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Deep Representation Learning with Sample
Generation and Augmented Attention Module

for Imbalanced ECG Classification
Muhammad Zubair*, Sungpil Woo*, Sunhwan Lim, and Daeyoung Kim

Abstract— Developing an efficient heartbeat monitoring
system has become a focal point in numerous healthcare
applications. Specifically, in the last few years, heartbeat
classification for arrhythmia detection has gained consid-
erable interest from researchers. This paper presents a
novel deep representation learning method for the effi-
cient detection of arrhythmic beats. To mitigate the issues
associated with the imbalanced data distribution, a novel
re-sampling strategy is introduced. Unlike the existing
oversampling methods, the proposed technique transforms
majority-class samples into minority-class samples with
a novel translation loss function. This approach assists
the model in learning a more generalized representation
of crucially important minority class samples. Moreover,
by exploiting an auxiliary feature, an augmented attention
module is designed that focuses on the most relevant
and target-specific information. We adopted an inter-patient
classification paradigm to evaluate the proposed method.
The experimental results of this study on the MIT-BIH ar-
rhythmia database clearly indicate that the proposed model
with augmented attention mechanism and over-sampling
strategy significantly learns a balanced deep representa-
tion and improves the classification performance of vital
heartbeats.

Index Terms— Arrhythmia detection, Beat classification,
Imbalanced learning, Remote health monitoring.

I. INTRODUCTION

ELECTROCARDIOGRAM is an important tool for mon-
itoring heart activity over time. It is broadly considered

the centerpiece of diagnostic tools used in cardiac health
assessment as it reflects the heart’s electrical activity. The
existence of cardiovascular diseases like myocardial infarction,
ventricular tachycardia, or arrhythmia alters various fiducial
points of heartbeat and thus can be diagnosed by examining

Manuscript received April 12, 2023; revised September 27, 2023*;
accepted October 10, 2023. Date of publication xxxxxxx xx, 2023.
This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (2020-0-00048, Development of 5G-IoT Trustworthy
AI-Data Commons Framework, 50%) and (2022-0-01032, Development
of Collective Collaboration Intelligence Framework for Internet of Au-
tonomous Things, 50%) (Corresponding author: Sungpil Woo)

Muhammad Zubair, Sungpil Woo, Sunhwan Lim are with the Au-
tonomous IoT Research Section, Electronics and Telecommunications
Research Institute (ETRI), Daejeon, South Korea, (e-mail: zubair5608,
woosungpil, shlim @etri.re.kr)

Sungpil Woo, Daeyoung Kim is with the Department of School
of Computing, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, (e-mail: woosungpil, kimd@kaist.ac.kr)

* These authors contributed equally to this work

the electrocardiogram waveform [1], [2]. Arrhythmia is the
most common and notable cause of mortality among car-
diovascular diseases [3]. Arrhythmia, primarily caused by a
disturbance in the heart’s electrical conduction system, distorts
heart rate, rhythm, and key fiducial points of ECG signal
[4], [5]. Therefore, arrhythmia can be detected by assessing
the morphological pattern of ECG beats. However, due to
arrhythmia’s rare and infrequent appearance, a long ECG
recording (24 hours) comprising hundreds of thousands of
beats is required to identify arrhythmia [6]. As the visual inter-
pretation of ECG beats on a large scale is nonviable; therefore,
an automatic classification system is needed to alleviate the
problems of manual inspection. Additionally, abundant ECG
data is received continuously; thus, incorporating an automated
beat classification system would greatly assist a remote health
monitoring system.

The recent advancements in IoT technology [7], wear-
able sensors [8], and deep learning [9] have significantly
boosted the development of intelligent healthcare applications.
Researchers have made efforts over the past few years to
develop an efficient and robust heartbeat classification system
for arrhythmia detection. However, heartbeat classification
is challenging, and potential issues remain to be addressed.
For example, one of the most prominent problems of the
heartbeat classification model is the lack of generalization
capability. The classification model trained for a specific group
of patients may fail to classify the heartbeats of other patients
accurately. This poor generalization is mainly caused by inter-
patient variations in the morphological characteristics of ECG
signals [10]. In addition to inter-patient variation based on
the individual’s nature, the ongoing physiological processes
triggered by external or internal stimuli may also alter the
morphological pattern of beats via the autonomic nervous
system [11]. Therefore, heartbeat classification models with
conventional feature extraction methods give lower classifica-
tion performance and do not apply to a large population.

The most crucial issue that has been neglected in arrhythmia
detection is the imbalanced distribution of ECG data. In health-
care, rare and infrequent events are of great importance. How-
ever, such events exist in the minority, resulting in an imbal-
anced data distribution. Similarly, in arrhythmia-related ECG
data, anomalous samples are fewer in numbers as arrhythmic
beats appear seldom and infrequently [12], [13]. However, the
classification model expects a balanced distribution of samples
among different classes, and thus the existence of imbalanced
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TABLE I: MIT-BIH Arrhythmia database beat types mapping to AAMI beat classes

AAMI Heartbeat Classes Description

Normal beat (N) Supraventricular
ectopic beat (S)

Ventricular
ectopicbeat (V) Fusion beat (F) Unknown beat (Q)

MIT-BIH heart
beat types

Normal beat (N) Atrial premature
beat(A)

Premature ventricular
contraction (V)

Fusion of ventricular
and normal beat (F) Paced beat (/)

Left bundle branch
block beat (L)

Aberrated atrial
premature beat (a)

Ventricular escape
beat (E)

Fusion of paced and
normal beat (f)

Right bundle branch
block beat (R)

Nodal (junctional)
premature beat (J) Unclassified beat (Q)

Atrial escape beat (e) Supraventricular
premature beat (S)

Nodal (junctional)
escape beat (j)

data significantly deteriorates the model performance [6], [14],
[15]. During training, the scarce representation of minority
classes leads the classification model to learn an imbalanced
and biased representation and thus perform poorly on minority
class samples [16], [17]. Therefore, in arrhythmia detection
where rare events are of vital importance, imbalanced data
problems should be considered to characterize minority-class
samples adequately.

In addition, the Association for the Advancement of Medical
Instrumentation (AAMI) provided recommendations for devel-
oping a heartbeat classification system [18], [19]. For instance,
AAMI recommended that ECG beats should be categorized
into five groups: normal beats(N), supra-ventricular ectopic
beats(S), ventricular ectopic beats (V), fusion beats (F), and
non-classifiable beats(Q) as depicted in Table I. However,
most of the studies on arrhythmia do not follow the AAMI
recommendations for cataloging heartbeats [1], [4], [20].

This paper presents an efficient heartbeat classification sys-
tem using deep learning to alleviate the problems mentioned
above. The proposed model architecture and training strategy
assures a balanced and efficient representation learning while
taking the issue of imbalanced data into account. The contri-
butions of this paper can be summarized as follows:

• We proposed a deep learning model for an efficient deep
representation learning of heartbeats by extracting sig-
nificant morphological information using an augmented
attention module. The attention module, assisted with
an auxiliary feature, focuses on the relevant and target-
specific information of the ECG waveform for effective
deep representation learning.

• To mitigate the issue of imbalanced data, we proposed
an over-sampling strategy. New minority class samples
are generated by transforming suitable majority class
samples using a pre-trained base model. For this purpose,
we introduced a novel translation loss function that effi-
ciently alters suitable majority-class samples to construct
minority-class samples.

The rest of the paper is organized as follows. Section II
provides a survey of related literature with an explanation
of the basic concepts of ECG beat classification. Heartbeat
classification methodology, including the proposed augmented

attention mechanism and oversampling strategy, is presented
in Section III. Data description and evaluation strategy are
given in Section IV. The classification results of the proposed
method and performance comparison are reported in Section
V. The concluding remarks are presented in section VI.

II. RELATED WORK

This section presents a summary of literature published
on arrhythmia classification. For a better illustration of the
previous work with regard to this study, this section is divided
into three parts. The first part describes the conventional
feature extraction and classification methods for arrhythmia
detection. The second part summarizes the literature focusing
on deep learning methods for arrhythmia detection. The third
and final part summarises the approaches used for handling
imbalanced data in arrhythmia detection.

A. Conventional methods
Conventional arrhythmia detection methods include basic

sequential steps like data acquisition, pre-processing, feature
extraction, and classification [21]. During the data acquisition,
ECG data is deformed by various noise sources, such as
motion artifacts and power line interference. Literature reveals
different approaches for denoising ECG signals [22], [23].
ECG beat is composed of different fiducial points (P wave,
R peak, QRS complex, T wave), segments (PR, ST), and
intervals (RR, PR). Prior to feature extraction, these fiducial
points are located with efficient peak detection algorithms
[24]. The located points in ECG signals are further used for
segmentation and feature extraction.

Feature extraction is the most crucial step in arrhythmia de-
tection. Extraneous and unneeded features contribute nothing
but deteriorate the performance of the classification model.
Therefore, special attention should be paid while extracting
features for arrhythmia detection. In literature, many feature
extraction methods have been investigated for ECG signals
[21], [25]. For instance, De Chazal [26] extracted morpholog-
ical features from ECG signals to discriminate various patterns
of arrhythmic beats. A similar approach of morphological
feature extraction has also been adopted in [5], [10]. More-
over, wavelet transforms capture frequency and time domain
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information and are thus preferred by many researchers for
promising results in arrhythmia detection [27]. In addition,
statistical methods [28], [29], Hermite transform [28], and
fractal dimension [30] based feature extraction methods have
also been used in literature for improved classification per-
formance. Similarly, different conventional machine learning
algorithms have been used for arrhythmia detection in litera-
ture. For example, Linear Discriminate Analysis (LDA) [26],
logistic regression(LR) [31], artificial neural networks (ANN)
[32], support vector machine (SVM) [33], decision trees(DT)
[34] and clustering [35] has been used by many researchers for
arrhythmia classification. However, these methods are based
on conventional signal processing and hand-crafted feature
extraction methods and, therefore, show poor performance
under the inter-patient classification paradigm due to inter-
subject variability in morphological characteristics of ECG
signals.

B. Deep learning methods

Besides computer vision, deep learning has also shown
devastating performance in healthcare [9], [13]. The deep
learning model aims to learn a generalized representation of
ECG beats in arrhythmia detection. A deep learning model
with advanced architecture and intelligent training strategy can
potentially mitigate the issues associated with conventional
machine learning methods. In this regard, many studies have
been presented using deep learning for arrhythmia detection
over the last few years. For instance, preliminary research
on arrhythmia detection using deep learning is performed by
Kiranyaz et al. [36]. Similarly, in [14], a 1D convolutional
neural network (CNN) is trained for intra-patient beat clas-
sification of the heartbeat. Literature reveals that 1D CNN
is suitable for extracting morphological information from 1D
ECG beat. Therefore, in pursuit of improved classification
performance, several authors have investigated 1D CNN for
arrhythmia detection [12], [37]–[40].

In addition, deep neural networks(DNN) [20], [41], deep
belief networks(DBN) [42], and generative adversarial net-
works(GAN) [40], [43] have also been used to learn a better
deep representation of ECG beat for arrhythmia classification.
Moreover, inspired by the performance of LSTM with time
series data, many authors explored the potential of LSTM
models in heartbeat classification for arrhythmia detection. For
instance, Yildirim et al. [44] adopted a bidirectional LSTM
model with an embedded wavelet sequence module for five-
class beat classification. Similarly, in [6], the LSTM model is
used in combination with the residual module for arrhythmia
classification. Besides, the LSTM model has been used in
combination with CNN for efficient representation learning
of ECG beats for arrhythmia classification [45].

In deep learning, attention is a powerful mechanism that
impressively enhances model performance by emphasizing
more on target-specific information. In ECG signal analysis for
arrhythmia detection, inter-patient discrimination of different
beats is challenging due to the complex and visually identical
patterns of the beats. Therefore, target-specific and complex
morphological information must be extracted for improved

classification performance. In [46], the author investigated the
attention mechanism’s impact on the beat classifier’s overall
performance. The author used Channel-wise attention in CNN
model and reported an improved classification performance.
In another study, a convolutional block attention module is
employed to classify five classes of beats [47]. In this study,
we also introduced a novel attention mechanism that empha-
sizes extracting target-specific information for an efficient and
balanced representation learning of ECG beats.

C. Handling imbalanced data
In literature, numerous methods have been reported to

alleviate the issue of imbalanced data. These methods include
over-sampling, under-sampling, and cost-sensitive learning
[48]–[50]. However, literature on arrhythmia detection reveals
that the issue of imbalanced data is neglected, with few
articles addressing this critical problem. For example, a batch-
weighted loss function is introduced by Ali Sellami [12]. In
this study, class weights are computed for each batch during
training, and a weighted cross entropy loss function is used to
train a CNN model for arrhythmia classification. In another
study, the issue of imbalanced data in ECG classification
is addressed by synthesizing minority class samples using a
target-oriented augmentation method [16]. The data augmen-
tation method has also been adopted by Yong Xia [51] to
tackle the challenge of imbalanced data in arrhythmia detec-
tion. Similarly, over-sampling based on z-score normalization
and SMOTE is also performed in [6] and [14], respectively.
However, these re-balancing methods usually lead the model to
overfit minority class samples with abbreviated generalization
[52].

Despite the efforts made by researchers, overcoming the is-
sues associated with arrhythmia classification is still challeng-
ing, especially under the inter-patient classification paradigm.
The literature review also shows that most arrhythmia classi-
fication studies do not meet AAMI’s recommended standards.
Moreover, most studies have only focused on the intra-subject
classification of beats, which is unsuitable for real-world ap-
plication. In this study, we proposed a novel beat classification
that significantly tackles the aforementioned issues.

III. PROPOSED METHODOLOGY

A. Framework Overview
The proposed heartbeat monitoring framework for remote

health monitoring is given in Fig. 1. The first step of the
framework includes the acquisition of ECG signals using
wearable sensors. The proposed method is based on a single-
lead ECG signal and can be acquired easily with a small
and adaptable wearable device. After the signal acquisition,
segmentation is performed. In this step, a pre-defined number
of samples are extracted based on specific fiducial points of
the ECG beat. The segment selection significantly influences
the classifier’s performance as the information content varies
with the segment length. Therefore, segment selection should
be performed wisely in order to incorporate all the significant
morphological characteristics of ECG beat. The extracted beats
are then classified using a deep model. The deep model
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Fig. 1: Framework overview

significantly extracts the hidden patterns with 1D convolutional
neural networks and predicts the class probabilities for each
sample. The current study aims to develop an efficient deep
model that learns to extract the most relevant and generalized
features while handling the issue of imbalanced data. The
proposed model can be used efficiently for on-site ECG
classification as well as in remote health monitoring systems.

B. Proposed Over-sampling strategy

The proposed oversampling strategy aims to transform
suitable majority-class samples to construct minority-class
samples. In some cases, the minority classes have very few
numbers of samples. Thus the regeneration of new samples
from a limited number of samples leads to over-fitting and poor
classification with degradation in the model’s generalization
capability [52]. Inspired by the re-sampling strategy adopted in
[52], we introduced an efficient ECG beat re-sampling method
to facilitate the balanced deep representation learning of ECG
signals. The proposed over-sampling method boosts the model
generalization performance by mitigating the over-fitting on

minority samples caused by conventional oversampling strate-
gies.

In this study, the sample generation from the majority
class is performed in such a way that the translated sample
does not deteriorate the model performance for majority class
samples. We translated majority class samples by dragging
them into the feature space of the targeted minority class.
First, a base model g(x, θ) is trained on an imbalanced dataset.
The higher sample representation of the majority class leads
the trained base model g(x, θ) to be inclined towards the
majority class. During the training of the target model, this
trained base model is used to select suitable samples from
the majority class. Samples of the majority class having
higher similarity with minority class samples are selected for
translation. The selected samples are then translated with an
optimization approach using a novel translation loss function.
In this approach, an objective function is optimized to increase
the correlation of the generated samples with the target classes.
As a result, a new balanced mini-batch is generated, which
is used to train the proposed target model. Unlike [52], we
adopted a more sophisticated and simple sample selection and

Fig. 2: The architecture of the proposed beat classification model consists of five components: (1) a base model g(x, θ) trained
with an imbalanced dataset; (2) a probability-based sample selection step; (3) sample generation with translation loss function;
(4) threshold based selection of the final set of generated samples; (5) a target model f(x, θ) trained with a balanced batch.
Light blue blocks represent the oversampling strategy using the base model, while light orange blocks represent target model
training with balanced data.
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Fig. 3: Visualization of suitable sample for translation

translation method.
1) Sample Selection: For oversampling, we choose to use

the most suitable samples from the majority class for trans-
forming into minority class samples. Consider a base model
g(x, θ) trained with an imbalanced dataset D = {(xi, yi)}Ni=1,
where x ∈ R and y ∈ {1, ...K}. Then, for a mini-batch
B = {(xi, yi)}mi=1 of m samples, the probabilities can be
expressed as

p(yi|xi) = g(xi, θ) (1)

Now, for efficient translation, samples of the majority class
having a lower probability of the parent class should be se-
lected and samples having a strong correlation with the parent
class should be ignored. For selecting the best samples for
translation, we computed the distance of the sample with the
minority class cluster as well as with the majority class cluster.
Samples having a minimum distance with a minority class
cluster are selected for translation. The visual interpretation of
the suitable sample for translation is given in Fig 3. Moreover,
all the samples of the majority class can not be selected
for translation as it reduces the performance of the majority
class. According to [53], as the number of sample increases
as a result of over-sampling, the ability of the model to get
adequate information diminish. Therefore an efficient number
of samples is selected as given [53]. We selected an efficient
number of samples from mini-batch with a specific selection
ratio that is given as follows

Ns =
1− β

1− βni
(2)

where ni is the number of samples in each class and β =
N−1
N . The effective number of samples avoids the performance

deterioration of the model for the majority class samples.
These samples are then translated to minority class samples
with the help of the translation loss function. The first six
steps of Algorithm 1 represent the selection of suitable seed
samples for translation.

2) Sample generation: For generating new samples of mi-
nority classes, our proposed method of oversampling solves an
optimization task. The goal of this optimization problem is to
reduce the loss of the majority sample for the minority class
and induce some margin between the boundaries with other

Fig. 4: Visualization of generated sample

classes to ensure discrimination. This method will boost the
generalization capability of the model. The proposed sample
generation strategy aims to increase the similarity of the seed
sample with the target minority class while decreasing its
similarity with other classes. The visual interpretation of the
sample generation is illustrated in Fig. 4.

In the process of sample generation, we used the base model
g(x, θ) originally trained on an imbalanced dataset. The main
objective behind generating samples for the minority class is
to facilitate the training of a target model f(x, θ). This target
model aims to acquire a balanced representation of the data
and deliver high performance across all available classes. First,
a small noise is added to the selected seed samples. Seed
samples and the translated samples (with added noise) are
then subjected to predictions using the previously trained base
model. For an efficient translation, we proposed a translation
loss function as follows.

Losstrans = m+ ∥p(ys|xs)− p(y∗s |x∗
s)∥2 (3)

Where p(ys|xs) is the probability of the seed sample with
parent class, p(y∗s |x∗

s) is the probability of the transformed
seed sample with target minority class, and m is the margin
induced to mitigate the overlap of seed sample and transformed
sample. Steps seven to seventeen of Algorithm 1 show the
translation of seed samples. Following the translation of ap-
propriate seed samples, we proceed with a second round of
sample selection using the predictions made by the base model
(Algorithm 1, 17-21). The translated samples with prediction
scores exceeding a specific threshold are selected for training
the target model.

C. Attention-based Model
The deep model developed in this work for heartbeat

classification is based on 1D convolutional neural network, as
depicted in Fig.2. Multiple convolution layers were adopted,
followed by a batch normalization, activation layer, and
dropout layer. A skip connection is used to avoid the vanishing
gradient problem and improve the model performance by mit-
igating the issue of information loss. The proposed attention
module is used after the first convolution layer. The input
(channels, segment length) to the attention modules includes
the feature maps representing the features extracted for every
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Algorithm 1 Minority class sample generation

Input: A mini-batch B = {(xs
i , x

a
i , yi)}mi=1 with m samples

of c different classes; A pre-trained model g(xs, xa, θ).
Learning rate λ, acceptance threshold γ and number of
iterations T > 0.

Output: A set of generated samples B∗ = {(x∗
i , ax

∗
i , y

∗
i )}mi=1

1: P (B)← g(B, θ)
2: Ns ← (1− β)/(1− βni)
3: Pmaj ← Probabilities of major class samples in P (B)
4: for i = 2 to c do
5: x̂s, x̂a ← Pmaj [Ns] ∈ ci
6: end for
7: Initialize x∗

s ← x̂s + ϵ ▷ small noise ϵ
8: for t = 0 to T do
9: P (y)← g(x̂s, x̂a, θ)

10: P (y∗)← g(x∗
s, x

∗
a, θ)

11: Ltrans ← m+ ∥p(y|x̂s, x̂a)− p(y∗|x∗
s, x

∗
a)∥2

12: Ltotal ← L(g, x∗
s, x

∗
a, y

∗
s )− Ltrans

13: δs ← ∇x∗
s
[Ltotal]

14: δa ← ∇x∗
a
[Ltotal]

15: x∗
s ← x∗

s − λ.δs
16: x∗

s ← x∗
a − λ.δa

17: end for
18: if P(y∗|x∗

s, x
∗
a) ≥ γ then

19: {(x∗
s, x

∗
a, y

∗
s )} ← x∗

s, x
∗
a, y

∗
s

20: end if
21: B∗ ← B ∪ {(x∗

s, x
∗
a, y

∗
s )}

sample in the beat segment. The attention module assigns the
weights to each feature based on its importance and feeds the
masked input to fully connected layers for classification. For
classification, we used a fully connected layer followed by a
Sigmoid layer. The aim of using the attention module in the
initial layers is to ensure the flow of relevant information for
target-specific feature extraction.

1) Proposed Attention mechanism: In order to extract the
target-specific features, we design an augmented attention
module that focuses on the most relevant and target-specific
information by exploiting an auxiliary feature. We used the
RR interval as an auxiliary feature in this study. RR interval is
known as the time difference between successive R peaks and
has been widely used in conventional heartbeat classification
methods [21], [54]. The morphological variations elicited by
arrhythmia are efficiently reflected in the variations of RR
interval width. Therefore, the RR interval feature is considered
one of the most correlated and efficient handcrafted features
to characterize temporal fluctuations provoked by arrhythmia
[26], [55]–[57].

The architecture of the proposed attention module is de-
signed to boost the representation power of the CNN model.
The primary goal of the attention module is to refine the
features associated with each time stamp of the ECG seg-
ment by emphasizing more on the target-specific features.
The attention module takes the extracted deep feature maps
and auxiliary feature (RR interval) as input to compute the

Fig. 5: Proposed attention module

attention mask. First, the mean of the feature maps is computed
along the temporal axis(segment length). Literature reveals
that global average pooling has been widely adopted in at-
tention mechanisms for aggregating feature maps [58], [59].
Similarly, in [46], [47], average pooling has been employed to
design attention-based deep models for arrhythmia detection.
In order to further accentuate the performance of the attention
module, the aggregated feature maps were normalized using
the auxiliary feature (RR interval) as follows.

meannorm =
1
S

∑s
i fk,i

α.RR
(4)

where s is the segment size and k is the number of kernels.
α is a hyper-parameter to control and scale the effect of
normalization. We used auxiliary feature-based normalization
of feature maps for the following reasons.

• The auxiliary feature fuses the information related to
morphological patterns and thus leads to the extraction
of more refined, relevant, and target-specific features.

• It improves the discrimination performance of the clas-
sifier, especially for hard classes, by enriching feature
refinement.

• It provides the flexibility to control the influence of
external information on deep features for efficient feature
extraction.

The normalized feature mean is then passed through a
convolutional layer, and an attention mask Ak,s is generated
with the Sigmoid layer. The attention mask carries the weights
associated with each feature map. In other words, this attention
mask represents the importance of features linked with each
segment of the ECG beat. The weighted feature maps are
obtained as follows.

Fmasked = fk,i ∗Ak,s (5)

The output of attention module Fmasked holds the most
refined and relevant information to the target class. Besides
extracting target-specific features, the attention module also di-
minishes the effect of irrelevant information and thus mitigates
performance deterioration due to redundant and irrelevant
features. The architecture of the proposed attention module
is given in Fig. 5.

D. Classification paradigm
The classification results of the previously published articles

show low classification scores for S-type beats. These beats
are hard to classify and are usually misclassified as N-class
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beats. Le Sun et al. [40] mentioned that N-class beats have
nearly identical morphological characteristics and a shorter
RR interval to that of the S class. Inspired by the hierarchical
classification proposed in [40] and [60], we proposed a two-
step classification strategy to overcome the aforementioned
issue. Fig. 6 illustrates the proposed classification approach.
The first model aims to discriminate N from S and V while
S and V class beats are represented with the same label. The
second model classifies S and V. This two-step classification
approach alleviates the classification issue associated with N
and S class beats. However, unlike [40], [60], the proposed
two-step classification methods use the same input and deep
model architecture in both steps, making the classification sys-
tem more effective in terms of applicability and computation.

Fig. 6: Two-step classification of ECG beats

IV. EXPERIMENTS

A. Dataset
MIT-BIH Arrhythmia database [61] has been widely used

in previous studies for the evaluation of beat classification
models [12], [26], [40], [62]. In this study, we also used
MIT-BIH databases to evaluate the proposed model for a
fair comparison with the previous studies. MIT-BIH database
includes two channels’ ECG recordings of 47 subjects. A
total of 48 recordings (30 minutes long) were acquired. Each
recording is digitized at 360 samples per second and annotated
by two or more cardiologists independently. In this study, we
used modified limb lead II signals to train and evaluate the
proposed deep model. We selected 44 recordings out of 48
recordings for our experiment. Four recordings (102, 104, 107,
217) with low-quality signals and paced beats were excluded
according to the recommendation of AAMI [12], [26], [40],
[42].

B. Evaluation Strategy
We performed inter-patient classification of ECG beats in

order to develop an efficient arrhythmia detection model that
can be used in real-world healthcare applications for a wide
range of populations. We adopted the same procedure for
splitting the data into a training set (DS1) and test set (DS2)

Fig. 7: ECG waveform with a TT interval segment(green
shaded area). The red, yellow, and green dots represent R,
P, and T peaks, respectively.

TABLE II: Summary of class distribution in MIT-BIH dataset

Types Number of Beats
Normal beats (N) 90087

Supraventricular ectopic beats (S) 2781
Ventricular ectopic beats (V) 7008

Fusion beats (F) 802
Unknown beats (Q) 15

Total Beats 100,693

as illustrated in [12], [26], [40]–[42], [62]. Both sets of data
include recordings of 22 subjects. Unlike [40], we selected
the segment between two successive T peaks as depicted
in Fig. 7. The T-T segment includes all the key fiducial
points of an ECG beat (P, QRS complex, T) and thus yields
efficient classification performance. The summary of sample
distribution among different classes in Table II shows an
extreme imbalance of the samples across different classes. In
this study, we only considered N, S, and V class beats for
classification as performed in [40], [41].

Additionally, the classification accuracy does not provide
equitable information for the evaluation of a model trained on
an imbalanced dataset as it treats all classes equally. There-
fore, besides classification accuracy, we also computed three
additional performance metrics, which include sensitivity,
specificity, and positive productivity. These metrics have been
employed widely in arrhythmia detection literature [12], [26],
[40]–[42], [62]. Furthermore, the AAMI also recommended
these metrics for model evaluation [12], [18], [19], [21].

C. Experimental Setup
In order to train the proposed deep learning model, we used

weight decay (0.001) and dropout of 0.5 in addition to batch
normalization layer for addressing the over-fitting problem.
The initial learning rate is set to 0.001. During feature nor-
malization in the attention module, we used a scaling score
(α) of 0.01. Additionally, the training is performed on Nvidia
Geforce RTX 3090.

V. RESULTS AND DISCUSSION

A. Classification Performance
This study involves an investigation of the effectiveness

of using attention and oversampling strategies in deep rep-
resentation learning of ECG beats for arrhythmia detection.
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To verify the validity of the proposed method, we carried out
the evaluation under the inter-patient classification paradigm.
The data from the MIT-BIH database is divided into training
(DS1) and test set (DS2). Each of these sets includes data from
22 different patients. The same approach for data distribution
has been employed in [12], [26], [40]–[42], [62]. We adopted
the inter-patient paradigm for model evaluation as it can
significantly reveal the applicability of the arrhythmia classifi-
cation model for real-world application. Additionally, to boost
the classification confidence of the model for discrimination
between three classes of arrhythmia (N, S, and V), we used a
two-step classification approach as reported by [40], [60].

First, we trained the model on an imbalanced dataset to
highlight the effect of imbalanced data distribution. Table
III presents the classification results of the proposed deep
architecture trained with imbalanced data. The results obtained
with imbalanced data clearly depict that the disproportion
distribution of samples among three classes has significantly
deteriorated the model performance. Although the sensitivity
scores for all the three classes of beats (N, S, and V)
reported in Table III are not adequate for a crucial healthcare
application model, a notably low sensitivity score is achieved
for the majority class (N) as compared to minority class (S)
samples. These findings are related to the two-step classifica-
tion approach adopted in this study. It has been reported that N
class beats have nearly identical morphological characteristics
to that of S class beats [40]. Therefore, the classification of
N and SV leads to an increase in false negative samples.
Interestingly, these observations are commending for the base
model used in the proposed oversampling method. In other
words, these findings reveal that the base model’s tendency
to over-fit minority class is mitigated partially with two-step
classification, and thus it would be of great assistance in
improving the seed selection in sample generation.

TABLE III: Classification results with imbalanced data

Classes Accuracy Sensitivity Specificity Positive
productivity

N 87.35% 86.95% 90.68% 98.73 %
S 91.93% 93.90% 90.80% 85.35%
V 91.92% 90.08% 93.90% 96.31%

Average 90.40% 90.31% 91.79% 93.46%

Table IV presents the performance evaluation metrics ob-
tained for the model trained with over-sampled data. These
results of the inter-patient classification experiment illustrate
that the proposed beat classification method significantly dis-
criminated different types of heartbeats with improved perfor-
mance metrics. In comparison to Table III, the results pre-
sented in Table IV clearly provide evidence that the proposed
oversampling strategy significantly mitigates the issue of over-
fitting associated with imbalanced data. These findings are
in complete agreement with the previous study [52], which
concluded that the conventional re-balancing methods lead the
model to over-fit on minority class samples with abbreviated
generalization. The sensitivity score, which is considered to
be the most suitable performance metric for imbalanced data,

shows a significant increase for minority class samples. This
boost in classification performance (especially in sensitivity),
as compared to [12], [40], validates efficient translation of
majority class samples to minority class samples.

Moreover, the performance metrics of majority class also
ensure that the translation loss efficiently induced the adequate
discrimination margin between seed and generated samples
and thus achieved a higher score for majority class samples
as well. In other words, the majority-class results depict that
the translation loss function significantly eradicated parent
class information from seed samples [52]. Similarly, these
results also depict the contribution and efficacy of the proposed
attention module that significantly refined the features linked
with each time stamp of ECG segment.

TABLE IV: Classification results with over-sampling

Classes Accuracy Sensitivity Specificity Positive
productivity

N 94.71% 95.63% 86.59% 98.42 %
S 96.93% 96.30% 97.29% 95.31%
V 96.94% 97.30% 96.30% 97.88%

Average 96.19% 96.41% 93.39% 97.20%

The findings of the current study have important implica-
tions for developing a robust arrhythmia detection model that
can be used effectively for a large population. For instance, in
cardiac health monitoring, arrhythmic beats (S and V) are rare
and infrequent events and are greatly important to be detected
accurately for early diagnosis of arrhythmia [21]. However,
training with imbalanced data yields an over-fitted model on
minority class beats and thus mostly fails to detect these cru-
cially important beats, which is highly undesirable. Therefore,
the proposed method with significant results provides further
intuition of learning a balanced deep representation of ECG
beats and thus would provide great assistance in designing a
real-world arrhythmia detection model.

B. Impact of Augmented Attention Module
The augmented attention module is designed to accentuate

the most relevant feature maps for efficient classification
of beats. The three classes of beats, as shown in Fig. 9,
have complex differences from one another in morphological
characteristics [5], [26]. Therefore, eliminating the conflict-
ing feature maps and focusing more on the target-specific
areas would significantly improve the classifier performance
by avoiding the deterioration caused due to redundant and
irrelevant features. The efficacy of feature (Channel) attention
in arrhythmia detection has been reported in literature [46],
[47]. However, we designed augmented attention with an
auxiliary feature to further boost the performance of the
attention mechanism for highlighting the most relevant and
target-specific features. A temporal attention module can also
be used to emphasize the time stamps of beat segments.
However, we choose to adopt feature attention to avoid any
information loss and assure the extraction of more efficient
features while considering the feature maps associated with
all the samples in beat segments.
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Fig. 8: Attention mask learned for three classes (N, S, V) of beats.

Figure 8 shows the attention mask (attention score) learned
for three classes of beats. The attention mask for 32 feature
maps is plotted on an 8x4 grid of heat maps. The attention
masks clearly depict that a different attention score is assigned
to each feature map in each category of beats. These findings
corroborate that the most relevant and target-specific informa-
tion propagates forward to learn an efficient representation of
ECG beats. The proposed attention mechanism endorses the
improved discrimination performance reported in Table IV.
It is interesting to note that the feature maps assigned with
maximum weight in Class N were assigned with minimum
scaling weight in Class S, as depicted in Figure 8. A plausible
explanation of this observation is that the S class has a
limited representation in the training set and has nearly iden-
tical morphological characteristics with that of N class [40],
which makes the classifier puzzling to discriminate efficiently
between these classes. Therefore, the attention module has
given more emphasis on refining the target-specific features
clearly. Surprisingly, these observations also validate the fact
that the parent class information (N class) has been eliminated
precisely from newly generated samples of the minority class
(S class).

Moreover, the improvement in the performance of the atten-
tion module is also supported by the insertion of an auxiliary
feature. The position of R-peak in different classes clearly
reveals the correlation of RR interval with arrhythmic beats
as depicted in Fig. 9. Therefore, to put more emphasis on the

relevant feature maps that contribute more toward the targeted
class, we used an RR interval that reflects the presence of
S and V beats. Thus incorporating the handcrafted feature to
induce target-specific information assisted in the identification
of feature maps in a more efficient way and achieved an
improved classification performance.

C. Impact of Sample Generation

In this study, we introduced an oversampling method that
translates majority-class samples to minority samples in order
to mitigate the issues of imbalanced data in arrhythmia detec-
tion. The oversampling method aims to reduce the chances
of learning a biased deep representation with imbalanced
label distribution. Moreover, to overcome the over-fitting on
minority class samples and deterioration of generalization
capability caused by conventional over-sampling methods [52],
we choose to translate suitable majority class samples into
minority class samples. For this reason, the proposed over-
sampling strategy makes use of an optimization process with
a novel translation loss function to generate a balanced batch.

The sample generation is performed for every batch to
acquire the maximum possible number of samples for the
minority class to efficiently mitigate the imbalanced data issue
and improve the classification performance of minority class
samples. Figure 10 compares the model performance trained
with imbalanced data and over-sampled data. The proposed

Fig. 9: ECG beat segments for three classes (N, S, V)
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TABLE V: Classification comparison with previously published results on MIT-BIH dataset

Authors Classifier ACC(%)
N(%) S(%) V(%)

SEN SPE PPR SEN SPE PPR SEN SPE PPR
Dechazal et al. (2004) [26] LDA 81.9 86.9 – 99.2 75.9 – 38.5 77.7 – 81.9
Huang et al. (2014) [62] SVM + Threshold 93.8 99.2 – 95.2 91.1 – 42.2 93.9 – 90.9
Mathews et al. (2018) [42] Deep belief networks 94.13 86.1 94.58 99.27 70.99 94.34 32.44 85.23 95.66 55.28
A. Sellami et. al.(2019)
[12] CNN 95.05 88.51 91.30 98.80 82.04 92.80 30.44 92.05 97.54 72.13

Wang et al. (2020) [41] Dual fully connected
neural networks 93.4 86.9 – 99.2 75.9 – 38.50 77.7 – 81.9

Le Sun et. al.(2022) [40] Beatclass +
MorphGAN 98.7 99.9 – 99.1 94.7 – 96.8 97.1 – 97.0

Yuan et. al.(2023) [16] CNN + TAPDA 93.9 96.1 – 98.1 80.3 – 73.4 74.3 – 66.1

Xia et. al.(2023) [51] CNN, DAE +
Transformer 97.66 97.35 71.09 96.47 70.26 99.44 82.90 73.92 96.42 71.67

Proposed CNN + Attention 96.19 95.63 86.59 98.42 96.30 97.29 95.31 97.30 96.30 97.88

over-sampling strategy significantly improved the classifica-
tion performance. Specifically, the classification performance
of the most crucial minority class (S) is improved substantially,
which depicts the efficacy of the proposed training strategy.
Comparing results presented in Table III and Table IV provides
indisputable evidence that the model learned a deep balanced
representation with the proposed oversampling strategy. Table
IV is quite revealing in several ways for interpreting the sig-
nificant impact of sample generation. For instance, sensitivity,
specificity, and positive productivity for the minority class
(S) improved with over-sampling, indicating an impressive
reduction in false negative and false positive samples. This
finding further validates that major-to-minor translation for
sample generation alleviates the over-fitting of minority class
and thus corroborates the previous work [52]. Similarly, Table
IV also reveals that the model tendency towards majority
class (N) is also attenuated adequately with the proposed
oversampling method.

Fig. 10: Performance comparison between imbalanced data
and over-sampled data

Furthermore, the over-sampling method assisted with a
novel translation loss function that converts the majority class
samples into target samples with higher confidence. The trans-
lation loss function induced an adequate discrimination margin
between the seed sample (N class) and the newly generated

sample (S class). It thus ensured the elimination of parent
class information from seed samples. This observation can be
validated clearly from the results of the majority class reported
in Table IV. Similarly, it is also apparent from 8 that majority
and minority class (parent class or translated) samples have
learned significantly distinct features. The opposite feature
mask is learned for corresponding feature maps in N and S
class samples, resulting in improved classification scores for
both classes. This finding validates the significant impact of
the translation loss function and its intriguing correlation with
attention masks.

D. Comparison
Finally, we compare our results with other studies on beat

classification based on deep learning. For an honest and
unbiased comparison, we selected only those studies that used
the MIT-BIH dataset and adopted the same beat categorization
and model evaluation methods. Table V illustrates that our
proposed approach achieved better classification performance
than other studies. The deep balanced representation learning
with the proposed augmented attention module and translation
loss function has significantly increased the classification rate
of minority class samples, as depicted in Table IV. Le Sun
et al. (2022) [40] adopted a hierarchical procedure for ECG
beat classification and employed SMOTE to handle the issue of
imbalanced data. The classification results of [40] presented in
Table V depict that generating minority samples from minority
class samples via SMOTE causes over-fitting on minority
class samples [52] and, therefore, a lower sensitivity score is
achieved for S and V class samples in [40]. Similarly, lower
classification performance for S and V class samples is also
reported in [16] and [51] where data augmentation methods are
used to tackle imbalanced data issues. In comparison to [16],
[40], [51], our proposed method achieved a better performance
score for the most crucial class of S and V beats. These results
substantiate previous findings in literature [52]. Comparatively
high performance for N class samples is reported in [40]
because fewer samples were used for the N class in train and
test sets.

Similarly, a batch-weighted loss function is employed to
counter the issue of imbalanced data in [12]. Compared with
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[12], our proposed method with augmented attention module
and over-sampling strategy achieved a higher classification
score. Specifically, the efficacy of the proposed model can
be justified by analyzing the performance of minority class
samples (crucially important samples) compared to other stud-
ies. In addition, the T-T segment is also essential for efficient
deep feature extraction as it takes all the vital fiducial points
of ECG beats into account for deep feature extraction. In
summary, the augmented attention mechanism and the sam-
pling generation via majority-to-minority translation assured a
deep balanced representation by extracting the most relevant
and target-specific features, resulting in improved classification
performance.

E. Challenges and Limitations
The most challenging step in the implementation of the

proposed framework is eradicating parent class information
from seed samples during transformation. The presence of
parent class information in translated samples significantly
deteriorates the classification accuracy of the majority class.
In other words, the erroneous transformation of majority
class samples reduces the discrimination performance of the
classifier. Therefore considerable attention must be paid when
transforming majority class samples into minority class sam-
ples. The most important limitation of this study is the com-
putational complexity and convergence time due to multiple
optimization steps.

VI. CONCLUSION

This paper proposes a heartbeat classification method for
arrhythmia detection using deep learning. A novel re-sampling
method is introduced to overcome the issues of imbalanced
data distribution for an efficient representation learning of
ECG. The proposed method also includes an augmented
attention model for extracting the most relevant and target-
specific features.

The experimental results reveal that the proposed augmented
attention module and over-sampling method collectively im-
proved the classification performance of crucially important
beats and successfully mitigated the issues associated with im-
balanced data. These results also indicate that the augmented
attention module supported by an auxiliary feature signifi-
cantly accentuates the target-specific features and alleviates
the disputable features among the most identical beat classes.
One of the most significant findings emerging from this study
is that oversampling by translating suitable majority-class
samples into minority-class samples reduces the over-fitting
on minority samples and thus achieves higher classification
performance for critically important arrhythmic beats. The
findings of this study enhance our understanding of learning a
balanced deep representation of ECG for arrhythmia detection
and the role of advanced over-sampling methods in healthcare
applications.

In the future, it would be of interest to assess the implica-
tions of transfer learning in addition to intelligent transformer
algorithms on the classification performance of the arrhyth-
mia detection model. More specifically, adversarial domain

adaptation should be used to mitigate the inter-subject and
intra-subject variability of ECG for better generalization of
the arrhythmia detection model.

ACKNOWLEDGMENT

This work was supported by the Institute of Informa-
tion & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT) (2020-
0-00048, Development of 5G-IoT Trustworthy AI-Data Com-
mons Framework(50%), and 2022-0-01032, Development of
Collective Collaboration Intelligence Framework for Internet
of Autonomous Things(50%)).

[1] S. K. Berkaya, A. K. Uysal, E. S. Gunal, S. Ergin, S. Gunal, and M. B.
Gulmezoglu, “A survey on ecg analysis,” Biomedical Signal Processing
and Control, vol. 43, pp. 216–235, 2018.

[2] O. Yildirim, U. B. Baloglu, R.-S. Tan, E. J. Ciaccio, and U. R. Acharya,
“A new approach for arrhythmia classification using deep coded features
and lstm networks,” Computer methods and programs in biomedicine,
vol. 176, pp. 121–133, 2019.

[3] W. H. Organization et al., “Cardiovascular diseases (cvds): Fact sheet
no. 317. 2015,” 2016.

[4] J. Malik, O. C. Devecioglu, S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-
time patient-specific ecg classification by 1d self-operational neural
networks,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 5,
pp. 1788–1801, 2021.

[5] C. Ye, B. V. Kumar, and M. T. Coimbra, “Heartbeat classification using
morphological and dynamic features of ecg signals,” IEEE Transactions
on Biomedical Engineering, vol. 59, no. 10, pp. 2930–2941, 2012.

[6] Y. K. Kim, M. Lee, H. S. Song, and S.-W. Lee, “Automatic cardiac
arrhythmia classification using residual network combined with long
short-term memory,” IEEE Transactions on Instrumentation and Mea-
surement, 2022.

[7] L. Chettri and R. Bera, “A comprehensive survey on internet of things
(iot) toward 5g wireless systems,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 16–32, 2019.

[8] J. Kim, A. S. Campbell, B. E.-F. de Ávila, and J. Wang, “Wearable
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