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Abstract— Major Depressive Disorder (MDD) is a perva-
sive disorder affecting millions of individuals, presenting a
significant global health concern. Functional connectivity
(FC) derived from resting-state functional Magnetic Reso-
nance Imaging (rs-fMRI) serves as a crucial tool in reveal-
ing functional connectivity patterns associated with MDD,
playing an essential role in precise diagnosis. However,
the limited data availability of FC poses challenges for
robust MDD diagnosis. To tackle this, some studies have
employed Deep Neural Networks (DNN) architectures to
construct Generative Adversarial Networks (GAN) for syn-
thetic FC generation, but this tends to overlook the inherent
topology characteristics of FC. To overcome this challenge,
we propose a novel Graph Convolutional Networks (GCN)-
based Conditional GAN with Class-Aware Discriminator
(GC-GAN). GC-GAN utilizes GCN in both the generator
and discriminator to capture intricate FC patterns among
brain regions, and the class-aware discriminator ensures
the diversity and quality of the generated synthetic FC.
Additionally, we introduce a topology refinement technique
to enhance MDD diagnosis performance by optimizing the
topology using the augmented FC dataset. Our framework
was evaluated on publicly available rs-fMRI datasets, and
the results demonstrate that GC-GAN outperforms existing
methods. This indicates the superior potential of GCN in
capturing intricate topology characteristics and generating
high-fidelity synthetic FC, thus contributing to a more ro-
bust MDD diagnosis.

Index Terms— Conditional generative adversarial net-
works, Graph convolutional networks, Major depressive
disorder, Resting-state functional Magnetic Resonance
Imaging (rs-fMRI), Synthetic functional connectivity
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MAJOR Depressive Disorder (MDD) is one of the most
prevalent mental disorders, characterized by its per-

sistent and severe symptoms such as depressed mood, cog-
nitive impairment, concentration difficulties, and anhedonia
[1]. According to the World Health Organization (WHO)
mental health report [2], approximately 264 million individuals
worldwide suffer from MDD, resulting in significant economic
burdens and raising concerns in public health. Therefore, in
recognizing the economic and societal burdens caused by
MDD, the field of public health emphasizes the urgency of
effective treatment, highlighting the need for accurate and
timely diagnostic methods [3].

Research on understanding the complex brain mechanisms
of MDD is essential in establishing effective strategies for
diagnosis, treatment, and prevention [4]. For the purpose,
many researchers have considerably utilized resting-state func-
tional Magnetic Resonance Imaging (rs-fMRI) over the past
few decades [5]. This non-invasive neuroimaging technique
enables an objective analysis of regional brain activity and
alterations in networks related to MDD by closely observing
subtle changes in blood oxygen level-dependent (BOLD) sig-
nals [6]. In particular, for a comprehensive understanding of
the complex functional interactions between brain regions in-
volved in MDD, it is essential to utilize functional connectivity
(FC) between averaged BOLD signals derived from voxels in
each pair of Regions of Interest (ROIs) [7]. The FC provides
relevant information about the regional connectivity patterns of
a particular brain network, as well as enables the investigation
of functional connectivity patterns in the context of the whole
brain [8], [9]. Through the analysis of FC, researchers can
better discern distinct patterns of brain activity associated with
MDD, leading to deepening the insight into MDD and playing
a pivotal role in creating more effective strategies for early
diagnosis and treatment [4].

With the recent advancements in deep learning (DL), there
has been a significant shift towards using DL-based methods in
FC analysis for MDD diagnosis [10]–[12]. These cutting-edge
methodologies have yielded remarkable results in diagnosing
MDD, significantly advancing our understanding of functional
connectivity and its relation to MDD. Specifically, at the
early stage, DNN [13] was particularly useful for extracting
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patterns and features from high-dimensional FC with their
ability to model complex non-linear relationships. In addition,
BrainNetCNN [14] which was designed with Convolutional
Neural Networks (CNN) [15] allowed it to effectively capture
local and spatial dependencies in brain connectivity data.

Despite their effectiveness, these methods can make it
difficult to capture complex network structures in the FC,
which is typically represented as a graph. The utilization
of graph theory methods [16], [17] has been traditionally
predominant in FC studies due to their ability to capture
and examine intricate interactions among different brain re-
gions. It has shown notable effectiveness in understanding the
complexities of MDD and facilitating an organized analysis
of the FC patterns inherent to the disorder [18]. Motivated
by this traditional approach, and with the recent advent of
Graph Neural Networks (GNN) [19], specifically designed for
graph data, many researchers are actively employing GNN,
particularly, Graph Convolutional Networks (GCN) for FC
studies [11], [12], [20].

One of the main issues in GCN-based FC analysis is how
to define the topology, as it directly affects the GCN’s ability
to learn fundamental MDD-related FC patterns by guiding
information processing and propagation through the network
[21]. However, most GCN-based MDD diagnoses heavily rely
on a small amount of FC to define the topology. For com-
plex disorders like MDD, which have diverse symptoms and
causes, defining the topology based on limited data can create
difficulties in capturing the essential information necessary
for a precise MDD diagnosis [22]. Additionally, using GCN
methods with only limited amounts of FC presents another
significant hurdle, as DL methods such as GCN inherently
require significant amounts of data to ensure more accurate
and generalizable performance.

To overcome the limited data availability, only a few re-
cent studies have employed Generative Adversarial Networks
(GAN) [23] for data augmentation [24]–[26]. Even though
previous studies have illustrated promising results, there are
two notable issues. First, they utilized DNN and BrainNetCNN
as a classifier and the backbone architectures of GAN as
well [24]–[26]. However, for the reasons mentioned above,
we believe that employing a GCN as the backbone architecture
for GAN would facilitate the FC generation with its proven
capability to capture essential topological characteristics of FC
for MDD diagnosis.

Second, the previous research carries the risk of mode col-
lapse [27] since these studies employ the Auxiliary Classifier
GAN (ACGAN) [28] or similar frameworks, which can lead to
the issue of low intra-class diversity [29]. The low intra-class
diversity implies a decrease in the diversity of data generated
by the GAN within the same class [29]. Consequently, the
GAN tends to repetitively generate data following the same
pattern within a restricted range, leading to mode collapse,
a situation where it fails to reflect the overall diversity of
the training data [27]. This risk poses a significant problem,
especially when using GAN to overcome data scarcity and
generate diverse and novel data, as it contradicts the primary
objective.

To address these issues, in this study, we propose a novel

method, GCN-based Conditional GAN with Class-Aware Dis-
criminator (GC-GAN), to improve FC generation quality for
robust MDD diagnosis. First of all, GC-GAN employs GCN
as the generator and discriminator of the GAN. This allows
for a more accurate capture of the complex relationships and
patterns between brain regions of FC. Therefore, GC-GAN
can precisely reflect important information related to MDD
and enable the generation of more realistic FC. Additionally,
by employing a class-aware discriminator, GC-GAN addresses
the problem of low intra-class diversity [29] to mitigate the
potential risk of mode collapse [27]. As a result, our proposed
GC-GAN is capable of generating high-fidelity synthetic FC,
providing an effective countermeasure to the challenge of data
scarcity.

Furthermore, we introduce a graph topology refinement
technique by utilizing the augmented FC dataset, including
real and synthetic FC, for constructing a robust GCN classifier.
Notably, the graph topology directly influences the GCN’s
capacity to learn essential MDD-related FC patterns, guiding
the flow of information processing and propagation throughout
the network. The refined topology, constructed on a more
comprehensive and diverse dataset, enables a more precise
comprehension of the interconnections between brain regions
and allows for a generalized diagnosis of MDD.

To sum up, the main contributions of our study include:
1) We present a novel GAN that uses a GCN-based gen-

erator and discriminator to effectively capture the com-
plex relationships among brain regions in FC, thereby
creating data that more accurately represents the vital
information necessary for MDD diagnosis. To the best
of our knowledge, GC-GAN is the first to generate FC
based on a GCN architecture.

2) Our approach not only uses the synthetic FC in training
the classifier but also finely refines the graph topology,
making it more robust and specialized in MDD diag-
nosis. Through this topology refinement technique, we
have elevated the performance of MDD diagnosis and
have gained a deeper understanding of the brain regions
implicated in MDD.

We assess GC-GAN on a publicly available rs-fMRI dataset
for MDD diagnosis and demonstrate its superiority by con-
ducting comparison experiments with the previous competing
methods. We also perform ablation studies to analyze the
effectiveness of GC-GAN on classification performance.

II. MATERIALS AND METHODS

A. Data Acquisition and Pre-processing

In our work, we used the publicly available REST-meta-
MDD dataset1 [30], the most extensive MDD rs-fMRI dataset
that is provided by the Depression Imaging REsearch Consor-
Tium (DIRECT) [31]. Among the 25 diverse sites constituting
the dataset, we utilized data specifically from Site 20, which
is the largest site consisting of 249 MDD subjects and 228
Normal Control (NC) subjects from the studies approved by
local Institutional Review Boards (IRB) [30], [31]. The data

1https://rfmri.org/REST-meta-MDD
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Fig. 1. An illustration of the proposed method, which refines the topology through the utilization of synthesized FC generated by GC-GAN for
robust MDD diagnosis.

was collected using a Simens Tim Trio 3T scanner with the
following parameters: TR/TE = 2,000/30 ms, flip angle = 90°,
slice thickness = 3.0 mm, interslice gap = 1.0 mm, the number
of slices = 32, number of time points = 242, voxel size = 3.44
× 3.44 × 4.00 mm3, field of view (FOV) = 220 × 220 [30].

The rs-fMRI data were pre-processed using the Data Pro-
cessing Assistant for Resting-State fMRI (DPARSF) [32]. Ini-
tially, the first 10 time points were discarded. The subsequent
processing steps included slice-timing correction, head mo-
tion correction, band-pass filtering, and removal of confound-
ing factors [20]. Following this, co-registration between T1-
weighted images and mean functional images was performed,
along with a transformation from individual native space to the
Montreal Neurological Institute (MNI) template space [20].
The processed volumes are partitioned into 112 ROIs based
on Harvard Oxford atlas [33]. Subsequently, the time series of
rs-fMRI BOLD signals were extracted and averaged. Finally,
a 112 × 112 FC matrix was constructed for each subject
by calculating Pearson’s correlation coefficient between ROIs
with Fisher’s z transformation [34].

B. Proposed Method

Fig. 1 illustrates an overview of our proposed method, which
refines the graph topology through the utilization of real and
synthesized FC data together for robust MDD diagnosis. As
shown in Fig. 1(A), we first pre-train a GCN-based classifier
with the topology defined from real FC data. We then construct
GC-GAN to generate synthetic FC data as shown in Fig.
1(B). Here, the topology and GCN-based classifier in Fig.
1(A) are adopted to construct GC-GAN. Finally, as shown
in Fig. 1(C), we refine the topology and reconstruct the GCN-
based classifier based on the augmented FC dataset including
both the real and generated synthetic FC data. The detailed
overall procedure is outlined in Algorithm 1 in Supplementary
Materials.

1) GCN-based Classifier Pretraining: In this work, as shown
in Fig. 1(A), each real FC derived from rs-fMRI data is
represented as an undirected graph G = (V,E). Here, V is a

set of R nodes corresponding to the set of ROIs, and E denotes
the set of edges indicating connections between pairs of nodes.
Notably, in our study, the term ‘topology’ specifically refers to
these edges. Each node has its own feature vector v ∈ R1×R,
equivalent to the row vector of the node in the FC matrix.
The topology of graph G is mathematically represented by
an adjacency matrix A ∈ RR×R. To define a topology
capturing distinct connection patterns between MDD and NC,
we employed the minimum-Redundancy-Maximum-Relevance
(mRMR) feature selection algorithm [35] on real FC data.
Since the algorithm primarily assesses relative importance
using mutual information, it enables us to define a topology
by focusing on connections highly relevant to MDD in a data-
driven manner. By retaining only approximately 10% of the
connections [36]–[38], we formed a more effective sparse
topology as compared to a fully connected one [39], [40].
The selected feature of FC is visualized in Supplementary
Materials Fig. S1.

To extract informative features from the FC graph, we
employed spectral graph convolution [19], [41], a widely
utilized technique in various studies focused on brain disease
diagnosis [42]. In spectral graph analysis, the graph Laplacian
plays a pivotal role and is denoted as L = D−A. Here, D ∈
RR×R represents the diagonal degree matrix, and its elements
are defined as D(i, i) =

∑
j A(i, j). The normalized graph

Laplacian is represented as L = IR−D− 1
2AD− 1

2 , where IR
is the identity matrix. The Laplacian can be diagonalized by
the matrix of eigenvectors of the normalized graph Laplacian
U such that L = UΛU⊤, where Λ = diag([λ0, ..., λR−1]) is
the diagonal matrix of eigenvalues [41].

The spectral graph convolution can be defined as the mul-
tiplication of a feature v ∈ R1×R with a filter gθ = diag(θ),
parameterized by θ ∈ R1×R:

gθ ∗ v = Ugθ(Λ)U⊤v, (1)

where ∗ is the convolution operator on graph [37], [41].
However, this non-parametric filter is not localized in space

and entails computationally expensive matrix multiplication
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Fig. 2. An illustration of the GC-GAN architecture for synthetic FC generation.

[41]. To mitigate the computational complexity of calculat-
ing Ugθ(Λ)U⊤, the calculation is simplified using k-order
Chebyshev polynomials to approximate the filter gθ(Λ), ex-
pressed as:

gθ(Λ) ∗ v ≈
K−1∑
k=0

θkTk(L̃)v, (2)

where L̃ is the scaled graph Laplacian and θk are the trainable
parameters [43]. Recall that the Chebyshev polynomial Tk(L̃)
of order k may be computed by the stable recurrence relation
Tk(L̃) = 2L̃Tk−1(L̃)−Tk−2(L̃) with T0(L̃) = 1 and T1(L̃) =
L̃ [37], [41].

In this study, given the node features H = [v0, ...,vR−1]
⊤

of the FC graph, we can define the output feature of the l-th
ChebConv as:

H(l+1) =

K−1∑
k=0

θ
(l)
k Tk(L̃)H

(l). (3)

This formulation enables effective feature extraction by
leveraging the intrinsic properties of the graph structure [37].
The objective function of the classifier C employs the cross
entropy loss [44] as follows:

Lc = −y · log(ŷ)− (1− y) · log(1− ŷ), (4)

where ŷ denotes the predicted label of the GCN-based classi-
fier.

We adopt a pre-training approach in which we first train
a GCN-based classifier with the defined topology based on
the real FC, and then adopt the GCN layer of the trained
classifier as the initial feature extractor of the discriminator of
GC-GAN. By using the classification capabilities of the GCN-
based classifier trained on the real FC, our discriminator can
efficiently discriminate between real/fake FC of each class,
i.e., MDD and NC, from an early stage.

2) Synthetic FC generation based on GC-GAN: In this phase
in Fig. 1(B), we construct GC-GAN to generate synthetic FC.
GC-GAN is composed of a pair of GCN-based generator and
discriminator, which are trained adversarially. Fig. 2 illustrates
the GC-GAN architecture.

The class-aware discriminator Dis is architected in a man-
ner that facilitates simultaneous classification of whether data
is real or synthetic, and the determination of its corresponding
class label. Specifically, the discriminator receives real FC or
synthetic FC as input and tries to classify real FC as ‘real
MDD/NC’ and synthetic FC as ‘fake MDD/NC’ (i.e. y =

0: real NC; y = 1: real MDD; y = 2: fake NC; y = 3:
fake MDD). The structure of the discriminator is designed by
borrowing parts of Auxiliary Discriminative Classifier GAN
(ADC-GAN) [29] discriminator, which is proposed to mitigate
the mode collapse [27] that may be caused by low intra-class
diversity [29]. To enhance the discriminative capacity of the
discriminator, we used the weights of the GCN layer from
a pre-trained GCN-based classifier as the initial weights for
the discriminator. The objective function of the discriminator
employs cross-entropy loss [44] for both real FC and synthetic
FC, thereby enabling the discriminator to acquire the ability to
accurately discern between real FC and synthetic FC through
the minimization of the cross-entropy loss. Mathematically the
objective function of the discriminator can be expressed as
follows:

Ld = −yreal · log(Dis(Xreal))− yfake · log(Dis(Xfake)), (5)

where the yreal indicates the label of ‘real MDD/NC’, yfake
denotes the label of ‘fake MDD/NC’ and Xfake is the generated
synthetic FC.

The generator Gen first takes (56 × 112) dimensional
Gaussian random noise matrix Z and class label yreal, as
input. Given that the discriminator evaluates both the class
information (MDD or NC) and the authenticity of the FC
(real or fake) [29], [45], the generator takes labels from the
real class as input and tries to fool the discriminator by
creating realistic synthetic FC, thus guiding it to categorize
the synthetic FC as belonging to the corresponding input class
[29], [45]. For instance, it takes the ‘real MDD/NC’ label
as input to generate data that the discriminator identifies as
‘real MDD/NC’. Through this process, the generator gains
the capability to generate realistic synthetic FC while still
preserving the information of the respective class. To enhance
the representation of the generator, we used the weights of the
GCN layer from a pre-trained GCN-based autoencoder as the
initial weights for the generator. The objective function of the
generator consists of cross-entropy (CE) loss [44], and mean
squared error (MSE) loss [46], which allows the generator to
create more realistic FC identified as real class labels by the
discriminator and ensures the generated FC aligns with the
scale of the real FC on an element-wise basis, respectively.
The regularization parameter α of MSE loss is initialized by
1 and will gradually reduce to 0 later in the training process.
Mathematically, the objective function of the generator can be
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expressed as follows:

Lg = −yreal · log(Dis(Xfake))− α(Xreal −Xfake)
2. (6)

3) Robust MDD diagnosis with refined topology: After train-
ing GC-GAN, we utilize the learned generator and discrim-
inator to generate synthetic FC for data augmentation in
MDD classification. Only the synthetic FC classified by the
discriminator as belonging to the ‘real MDD/NC’ is selected
and combined with real FC to create an augmented FC dataset.
Subsequently, as shown in Fig. 1(C), we utilize the augmented
FC dataset to reconstruct the GCN-based classifier for robust
MDD diagnosis. Specifically, we apply the mRMR feature
selection algorithm in the augmented FC dataset to refine the
topology, a technique we refer to as ‘topology refinement’.
Through this process, some of the initially selected features
that were deemed less important may disappear, while new
features initially not selected but considered significant may
emerge. In other words, by leveraging the diverse and compre-
hensive information obtained from the augmented FC dataset,
the existing topology is finely adjusted to create a structure
more suitable for MDD diagnosis. Utilizing this refined topol-
ogy, we reconstruct a GCN-based classifier for robust MDD
diagnosis and train the classifier using the augmented FC
dataset. To objectively evaluate the robustness of our approach,
the reconstructed GCN-based classifier is trained in the same
experimental setting as a baseline classifier.

III. EXPERIMENTAL RESULTS

A. Experimental Setting

In this study, the discriminator and classifier were designed
with a two-layer GCN and three fully connected layers, re-
spectively. After each layer, except for the last layer, the Mish
activation function [47] was implemented. Additionally, the
architecture of the classifier included two batch normalization
layers. Similarly, the generator was designed as a two-layer
GCN architecture accompanied by a single fully connected
layer. Here as well, we applied the Mish activation function
after all layers, except the final layer. Furthermore, the Tanh
function was used following the last layer to restrict the output
range within -1 and 1.

For training, we set the discriminator’s learning rate to 9 ·
e−05 with a weight decay of 5 · e−03. The generator used
a learning rate of 1 · e−04 with the same weight decay. We
optimized each model using the Adam optimizer [48] with
parameters (0.5, 0.9), an exponential scheduler with a decay
factor of 0.998, 1,000 training epochs, and a batch size of 100.
For the classifier, we employed a learning rate of 5·e−06 and a
weight decay of 1 · e−4. The Adam optimizer with parameters
(0.5, 0.9), and an exponential scheduler with a decay factor of
0.998 were applied. The training process extended over 2,000
epochs with a batch size of 200.

Notably, all experiments were conducted using the same
amount of synthetic FC as the real FC, i.e., 100% augmenta-
tion ratio according to the results in Table V. The source codes
of the proposed method are available online2 with the detailed

2https://github.com/lunyy/GC-GAN

parameters for all the models presented in the experimental
results.

For robustness and unbiased evaluation, we employed a 5-
fold cross-validation and repeated this process five times with
different random seeds and evaluated the comparison results
with four metrics: classification accuracy (ACC), sensitivity
(SEN), specificity (SPEC), and F1 score (F1).

B. Competing Methods
To validate the effectiveness of our proposed GC-GAN,

we compared the performance of GC-GAN with the several
competing methods, i.e., Semi-Supervised GAN (SSGAN)
[24], Wasserstein GAN with Gradient Penalty (WGAN-GP)
[25], and Auxiliary Classifier GAN (ACGAN) [26]. In SS-
GAN, the discriminator classifies data into c + 1 classes,
where the first c classes correspond to real data from c
different categories, and the last (c+ 1)

th class corresponds to
fake data [24]. WGAN-GP incorporates the Wasserstein loss
function with a gradient penalty term and utilizes a classifier
to guide the data generation process, thus allowing the model
to conditionally generate data for specific classes [25]. Lastly,
ACGAN enhances the discriminator with an auxiliary classifier
to distinguish between real and generated samples and classify
them based on additional label information [26].

Notably, to ensure a fair evaluation of data generation
performance, we utilized the same GCN-based generator and
discriminator for both GC-GAN and the competing methods.
Furthermore, to assess the efficacy of our topology refinement
(TR) technique in enhancing performance, we conducted abla-
tion experiments comparing the results obtained with (marked
as ‘✓’ in the ‘TR’ column in Table I) and without (marked
as ‘-’ in the ‘TR’ column in Table I) the topology refinement
technique.

C. Comparison Results
In the experiments, as shown in Table I, our GC-GAN

achieved outstanding performance compared to the competing
method regardless of whether TR was applied (‘✓’) or not
(‘-’). GC-GAN attained the highest ACC of 66.84% with
TR, exhibiting improvements ranging from 1.26 to 2.82%
compared to the other methods, by achieving the best SEN
of 70.24%, with 1.44 to 3.70% improvements and the best
SPEC of 63.14% with 0.70 to 2.30% improvements compared
to the competing methods. Lastly, in terms of the F1, GC-GAN
achieved the best performance of 68.72%, with improvements
from 1.34% to 2.95% over the competing methods as shown
in Table I. Notably, in all the proposed GC-GAN and com-
peting methods, adopting topology refinement (‘✓’) resulted
in performance improvements across all evaluation metrics.
Especially, GC-GAN achieved the greatest performance im-
provements with topology refinement in terms of ACC, SEN,
SPEC, and F1. The results demonstrate the superiority of GC-
GAN compared to other competing methods and emphasize
the positive impact of TR within our framework. In conclu-
sion, GC-GAN demonstrated improved performance across
all metrics compared to competing methods, underscoring its
effectiveness in generating realistic synthetic FC data.
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TABLE I
MDD CLASSIFICATION RESULTS USING AUGMENTED SYNTHETIC FC FROM THE PROPOSED GC-GAN AND COMPETING GAN METHODS. THE

WILCOXON SIGNED-RANK TEST WAS CONDUCTED TO VALIDATE THE STATISTICAL SIGNIFICANCE (*: p < 0.05, **: p < 0.001) COMPARED TO THE

RESULTS OF THE PROPOSED GC-GAN WITH TOPOLOGY REFINEMENT (TR).

Classifier GAN framework TR ACC (%) SEN (%) SPEC (%) F1 (%)

GCN [19]

- - 64.77 ± 5.70* 68.00 ± 8.39 61.27 ± 9.76 66.72 ± 5.57*

SSGAN [24]
- 64.62 ± 4.60* 68.07 ± 8.00 60.84 ± 7.20 66.62 ± 4.98*
✓ 65.16 ± 4.41 68.15 ± 7.96 61.90 ± 6.15 66.96 ± 5.03

WGAN-GP [25]
- 64.02 ± 4.50** 66.54 ± 7.12** 61.28 ± 6.61 65.77 ± 4.77**
✓ 65.12 ± 3.91 67.58 ± 6.82 62.44 ± 5.51 66.79 ± 4.56

ACGAN [26]
- 64.91 ± 4.42* 67.68 ± 7.56* 61.90 ± 8.68 66.71 ± 4.36*
✓ 65.58 ± 3.37 68.48 ± 7.29 62.42 ± 7.48 67.38 ± 3.66*

GC-GAN (Ours)
- 65.18 ± 5.08* 68.80 ± 8.09 61.28 ± 7.53 67.23 ± 5.27*
✓ 66.84 ± 4.25 70.24 ± 7.89 63.14 ± 8.35 68.72 ± 4.57

TABLE II
MDD CLASSIFICATION RESULTS WERE DERIVED FROM AN ABLATION STUDY WHERE DIFFERENT GAN BACKBONE ARCHITECTURES (GENERATOR

(G) − DISCRIMINATOR (D)) WERE EMPLOYED WITHIN OUR PROPOSED GC-GAN FRAMEWORK. THE WILCOXON SIGNED-RANK TEST WAS

CONDUCTED TO VALIDATE THE STATISTICAL SIGNIFICANCE (*: p < 0.05, **: p < 0.001) COMPARED TO THE RESULTS OF THE PROPOSED

GCN-GCN WITH TOPOLOGY REFINEMENT (TR).

Classifier GC-GAN backbone(G−D) TR ACC (%) SEN (%) SPEC (%) F1 (%)

GCN [19]

- - 64.77 ± 5.70* 68.00 ± 8.39 61.27 ± 9.76 66.72 ± 5.57*

DNN−DNN
- 65.24 ± 4.60* 69.60 ± 7.38 60.48 ± 8.69* 67.54 ± 4.50
✓ 65.88 ± 3.75 69.44 ± 7.45 61.98 ± 6.55 67.85 ± 4.36

DNN−BrainNetCNN
- 63.05 ± 3.97** 67.27 ± 7.82** 58.48 ± 8.44** 65.39 ± 4.3**
✓ 63.81 ± 3.50** 68.23 ± 8.11 59.02 ± 7.82** 66.14 ± 4.2**

DNN−GCN
- 65.11 ± 5.40 69.36 ± 7.61 60.47 ± 7.77* 67.40 ± 5.29
✓ 66.16 ± 4.63 69.76 ± 8.02 62.24 ± 6.30 68.12 ± 5.05

GCN−GCN (Ours)
- 65.18 ± 5.08* 68.80 ± 8.09 61.28 ± 7.53 67.23 ± 5.27*
✓ 66.84 ± 4.25 70.24 ± 7.89 63.14 ± 8.35 68.72 ± 4.57

D. Influence of backbone architecture in GC-GAN
To demonstrate the superiority of our proposed GC-GAN

framework, which is based on a GCN generator and discrim-
inator, we conducted experiments applying various backbone
architectures, which have been utilized in prior studies [24]–
[26]. Additionally, same as Table I, to validate the efficacy
of our topology refinement (TR) technique in enhancing per-
formance, we also conducted ablation experiments comparing
the results obtained with and without the topology refinement
technique on the various backbone architectures.

In Table II, utilizing GCN as the backbone architecture
of GC-GAN demonstrates superior performance compared to
other backbone architectures. This result implies that GCN
possesses the capability to capture essential topological char-
acteristics of functional connectivity for MDD diagnosis. Fur-
thermore, same as the results of Table I, the application of
topology refinement (‘✓’) resulted in performance improve-
ments across all metrics for all GAN models. This validates
that our topology refinement technique operates effectively in
a general context, not limited to a specific GAN model.

E. Application of GC-GAN to other GNN-based models
To demonstrate the reliability of our work, we have con-

ducted an additional experiment to investigate the following
two points. First, we sought to investigate whether the clas-
sification results from our model achieved meaningful im-
provement compared to those from other classification models
by implementing widely recognized GNN-based models, i.e.,
Graph Attention Networks (GAT) [49], GraphSAGE [50], and

Ensemble [12]. Specifically, GAT applies an attention mech-
anism to assign varying levels of importance to neighboring
nodes for each node in the graph [49]. GraphSAGE employs
a learnable function to aggregate information from sampled
neighbors, enabling it to capture intricate relationships and pat-
terns within the graph [50]. The Ensemble, recently proposed
in the field of MDD diagnosis, combines various judgment
techniques such as GCN, GAT, and GraphSAGE to enhance
classification performance [12].

Next, we demonstrated that our GC-GAN-based data aug-
mentation and topology refinement techniques can be gener-
ally applicable for GNN-based models including the baseline
GCN classifier as well as the existing models, i.e., GAT,
GraphSAGE, and Ensemble, resulting in further performance
improvement with our topology refinement approach. For the
purpose, we have further compared their results depending on
whether the proposed method was applied (‘✓’ in the GC-
GAN column) or not (‘-’ in the GC-GAN column) to each
classification model as shown in Table III. Notably, for all
results with our GC-GAN (‘✓’) in Table III, we generated
augmented FC data based on our GC-GAN without retraining
to optimize for each classifier, and then refined the topology
by using the augmented FC dataset.

In the comparison results, we first want to highlight that the
proposed method with the baseline GCN classifier achieves the
best performance in ACC, SEN, and F1, and the second-best
performance in SPEC as shown in Table III. Moreover, the
results imply that the proposed GC-GAN-based method can
be applicable not only to the GCN baseline classifier but also
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TABLE III
MDD CLASSIFICATION RESULTS USING VARIOUS CLASSIFIERS WITH (‘✓’) AND WITHOUT (‘-’) SYNTHETIC FC GENERATED FROM THE PROPOSED

GC-GAN BASED ON THE HARVARD OXFORD ATLAS. THE WILCOXON SIGNED-RANK TEST WAS CONDUCTED TO VALIDATE THE STATISTICAL

SIGNIFICANCE (*: p < 0.05, **: p < 0.001) COMPARED TO THE RESULTS OF THE PROPOSED GC-GAN WITH TOPOLOGY REFINEMENT (TR).

Classifier GC-GAN ACC (%) SEN (%) SPEC (%) F1 (%)

GAT [49]
- 63.14 ± 3.67** 65.56 ± 6.66** 60.48 ± 4.08* 64.89 ± 4.07**
✓ 64.39 ± 3.93* 67.34 ± 6.31* 61.22 ± 6.91 66.32 ± 4.00*

GraphSAGE [50]
- 65.21 ± 3.21* 67.49 ± 6.55* 62.69 ± 6.25 66.82 ± 3.76*
✓ 66.04 ± 4.03 69.02 ± 6.86 62.77 ± 5.95 67.85 ± 4.47

Ensemble [12]
- 65.17 ± 3.84 68.79 ± 7.14 61.17 ± 8.43 67.22 ± 3.98
✓ 66.16 ± 3.84 68.79 ± 9.46 63.30 ± 9.80 67.95 ± 4.04

GCN [19]
- 64.77 ± 5.70* 68.00 ± 8.39 61.27 ± 9.76 66.72 ± 5.57*

✓(ours) 66.84 ± 4.25 70.24 ± 7.89 63.14 ± 8.35 68.72 ± 4.57

TABLE IV
MDD CLASSIFICATION RESULTS ON DIFFERENT SITE DATASETS WITH

(‘✓’) AND WITHOUT (‘-’) SYNTHETIC FC GENERATED FROM THE

PROPOSED GC-GAN BASED ON THE HARVARD OXFORD ATLAS.

Train Test GC-GAN ACC (%) SEN (%) SPEC (%) F1 (%)

S20
S1

- 57.52 ± 1.74 52.88 ± 5.94 62.20 ± 5.54 55.32 ± 3.32
✓ 59.04 ± 1.93 52.32 ± 6.37 65.74 ± 3.75 55.90 ± 4.30

S21
- 56.52 ± 2.79 54.70 ± 5.82 59.10 ± 7.42 57.76 ± 3.45
✓ 57.88 ± 2.13 57.98 ± 3.83 57.82 ± 5.17 60.16 ± 2.35

to other GNN-based models. Specifically, it helps to improve
the performance of the other GNN-based baseline models in
all the metrics. Specifically, by applying our GC-GAN to the
other GNN-based models, ACC improves by 0.83 to 2.07%.
Moreover, the highest improvement in SEN is 2.24%, and
SPEC shows an increase of up to 2.13%. Finally, with our
GC-GAN, F1 exhibits an improvement ranging from 0.73% to
2.00% compared to other GNN-based baseline models. These
results highlight the potential of our GC-GAN to enhance the
performance of various classifiers.

F. Application of GC-GAN on other MDD sites

To verify the effectiveness of our proposed GC-GAN
method, we conduct additional experiments with various sites.
Here, we conducted an additional experiment using multiple
datasets from the three largest sites, i.e., Site 20, Site 1, and
Site 21 within the REST-meta-MDD dataset. Specifically, Site
20 has a total of 477 samples, Site 1 has a total of 148
samples, Site 21 has a total of 145 samples. We have utilized
the data from Site 20 as training dataset and the data from
Site 1 and Site 21 as test dataset , respectively, to evaluate
the GCN-based classification model trained on Site 20 with
(‘✓’ in the GC-GAN column) and without (‘-’ in the GC-
GAN column) our GC-GAN. In this experiment, although the
domain shift problem [20] still remains in this experiment,
it could be possible to indirectly analyze the efficiency of
our GC-GAN on different datasets. Table IV illustrates the
performance comparison between the baseline GCN classifier
without our GC-GAN (‘-’) and the GCN classifier enhanced
with our GC-GAN (‘✓’). From this comparison, the proposed
method achieved higher ACC and F1 compared to the baseline.

TABLE V
MDD CLASSIFICATION RESULTS WITH VARYING SYNTHETIC FC

AUGMENTATION RATIOS USING THE PROPOSED GC-GAN
ON HARVARD OXFORD ATLAS.

Augmentation ratio ACC (%) SEN (%) SPEC (%) F1 (%)

0% 64.77 ± 5.70 68.00 ± 8.39 61.27 ± 9.76 66.72 ± 5.57
50% 66.17 ± 5.18 69.28 ± 8.86 62.77 ± 8.53 67.95 ± 5.60

100% 66.84 ± 4.25 70.24 ± 7.89 63.14 ± 8.35 68.72 ± 4.57
150% 66.38 ± 4.44 70.00 ± 7.88 62.39 ± 7.81 68.37 ± 4.88
200% 65.24 ± 3.95 69.02 ± 11.88 61.05 ± 12.64 66.99 ± 6.12

G. Analysis of augmentation ratio
In our study, we augmented synthetic FC data by the

same amount as real FC data (i.e., 100% augmentation ratio)
according to the experimental findings from the recent study
[51], showing that using synthetic data more than real data can
potentially reduce classification performance. In addition, the
competing studies [24], [25] also augmented the synthetic data
by the same amount as real FC data as well. Thus, based on
the previous research, all experiments were conducted with
the same amount of synthetic FC data as real FC data to
ensure robust results and maintain consistency in comparison.
Notably, to address the class imbalance issue with 100%
synthetic data, we applied inverted sample proportions. For
instance, in the REST-meta MDD dataset on Site 20, with
249/228 real FC data for MDD/NC, we generated 228/249
synthetic FCs for MDD/NC, respectively.

Table V presents the MDD classification performance em-
ploying the proposed GC-GAN with varying ratios of synthetic
FC augmentation. In the ‘Augmentation ratio’ column, ‘0%’
indicates experiments conducted without any data augmenta-
tion, thus reflecting the performance only based on the real
FC data. The augmented results across all augmentation ratios
outperform the results obtained using only real data in all the
cases except SPEC on 200% augmentation ratio highlighting
the robust data generation capability of our method. Moreover,
it is worth noting that our method achieved the most effective
performance enhancement with 100% augmentation ratio in
all the metrics as shown in Table I.

H. Application of GC-GAN on AAL atlas
To verify the effectiveness of our proposed GC-GAN

method, we conducted additional experiments using the Auto-
matic Anatomical Labeling (AAL) atlas [52] which is widely
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TABLE VI
MDD CLASSIFICATION RESULTS USING AUGMENTED SYNTHETIC FC FROM THE PROPOSED GC-GAN AND COMPETING GAN METHODS BASED ON

THE AAL ATLAS. THE WILCOXON SIGNED-RANK TEST WAS CONDUCTED TO VALIDATE THE STATISTICAL SIGNIFICANCE (*: P < 0.05, **: P < 0.01)
COMPARED TO THE RESULTS OF THE PROPOSED GC-GAN WITH TOPOLOGY REFINEMENT (TR).

Classifier GAN framework TR ACC (%) SEN (%) SPEC (%) F1 (%)

GCN [19]

- - 63.23 ± 4.80** 65.21 ± 4.62* 61.07 ± 7.00 64.92 ± 4.35*

SSGAN [24]
- 63.84 ± 5.75 67.02 ± 5.74 60.35 ± 7.38 65.90 ± 5.32
✓ 64.64 ± 4.94 68.72 ± 5.70 60.18 ± 7.02 66.95 ± 4.62

WGAN-GP [25]
- 62.73 ± 4.87* 64.97 ± 6.23 60.28 ± 6.80 64.44 ± 4.99*
✓ 63.44 ± 3.24 67.51 ± 4.43 59.02 ± 5.30 65.78 ± 3.18

ACGAN [26]
- 63.49 ± 4.30* 66.13 ± 5.00 60.60 ± 7.42 65.36 ± 3.91*
✓ 64.64 ± 4.66 67.34 ± 4.45 61.69 ± 7.15 66.52 ± 4.13

GC-GAN (Ours)
- 64.05 ± 5.00 66.36 ± 5.17 61.51 ± 7.20 65.79 ± 4.60
✓ 65.40 ± 5.61 67.92 ± 6.28 62.65 ± 6.21 67.14 ± 5.53

Fig. 3. The class-wise (MDD/NC) data distributions of the real FC (blue) and synthetic FC generated by the proposed (purple) and competing
methods according to various GAN frameworks, i.e., SSGAN (orange), WGAN-GP (green), ACGAN (red), with the variance of each data distribution
and the overlap score (%) between the distributions of synthetic and real FC, respectively.

used not only in MDD research but also in brain diseases such
as Alzheimer’s disease [53] and autism spectrum disorder [54].
In the experiment, we employed the same settings as our initial
experiment conducted on the Harvard Oxford atlas in Table I.

Table VI shows the comparison results with the proposed
and competing methods based on the AAL atlas. In the
experiments, the proposed method achieved outstanding per-
formance compared to the competing method regardless of
whether TR was applied (‘✓’) or not (‘-’). Our GC-GAN
attained the highest ACC of 65.40% with TR, exhibiting
improvements ranging from 0.76 to 2.67% compared to the
other methods, by achieving the best SPEC of 62.65%, with
0.96 to 3.63% improvements and the second best SEN of
67.92% with -0.8 to 2.95% improvements compared to the
competing methods. Lastly, in terms of the F1, our method
achieved the best performance of 67.14%, with improvements
from 0.19% to 2.7% over the competing methods. Notably, in
all the proposed and competing methods, adopting topology
refinement (‘✓’) showed performance improvements across
all evaluation metrics, except SPEC for SSGAN and WGAN-
GP. The results demonstrate the superiority of our GC-GAN
compared to other competing methods and emphasize the
positive impact of TR within our framework. Furthermore,
experiments conducted with the additional atlas indicate the

promising potential of GC-GAN, not limited to a specific atlas.

IV. DISCUSSION

A. Comparison of Synthetic FC Distribution
Fig. 3(A) and (B) show the class-wise (MDD/NC) data

distributions of the real FC (blue) and synthetic FC generated
by the proposed (purple) and competing methods according to
various GAN framework, i.e., SSGAN (orange), WGAN-GP
(green), ACGAN (red), with the Kernel Density Estimation
(KDE) measure [55].

KDE is a non-parametric technique for estimating density
using a kernel function and has been widely used in GAN
studies to evaluate model distributions [56], [57]. In addition,
as shown in Fig. 3(C), we measured the overlap score (%)
between the distributions of synthetic and real FC and the
variance of each data distribution. The measurements indicate
how well each model produced realistic synthetic FC with the
amount of mode collapse, i.e., the overlap score represents how
similar the generated data is to real data while the variance
shows the diversity of the generated data.

According to the measurements, we can first check that the
proposed method has the highest overlap score of 90.7% for
MDD data and 92.4% for NC data, respectively. The results
indicate that the proposed method generated a more realistic
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Fig. 4. The class-wise (MDD/NC) data distributions of the real FC (blue) and synthetic FC generated by the proposed (purple) and ablation models
according to various GAN architectures, i.e., DNN-DNN (orange), DNN-BrainNetCNN (green), and DNN-GCN (red), with the variance of each data
distribution and the overlap score (%) between the distributions of synthetic and real FC, respectively.

synthetic FC compared to the competing methods. In the case
of the variance, it can be seen that our method does not have
the largest variance but has the values that are closest and
second closest to the variance of the actual data distribution
for MDD and NC data, respectively. Considering the results
on both measurements, the results mean that the synthetic FC
generated by the proposed method has a distribution most
similar to real FC while showing high variability. In Fig. (A),
and (B), we can visually check the similarity between their
distributions, i.e., the distribution from synthetic FC derived
from the proposed method (purple) has the most overlap to
that of the real FC (blue) for each class.

As shown in Fig.4, we also compared the class-wise data
distributions of the real FC (blue) and synthetic FC generated
by the proposed (GCN-GCN, purple) and ablation models
according to various GAN architectures, i.e., DNN-DNN (or-
ange), DNN-BrainNetCNN (green), and DNN-GCN (red) with
the overlap score and their variability as well. Here, we can
also see that the proposed method generated the most realistic
synthetic FC with the highest overlap score for both classes
as well as the closest and second closest variance to that of
real data distribution for each class, respectively, compared to
the others.

B. Qualitative Comparison of Real and Generated FCs
To validate the quality of the synthetic FC, in Fig. 5,

we showed the results of the averaged synthetic FC gen-
erated by each of the proposed (GC-GAN) and the com-
peting methods, i.e., SSGAN, WGAN-GP, and ACGAN, as
well as the averaged real FC for each class (i.e., MDD
and NC), respectively. We also present the differences (with
their normalized averaged values, NAvg. Diff) between the
averaged real and synthetic FC generated by each method,
for each class (i.e., MDD-Diff and NC-Diff), respectively. In
the results, our method showed the lowest MDD-Diff and
NC-Dff (refer to their NAvg. Diff). According to the results,
it can be confirmed that the proposed method generated the
most realistic synthetic FC compared to the others. Fig. 6 also

Fig. 5. The averaged synthetic FC generated by each proposed (GC-
GAN) and competing methods (i.e., SSGAN, WGAN-GP, and ACGAN),
for each class (i.e., MDD and NC), respectively. MDD-Diff and NC-
Diff present the difference for each class between the averaged real
and synthetic FC generated by each method, respectively, with their
normalized averaged values (NAvg. Diff).

showed the averaged results for the proposed (GCN-GCN) and
the ablation models, i.e., DNN-DNN, DNN-BrainNetCNN,
and DNN-GCN, and their differences (MDD-Diff and NC-
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Fig. 6. The averaged synthetic FC generated by each proposed (GCN-
GCN) and ablation methods (i.e., i.e., DNN-DNN, DNN-BrainNetCNN,
and DNN-GCN), for each class (i.e., MDD and NC), respectively. MDD-
Diff and NC-Diff present the difference for each class between the
averaged real and synthetic FC generated by each method, respectively,
with their normalized averaged values (NAvg. Diff).

Diff, respectively) compared to the real FC (Real). In this
comparison, the proposed method also generated the most
realistic synthetic, achieving the best similarity, i.e., the lowest
NAvg. Diff, to the real ones compared to the others.

C. Topology-based analysis of significant connections
To show the significance of our framework from a neu-

rological perspective, we have conducted a detailed analysis
comparing the initial topology, which is defined based on
the real FC data, with the refined topology, which is defined
based on the augmented FC data (i.e., the combination of
real and synthetic FC data) through GC-GAN. As shown in
figure 7, for better visualization, we categorized FCs into three
groups: (1) common FCs, which have connections in both the
initial and refined topologies, (2) newly formed FCs, which
have connections in the refined topology but not in the initial
topology, (3) disappeared FCs, which have connections in the
initial topology but not in the refined topology. To ensure
a more focused analysis, we concentrated on the top 10%
FCs with the highest scores from the mRMR feature selection
algorithm [35] among all FCs.

First, in the common FCs, it is observed that the frontal
lobe, which is widely known to be closely associated with

MDD [58], exhibits the highest number of connections. These
connections are predominantly linked to the temporal and
parietal lobes. Upon examining the connections between the
frontal and the parietal lobe, it is observed that left subcal-
losal cortex (SC.L) exhibits the highest connectivity within
the frontal lobe. Previous studies have reported a significant
association between left subcallosal cortex and the treatment
of MDD [59]. Furthermore, left supramarginal gyrus (SGa.L)
and left postcentral gyrus (POG.L) both exhibiting the highest
connectivity within the parietal lobe and linked to left sub-
callosal cortex, have been identified as pivotal regions for
discriminating between MDD and NC in previous research
[60]. Examining the connections between the frontal and the
temporal lobe, it is observed that right frontal orbital cortex
(FOC.R) has the highest number of connections with the
temporal lobe. This region has previously been reported to
exhibit significant volumetric differences between NC and
those with MDD [61].

Second, a notable feature of the newly formed FCs is
the significant increase in connections within the subcortical
gray matter (SCGM), which previously had no connections in
common FCs. Specifically, there is a substantial increase in
connections between the frontal lobe and the SCGM, as well
as between the parietal lobe and the SCGM. In particular,
the thalamus (Thal) which showed a significant increase in
connections in all lobes, is a region previously reported as
the most causal hub for MDD [62]. Furthermore, connections
have also emerged from various regions such as left putamen
(Put.L) [63], right bed nucleus of the stria terminalis (Bst.R)
[64], and amygdala [65] all of which are associated with MDD.
Among them, the connections between amygdala and frontal
orbital cortex have been reported to be crucial in determining
MDD in previous study [65].

Lastly, the most noticeable feature of the disappeared FCs
is that there has been a significant reduction in intra-lobe
connections. Connections within the frontal lobe, occipital
lobe, SCGM have all decreased. Considering the mRMR
algorithm that we use to define the topology, we can infer
that this outcome is because connections within the same
lobe provide less new information compared to connections
between different lobes. Although it requires further elaborate
verification, the results might lead us to focus more on
inter-lobe connections for better MDD diagnosis [66]. Within
the brain’s interregional connections, SC, which previously
exhibited many connections, has experienced a significant
decrease in connections. Specifically, in the case of anterior
right temporal fusiform (TFa.R) and lateral occipital (OLi),
all connections on both sides have disappeared. Both areas
are associated with visual processing. Considering that the
regions connected to SC were clearly related to the diagnosis
and treatment of MDD, it is plausible to consider that the
areas of temporal fusiform and lateral occipital may contain
relatively less crucial information.

V. CONCLUSION

In this study, we introduced a novel GCN-based Condi-
tional GAN model that generates representative and realistic
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Fig. 7. The connectome ring of the 112 brain regions of Harvard Oxford atlas. The connections in both the initial and refined topologies (a) Common
FCs, in the refined topology but not in the initial topology (b) Newly formed FCs, and the connections in the initial topology but not in the refined
topology (c) Disappeared FCs.

synthetic FC, aiming to provide a more precise and robust
MDD diagnosis. By integrating GCN architecture into our
GAN model, our framework demonstrated the capability to
accurately capture the complex topology characteristics and
intricate patterns present in FC. Additionally, the class-aware
discriminator further enhanced the quality and effectiveness of
synthetic FC generation in GC-GAN framework. Furthermore,
we introduced a topology refinement technique that optimizes
the graph structure using the augmented synthetic FC, thereby
improving the performance of MDD diagnosis.
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analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic
circuits in major depressive disorder,” Psychological medicine, vol. 42,
no. 4, pp. 671–681, 2012.

[63] Y. Lu, H. Liang, D. Han, Y. Mo, Z. Li, Y. Cheng, X. Xu, Z. Shen, C. Tan,
W. Zhao et al., “The volumetric and shape changes of the putamen
and thalamus in first episode, untreated major depressive disorder,”
NeuroImage: Clinical, vol. 11, pp. 658–666, 2016.

[64] M. A. Lebow and A. Chen, “Overshadowed by the amygdala: the bed
nucleus of the stria terminalis emerges as key to psychiatric disorders,”
Molecular psychiatry, vol. 21, no. 4, pp. 450–463, 2016.

[65] K. D. Young, V. Zotev, R. Phillips, M. Misaki, W. C. Drevets, and
J. Bodurka, “Amygdala real-time functional magnetic resonance imaging
neurofeedback for major depressive disorder: A review,” Psychiatry and
clinical neurosciences, vol. 72, no. 7, pp. 466–481, 2018.

[66] M. S. Korgaonkar, N. J. Cooper, L. M. Williams, and S. M. Grieve,
“Mapping inter-regional connectivity of the entire cortex to character-
ize major depressive disorder: a whole-brain diffusion tensor imaging
tractography study,” Neuroreport, vol. 23, no. 9, pp. 566–571, 2012.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3340325

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


