predictive monitoring study de-
scribed in this paper could form the basis for such prior models
in the personalized setting.
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