
GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

An LSTM-based Neural Network Wearable System for Blood Glucose
Prediction in People with Diabetes

Felix Tena, Oscar Garnica, Juan Lanchares Dávila, J. Ignacio Hidalgo

Abstract— This article proposes the first hardware implemen-
tation of a low-power LSTM neural network targeting a wearable
medical device designed to predict blood glucose at a 30-minute
horizon. This work aims to reduce energy consumption by propos-
ing new activation functions that target hardware implementation.
On top of this proposal, we also prove there is room for improve-
ment in energy consumption by applying neural network optimiza-
tions at the algorithmic, such as quantization, and architecture
level, LSTM hyperparameters, that consider the target hardware.
To validate our proposal, we devise an optimized version of the
neural network aimed to be wearable and, therefore, to reduce
its energy consumption while preserving its accuracy as much as
possible. The hardware is implemented on a Xilinx Virtex-7 FPGA
VC707 Evaluation Kit. It is compared with (i) a faithful design of the
original neural network implemented on the same evaluation kit, (ii)
three state-of-the-art LSTM-based FPGA implementations, and (iii)
software implementations running in cutting-edge smartphones:
OnePlus® NordTM and an Apple® iPhone 13 ProTM with artificial in-
telligence hardware accelerators. Our proposal consumes between
×1020 and ×7 less energy than the software implementations,
being the most efficient system compared to the smartphones.
On the other hand, its energy efficiency, measured in GFLOP/J, is
between ×2.84 and ×7.82 greater than other state-of-the-art LSTM
implementations, proving to be the most suitable implementation
for a wearable system for blood glucose prediction.

Index Terms— artificial neural networks, blood glucose
prediction, deep learning, diabetes, energy consumption in
neural networks, FPGA, wearable sensors.

I. INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic disorders charac-
terized by high blood glucose (BG) concentrations. It is accompanied
by disturbances in the metabolism of carbohydrates (CH), proteins,
and fats resulting from defects in insulin secretion, insulin action,
or both [1]. The systems designed in this work focus on people
with Type 1 diabetes (T1DM), with defects in insulin secretion, that
need the injection of exogenous artificial insulin to compensate for
the absence of natural insulin secretion. An insufficient insulin dose
will remain BG levels at high values, producing acute hyperglycemia
symptoms, such as dehydration frequent urination, thirst, or headache,

This work was supported in part by Fundación Eugenio Rodrı́guez
Pascual 2019—Development of Adaptive and Bioinspired Systems for
Glycaemic Control with Continuous Subcutaneous Insulin Infusions
and Continuous Glucose Monitors; the Spanish Ministerio de Inno-
vación, Ciencia y Universidad—grant RTI2018-095180-B-I00; Madrid
Regional Government–FEDER grants B2017/BMD3773 (GenObIA-CM)
and Y2018/NMT- 4668 (Micro-Stress- MAP-CM); Consejerı́a de Edu-
cación e Investigación de la Comunidad de Madrid; European Social
Fund.

Felix Tena is with the Department of Computer Architecture and Au-
tomation, Facultad de Informática, Universidad Complutense de Madrid,
28040 Madrid, Spain (e-mail: feltena@ucm.es)

Oscar Garnica is with the Department of Computer Architecture
and Automation, Facultad de Informática, Universidad Complutense de
Madrid, 28040 Madrid, Spain (e-mail: ogarnica@ucm.es)

Juan Lanchares Dávila is with the Department of Computer Architec-
ture and Automation, Facultad de Informática, Universidad Complutense
de Madrid, 28040 Madrid, Spain (e-mail: julandan@ucm.es)

J. Ignacio Hidalgo is with the Department of Computer Architecture
and Automation, Facultad de Informática, Universidad Complutense de
Madrid, 28040 Madrid, Spain (e-mail: hidalgo@ucm.es)

among other symptoms. If acute hyperglycemia is not treated, sev-
eral complications may appear: in the short term, it can produce
ketoacidosis, which produces weakness, confusion, or even diabetic
coma, in the long-term, hyperglycemia may cause complications in
different organs of the human body [2]. On the other hand, too
much insulin administration leads to low values of BG concentration.
When BG levels are low, the autonomic nervous system activity
increases, sending warning signs such as anxiety, sweating, hunger, or
palpitations [3]. If this situation is not reversed, it can appear muscle
weakness, inability to drink or eat, convulsions, unconsciousness, and
may even lead to death [4].

To minimize the effects of the disease, people with diabetes
should maintain healthy glucose levels, between 70mg dL−1 and
180mg dL−1 [3], by following a healthy lifestyle, continuous glu-
cose monitoring, and immediate follow-up actions [5]. Performing
the steps necessary to substitute a healthy pancreas daily tasks may
be challenging since people with diabetes need to determine the
BG levels at different times, monitor CH intakes, administer the
appropriate insulin doses, or take correcting actions [6].

Predict BG levels is challenging because of the lack of a general
response to the different variables affected by each patient’s par-
ticularities. Classic glucose models use linear equations and define
profiles that do not cover these particularities [5]. Continuous glucose
monitoring systems (CGM) have made a significant change in the
lives of people with diabetes by monitoring BG levels every five
to fifteen minutes automatically [7]. Therefore, CGMs provide time
series that can be used as input datasets for BG accurate prediction
using machine learning (ML) techniques. Among the most promising
ones are those based on neural networks (NN); more precisely on
Long-Short Term Memory (LSTM) NNs, which are designed for time
series forecasting [8].

The great boom of artificial intelligence (AI) is linked to the growth
of available data and the consolidation of the cloud, being cloud AI
the most common technology. The problem with this type of AI
is the need for an internet connection compromising data security
and increasing latency, which can harm real-time applications. To
solve this problem, the concept of edge computing has been devised,
devices that are not in the cloud but communicate with it process the
information locally [9]. To do this, several optimization techniques
must be implemented, in addition , designing specialized hardware to
implement the NN on edge may reduce energy consumption. In this
way, it is possible to have a wearable and autonomous NN device
for BG prediction.

In previous work [6], we proposed two software NN-based ensem-
ble models and compared them with ten state-of-the-art software NNs
for BG predictions to find the best predictor in terms of accuracy and
complexity. LSTMs have shown, among NNs, better accuracy in time
series prediction using the lowest number of trainable parameters,
which leads to less energy consumption, a critical constraint in the
design of a wearable device. In this new work, our goal is to design a
wearable hardware system with the same prediction accuracy as the
best NN for BG prediction according to the criteria of our previous
work. This reduces the dependency of the system on the network
connection, increases its reliability, and improves data security and
accessibility . A critical issue in wearable systems is to reduce their

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

energy consumption. To this aim, first, we select LSTM NN because
they are best-in-class regarding the trade-off between accuracy and
complexity. Secondly, we devise several optimizations to meet the
power consumption constraints allowing greater battery durability and
lower weight without compromising performance.. Recently, other
NNs have been proposed, i.e., transformers [10], with outstanding
results in text translation or time series prediction [11]. They apply
the principles of the neural sequence models using an encoder-
decoder architecture, where encoders comprise multiple multi-head
self-attention modules and position feed-forward networks, and de-
coders use cross-attention models in addition to the same modules
that encoders do. This architecture requires more hardware than the
LSTM we have devised in this work, which increases the energy
consumption that is the critical metric in wearable devices.

In summary, the contributions of this article are:
• We propose two activation functions aimed at reducing the

energy consumption of NNs without compromising their ac-
curacy since activation functions are the elements with higher
computational and energy costs.

• We present a wearable, and therefore low-power, FPGA-based
LSTM NN using our proposal in addition to state-of-the-art
methods to reduce the computing demands on the NN. We
compare its energy consumption and energy efficiency with the
most faithful interpretation of an FPGA-based LSTM NN and
with other state-of-the-art FPGA implementations. We also com-
pare its energy consumption with other wearable technologies,
namely cutting-edge Android and iOS smartphones.

• We apply our energy-optimized NN architecture to forecast
blood glucose prediction for people with T1DM and validate
the proposed design in a real-world medical open issue.

As with any deep learning implementation, NNs must be tailed
to the meaning of the input and output data which is derived from
the dataset and the application domain. This demands (i) a specific
data preprocessing stage, paying particular attention to missing values
and feature selection, and (ii) the definition of an appropriated
NN architecture for the available dataset. Concerning the latter,
biomedical data are scarce compared to other ML areas. For this
reason, we must use models with reduced complexity so that they
can learn using the few data available per patient. This constraint is
one of the critical criteria in order to set the architectural parameters
of the NN.

We implement our design on an FPGA because they are the most
suitable devices to prototype a chip that implements a neural network
hardware accelerator [12]: they provide fast development cycles,
excellent flexibility and reusability, moderate costs, easy upgrading
and feature extension, high performance, they can operate standalone,
are COTS products available for everyone, and are a fair element
of comparison versus smartphones. The latter means that any other
technology to implement integrated circuits would provide better
figures of merit than FPGAs (that is, if FPGAs are better than
smartphones in this work, a fully designed ASIC would be even
better). We compare FPGA implementation with smartphones models
because smartphones are the most accessible COTS product to run
NN models: everyone has one of them, they include all the hardware
elements to run NN without any redesign, and they all have IDEs
that facilitate the development and optimization of the programs that
model NN.

The rest of this paper is structured as follows. In Section II,
we explain how artificial NN works focusing on LSTMs, for those
readers that are not familiar with this field and terminology. Sec-
tion III presents the design concepts applied to the hardware LSTMs.
Section IV is devoted to presenting (i) our feature engineering, (ii)
the experimental results that define the architecture of the hardware

LSTM, and (iii) a comparison with NN implemented in both cutting-
edge smartphones and state-of-the-art FPGA NNs. Finally, Section V
summarizes the conclusions.

II. NEURAL NETWORKS

An artificial NN is a ML technique based on simple processing
elements, called neurons, which are interconnected in a structure that
mimics the neural composition of human brains [13]. Their goal is
to process information with a series of mathematical operations with
trainable parameters to recognize data patterns.

The number and type of layers define its structure. A layer is a
set of neurons arranged so that the outputs of all the neurons in a
given layer are connected to all the neurons of the next layer. In this
way, data is fed into the NN through the input layer, which sorts the
input data to be processed by the NN. Then, a group of hidden layers
makes all the mathematical transformations. Finally, the output layer
returns the NN’s outcome.

Finally, NNs must be trained to adjust weights and biases . The
training set is fed into the NN with the predicted values for each
timestep. With a learning algorithm, the trainable parameters (weights
and biases) are modified to adjust the output of the NN to the actual
value. After the training, the test dataset is used to measure the
generalization capabilities of the NN. This dataset is not used for
training, so the NN cannot learn from the new data patterns that may
appear in this subset. Finally, the predictions of the NN are measured
against the actual values to obtain the NN’s performance.

A. LSTM Neural Network
In this work, we focus on LSTM NNs, since they are the ones that

have proven a better performance at BG prediction [6]. LSTMs were
created for long-term dependence time series since it was observed
that in vanilla recurrent NNs, the problems of vanishing or exploding
gradient appear. These problems are characterized by the significant
increase or decrease of the error gradient, leading to highly significant
weight updates or no weight updates during training. LSTMs solve
this problem by enforcing a constant error flow [8]. They keep an
internal state that summarizes the input history. So, the current state’s
output depends on the previous states’ output. Thus, the architecture
of LSTM is specially designed for problems in which the output
depends on the previous history, such as time series forecasting.

Figure 1 illustrates the internal structure of the k-th LSTM neuron
at timestep t. It comprises the forget gate, the input gate, which is a
combination of two sub gates (the new candidate gate and the input
gate) that selects the new candidates, and the output gate. The forget
gate selects the irrelevant data and removes it, the input gate selects
which information will be updated and conforms the cell state for the
next timestep, and the output gate sends the hidden state for the next
time step and the next layer. It has two outputs: the hidden state hkt ,
and the cell state. The hidden state is the short-term memory, i.e., it
characterizes the last timestep data, depends on the input vector Xk

t ,
the hidden state of the previous timestep hkt−1, and cell state ckt . In
contrast, the cell state is the long-term memory, which travels through
the constant error carousel (CEC) with almost no change between the
consecutive states allowing multiple timesteps to avoid the vanishing
or exploding gradient problems and depends on the input vector, and
the previous hidden and cell states.

LSTM neurons have two different activation functions, typically:
the hyperbolic tangent, Equation (1), and the sigmoid function,
Equation (2). Figure 4 illustrates them. The sigmoid function allows
a smooth activation whereas the hyperbolic tangent function has a
negative activation; this characteristic is useful for subtracting the
information that is no longer relevant.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TENA et al.: ENERGY-OPTIMIZED HARDWARE LSTM FOR BLOOD GLUCOSE PREDICTION IN PEOPLE WITH DIABETES 3

Fig. 1: Block diagram of an LSTM neuron.

tanh (x) =
exp (2x)− 1

exp(2x) + 1
(1)

σ(x) =
1

1 + exp(−x)
(2)

Equations (3) to (8) illustrate the mathematical operations inside
the k-th LSTM neuron. Parameters are identified by a letter that
denotes the gate: f (forger, i (input), c (cell state), h (hidden state),
and o (output). Each dense neuron has its weights (W fk

, W ik , W ĉk ,
W ok that multiply the input vector, and Ufk

, U ik , U ĉk , Uok that
multiply the previous hidden state), and biases (bf

k
, bi

k
, bĉ

k
, and

bo
k

). Finally, these dense neurons are combined to generate the cell
state, ckt , and the hidden state, hkt , at timestep t.

fkt = σ(Xk
t ·W fk

+ hkt−1 · Ufk
+ bf

k
) (3)

ikt = σ(Xk
t ·W ik + hkt−1 · U ik + bi

k
) (4)

ĉkt = tanh(Xk
t ·W ĉk + hkt−1 · U ĉk + bĉ

k
) (5)

okt = σ(Xk
t ·W ok + hkt−1 · Uok + bo

k
) (6)

ckt = σ(fkt · ckt−1 + ikt · ĉkt) (7)

hkt = tanh(ckt) · okt (8)

III. ENERGY-OPTIMIZED LSTM
A simpler NN may lead to a lower energy consumption hardware

implementation since it will need fewer logic blocks (LB) and oper-
ations. Thus, according to the conclusions in our previous work [6],
we select the NN in [14]. We design two hardware implementations
to verify if the energy optimization approaches are feasible. The
first is the most faithful interpretation of the NN, which we call
Model HW1. The second one, called Model HW2, is the hardware
implementation after the energy optimizations are applied.

Both hardware models are implemented in an FPGA. Taking ad-
vantage of FPGA’s flexibility, our goal is to design a hardware LSTM
to be as customizable and parametrizable as possible. Customizable
means that weights and biases are stored in built-in memories and
updated without redesigning or resynthesizing the circuit. Whereas
parametrizable means that the architectonic parameters of the NN
(i.e., number and type of neurons and layers, number of features, and
timesteps of the input data) are parameters of the RTL description.

The hardware design is based on hierarchical and distributed
control. Each module has its control unit (CU), which is a Moore
finite-state machine. The circuit is coordinated so any data consumer

module waits for the data generator module to indicate that data is
available so it can start its processes.

At last, we use fixed-point format values, which reduce circuit
complexity, lowering the computational time and, therefore, energy
consumption [15].

A. Memory modules

We use three types of memories: non-volatile read-only memories
(ROMs), random-access memories (RAMs), and first in, first out
memories (FIFOs). Weights and biases are stored in ROMs since
these values are not changed during the prediction process. RAMs
store input data, acting as the input layer, and temporally store
data between modules. We use them because of their reading and
writing nature and accessibility since we can access specific memory
positions, which is needed by the characteristics of our design.
Finally, FIFOs are used for communication between modules with
sequential reading or writing and communication between the LSTM
and the output layer .

B. Activation functions

Equations (1) and (2) are exponential functions that require many
hardware resources. The most common approaches to implement
them are lookup tables, polynomial curve fitting, and piecewise linear
approximation [16], to fit the curve as much as possible with small
segments. But for this work, we use a combination of an Intelectual
Property (IP) module with a polynomial curve fitting for Model
HW1 and the new proposals of linear low-energy activation functions
for Model HW2.

Figure 2 shows the activation function module for Model HW1.
It combines Xilinx’s CORDIC IP v6.0 and the Taylor activation
module that implements a five-order Taylor series approximation
of hyperbolic functions. The CORDIC IP only admits input values
bounded within the range [−π/4, π/4], but the activation function
module has to handle input values out of this range. The Taylor
activation module is designed to compute values out of the previous
range with minimal error. The comparator selects the output of the
activation function module depending on whether the input data is
within or out of [−π/4, π/4].

Fig. 2: Block diagram of the activation function module.

Figure 3 is the block diagram of the Taylor activation module.
The input raise section is in charge of powering the input; the input
can enter the next module directly or multiply itself as many times
as necessary. It sends each power to the next module; therefore,
we need five loops to raise the input to the fifth power. The
constant multiplication section multiplies each input power by its
corresponding constant that is hard-wired in the FPGA. Next, the term
addition section sums each element and the bound section limits the
output between the range [0,1] for Equation (2) and the range [-1,1]
for Equation (1).

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 3: Taylor activation function module.

(9)

The first optimization proposal is to replace the two activation
functions , Equations (1) and (2), by linear activation functions with
similar behaviors but focused on computation speed so the hardware
complexity is lower, leading to lower energy consumption. Thus,
we substitute the sigmoid function with our modification of the
hard sigmoid function, Equation (10). The hard sigmoid function
is proposed in the Keras library [17], and we change the slope
from 0.20 to 0.25, so it is a power of two. This change will
simplify the multiplication of 0.20 by a two-bit right shift, consuming
fewer resources. Likewise, we replace the hyperbolic tangent by
Equation (11), called by analogy, hard hyperbolic tangent. Thus,
we replace hardware description of exponential calculations that
requires a high computational cost by hardware associated with a
much simpler linear representation. Hard activation functions have
two advantages. First, the hard activation functions use only three
segments, while the exponential function approximations use as many
segments as possible. Secondly, the hard activation functions can
be used in the training phase, so there is no accuracy loss when
implemented in hardware.

g(x) ≡ hσ(x) =


0 x < −2

0.25x+ 0.5 −2 ≤ x ≤ 2

1 x > 2

(10)

g(x) ≡ htanh(x) =


−1 x < −1

x −1 ≤ x ≤ 1

1 x > 1

(11)

Figure 4 illustrates the similarities between the original activation
functions and our proposals. They have the same boundaries and the
same y-axis intersection. Since the architecture of an LSTM neuron
achieves the non-linearity of the NN, these activation functions are
suitable for reducing computational costs.

(a) Hard Sigmoid Function (b) Hard Hyperbolic Tangent
Function

Fig. 4: Comparison of common LSTM activation functions (in blue)
and their low-energy counterparts (in red).

Figure 5a and Figure 5b show the block diagrams of the modules
for Equation (10) and Equation (11), respectively. They are a simple
structure of comparators, shift registers, and multiplexers and do not
use the CORDIC IP. In addition, there are no data loops which
reduces not only the number of modules but also the processing time,
leading to a reduction in energy consumption.

(a) Hard Sigmoid Module (b) Hard Tanh Module

Fig. 5: Hard sigmoid and hard hyperbolic tangent modules

C. Hardware Dense Module

Figure 6 presents the block diagram of the processing elements
(PE) on which all the hardware neurons are based. Each PE is built
with a gate module, a FIFO, and an activation function module. The
gate module is a matrix multiplier and a vector adder that implements
the affine transformation of the input vector X by its corresponding
weights and bias. The FIFO module has two assignments: first, to
sort the gate output; second, to store the information until the next
module is ready . Finally, the activation function module composes
the affine transformation and the corresponding activation function,
g(·). These modules are synchronized through a CU, not shown for
the sake of clarity.

Fig. 6: Block diagram of a processing element.

D. Hardware LSTM Module

Figure 7 shows the hardware implementation of an LSTM neuron.
The four PEs are dense neurons that conform the input, forget,
new candidate and output gates, respectively. Each gate implements
Equations (3) to (6), respectively. The cell state module implements
Equation (7). It contains an activation function module, adders and
multipliers The hidden state module comprises multipliers and adders
to implement Equation (8). After every module, a FIFO interfaces a
data generator module with its data consumer module. Finally, we use
RAM to store the hidden state for time propagation because the access
to the hidden state does not follow a first-in first-out sequencing. Each
module also comprises a control unit.

E. Hardware Neural Network Architecture

Figure 8 illustrates the top module of the hardware LSTM. The
input layer is a RAM; it stores data so that the next module can
access the information when it is ready. The hidden layer consists of
one LSTM layer. When the LSTM layer finishes all the operations,
it stores data in a FIFO memory and informs the CU that the next
module can start. Then, the output layer consists of a dense layer.
Finally, the predictions are stored in a RAM.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TENA et al.: ENERGY-OPTIMIZED HARDWARE LSTM FOR BLOOD GLUCOSE PREDICTION IN PEOPLE WITH DIABETES 5

Fig. 7: Block diagram of an LSTM neuron. Blue shadowed blocks
are memories whereas green ones are computing modules.

Fig. 8: Top module hardware LSTM. Blue shadowed blocks are
memories whereas green ones are computing modules.

Two approaches could be used to design the LSTM network. The
first implements each neuron within a layer working in parallel; the
design latency is low since all neurons work simultaneously, although
with a higher area consumption. The second implements the neurons
within the layer sequentially; in this way, the circuit area is lower,
but the latency is higher. For the LSTM layer, we use the sequential
approach since the FPGA area consumption is lower, which reduces
power consumption since fewer LBs need to be powered. Although
this affects the prediction speed, it is not a critical issue because
CGM readings arrive every five minutes. On the other hand, we use
the parallel approach to design the dense layer since we can avoid
using memory elements that are not needed by dense neurons. Note
that even though we have one dense neuron for this NN, we devise
a parametrizable design.

IV. EXPERIMENTAL RESULTS

Figure 9 illustrates the design process. Before designing both
hardware models, we define the LSTM architecture and extract the
trainable parameters using Python 3.7 and TensorFlow 2.2.0. First,
we preprocess the glucose datasets (Section IV-A). Secondly, we
recreate the NN proposed in [14] as the benchmark for the different
experiments, according to the conclusions in [6], and explore LSTM
architectural hyperparameters using 5-minute backpropagation time
windows. Once set, we design the NN from scratch in Python so
that we can access every operation. This allows us to simulate the
implementation of every equation, and, in addition, we can easily
test different fixed-point formats as we have full control of the data
flow (Section IV-B). From this model, on the one hand, we design
the Model HW1 as a reference from which to optimize the energy
consumption. On the other hand, we evaluate at the architectural
level the prediction accuracy of the software model after applying the
power optimizations. Once the power optimizations have been defined
at the architectural level, we design Model HW2 (Section IV-C).

We design Model HW1 and Model HW2 using VHDL 2008, Vi-
vado 2021.1 for synthesis, and QuestaSim 2020.4 for the simulation.

We implement both designs in the Xilinx VC707 Evaluation board
with a Virtex-7 XC7VX485T-2FFG1761C FPGA Both hardware
LSTMs are designed in VHDL and implemented in a Xilinx Virtex-7
XC7VX485T-2FFG1761C FPGA built in TSMC’s high performance,
low power 28 nm process technology (28HPL) [18].

Table I shows the characteristics of the proposed NN. The input
data has four features, with 25 timesteps per feature per prediction.
The hidden layer consists of one LSTM layer with five neurons, and
the output layer has one dense neuron to combine all LSTM outputs
and make the prediction. The activation function is the hyperbolic
tangent, and the recurrent activation function is the sigmoid function.

TABLE I: Neural network architecture hyperparameters [14].

Layer Hyperarameter Value

Input Features 4
Backpropagation timesteps 25

Hidden

Type LSTM
Layers 1

Neurons per layer 5
Recurrent activation function sigmoid

Activation function tanh

Out
Type Dense

Neurons 1
Activation function linear

Number of parameters 206

The data used for both training and testing are provided by the
OHIOT1DM dataset [19] that has recently been used for the ”Blood
Glucose Prediction Challenge” of the ”Workshop on Knowledge
Discovery in Healthcare Data,” an in vivo database reference in this
research area. We use the second cohort of the OHIOT1DM dataset,
which contains five males and one female aged between 20 and 80
who participated in an IRB-approved study for eight weeks each.
OHIOT1DM dataset provides between 14,943 and 16,547 samples
for each patient. To take the different feature measurements, they
used Medtronic Enlite CGM sensors, reported life event data via an
app, and provided physiological data using the Empatica Embrace
fitness band.

A. Data Preprocessing
First of all, we preprocess the data.: select the features required,

complete missing values to maintain a continuous database within
each patient, and transform features to improve NN performance.

For these experiments, the input features are BG levels (bg), basal
insulin (bas), insulin boluses (bol), and CH intakes (ch), so that
xt = (bg(t), bas(t),bol(t), ch(t)) is the input vector at time t.
These features are chosen because they have more impact on BG
dynamics.

To complete missing samples of blood glucose, we use a cubic
spline. This is a process in which a series of cubic polynomials are
fitted between data points, obtaining a continuous and smooth curve
[20]. Insulin is smoothed using the Berger’s model [21] to model the
glucose dynamics in the patient’s body.

To input the data into the LSTM, BG levels are multiplied by a
factor of 0.01, so the LSTM can reach BG prediction faster according
to the algorithm learning rate and submit them on a similar scale
to the remaining three features. The rest of the features have been
normalized within the range [0,1], which generates a suitable distance
between the different values of each feature to facilitate the neural
networks appreciating changes for pattern identification. As a starting
point, we use 5-minute timesteps for data acquisition with a history
of 120 minutes.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 9: Flowchart describing the process to define and implement the hardware LSTM models. In violet, those tasks that require test dataset.

B. LSTM Parameters

We split the dataset into training and test data. Training is then
performed using an 80/20 10-fold cross-validation approach. The
training consists of 100 epochs with an early stopping of 10 epochs’
patience.

The training algorithm is the Adam algorithm, which is computa-
tionally efficient, has little memory requirement, and is well suited
for problems that are large in terms of data and parameters [22]. The
learning rate is 0.01 as it fits the scale of the input features and the
loss function is the mean squared error Equation (12) . The training
is done using floating-point (FP) arithmetic to extract the trainable
parameters at maximum accuracy.

BG level rises after 10 to 15 minutes. Hence, the minimum
prediction horizon (ph) to take corrective actions is 30 minutes. For
this study, BG is forecasted at a 30 minutes prediction horizon.

The first parameter to set is the time window for the propagation
through time. The aim is to find the biggest time window to maintain
the accuracy of the prediction while reducing the loops of the LSTMs.
We start with a 5-minute window and increase it in 5-minute steps
up to a 45-minute window.

Figure 10 shows the root mean squared error (RMSE) of every
time window for backpropagation, maintaining the 2 hours of back-
propagation for every window. The best performance is achieved at
10-minute backpropagation with an RMSE equal to 19.82mg dL−1.
We decided to maintain this 10-minute timestep because it improves
the error concerning the other time windows. The computation time
is reduced by half compared to a 5-minute backpropagation as
the LSTM cycles are halved. Hence, there are 12 timesteps for
backpropagation plus the current timestep for each dataset feature.

Once the timestep is defined, we compare the prediction accuracy
using both activation functions approaches. Figure 10 depicts that this
comparison is performed using two LSTMs: Model HW1 uses the
original activation functions whereas Model HW2 was trained using
our hard activation function. Predictions are evaluated on a per-patient
basis using the most common error metrics, Equations (12)–(18),
respectively: mean squared error (MSE), RMSE, mean absolute error
(MAE), R-squared (R2), correlation coefficient (CC), fit (FIT), and

Fig. 10: Error of backpropagation windows, from 5 to 45 minutes

mean absolute relative difference (MARD), respectively. We denote
the actual BG value at time t as bg(t), the actual future BG value
ph minutes ahead of time t as bgph(t) = bg(t + ph), and the
predicted BG ph minutes ahead of time t as b̂gph(t). In them, n is
the number of predictions per patient, and bgph = 1

n

∑n
t=1 bgph(t)

and b̂gph = 1
n

∑n
t=1 b̂gph(t) are the mean values. On the other

hand, in clinical practice, physicians usually plot predictions versus
actual values using the Parkes error grid (PEG) [23]. This graph has
five zones (A to E) to bound prediction accuracy. These zones are
set by taking into account the treatment applied for a corresponding
BG level. While zone A will always correspond to correct treatment,
zone E corresponds to a hyperglycemia treatment while the patient
will suffer from hypoglycemia, or vice versa.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TENA et al.: ENERGY-OPTIMIZED HARDWARE LSTM FOR BLOOD GLUCOSE PREDICTION IN PEOPLE WITH DIABETES 7

MSEph =
1

n

n∑
t=1

(
b̂gph(t)− bgph(t)

)2
(12)

RMSEph =
√

MSEph (13)

MAEph =
1

n

n∑
t=1

|b̂gph(t)− bgph(t)| (14)

R2
ph = 1−

n∑
t=1

(
b̂gph(t)− bgph(t)

)2

n∑
t=1

(
bgph(t)− bgph

)2 (15)

CCph =

n∑
t=1

(
b̂gph(t)− b̂gph

) (
bgph(t)− bgph

)
√

n∑
t=1

(
b̂gph(t)− b̂gph

)2 n∑
t=1

(
bgph(t)− bgph

)2
(16)

FITph = 1−

1
n

n∑
t=1

∣∣∣b̂gph(t)− bgph

∣∣∣
1
n

n∑
t=1

∣∣bgph(t)− bgph
∣∣ (17)

MARDph =
1

n
·

n∑
t=1

|b̂gph(t)− bgph(t)|
bgph(t)

(18)

Table II shows the error metrics to compare both activation function
approaches’ impact on the prediction accuracy. We can extract similar
conclusions from the RMSE, the MSE, and the MAE. With an RMSE
of 19.92mg dL−1 and 20.02mg dL−1, both approaches predict
well enough to be part of a treatment. R2 can be understood as
the explainability of the NN. Therefore, we can say that, in both
approaches, the NN explains 90% of the data variability.

Regarding CC and FIT, they compare predicted values against
actual values, so the highest performance corresponds to a value of
1 for both metrics; once again, they present identical values for both
models. Finally, MARD is a well-known metric for CGM systems
accuracy. It measures the difference between actual and predicted
values; therefore, lower MARD values correspond to more accurate
predictions. For both approaches, the MARD values indcate that
the predictions are sufficiently accurate. When we compare both
activation function approaches, all metrics overlap; thus, we can say
that they are so close that the differences are due to the random
initialization of the learning algorithm.

TABLE II: Results of the NN with Equations (1) and (2), and the NN
with Equations (10) and (11).

Activation functions
Metrics Equations (1) and (2) Equations (10) and (11)

RMSE (mg dL−1) 19.82± 2.90 20.02± 3.19
MSE (mg2 dL−1) 392.78± 115.00 400.60± 127.83
MAE (mg dL−1) 14.24± 2.59 13.55± 2.38
R2 0.90± 0.02 0.90± 0.03
CC 0.95± 0.01 0.95± 0.01
FIT 0.72± 0.04 0.73± 0.05
MARD 0.10± 0.01 0.09± 0.01

Figure 11 shows that from the clinical point of view, there is no
difference between both activation function approaches. Both PEGs
are very similar, with a 97.38% points within zones A and B for the
NN with non-linear activation functions and a 99.84% of points for
the model with hard activation functions. Because of all the previous

results, we conclude that there is no difference in the accuracy of both
activation function approaches; hence, the rest of the experiments
are done with the hard activation functions since the results are very
similar.

(a) Equations (1) and (2)

(b) Equations (10) and (11)

Fig. 11: Parkes Error Grid of the NN with Equations (1) and (2),
and the NN with Equations (10) and (11).

Before designing the hardware implementation, we apply quanti-
zation [24] to define the fixed-point format with the minimum length
that ensures a reasonable accuracy. As a starting fixed-point format,
in Model HW1, we use the 3Q12 fixed-point format to implement
all the operations, where three bits are reserved for the integer part,
12 bits for the decimal part, and 1 bit for the sign, with a total
of 16 bits. This format meets the requirements of numerical range
word precision. Figure 12 shows the RMSE results for the different
word lengths with different bits for the integer part, where each color
defines the number of integer bits without the sign; i.e., a red point in
the 13-bit length column corresponds to the 4Q8 format. For Model
HW2, we select 2Q7, marked with a black arrow. Even though
the fixed-point format adds error to the prediction, 25.26mg dL−1,
Figure 13 shows that there are few differences from the clinical point
of view. The PEG of the NN using the fixed-point format is similar
to those illustrated in Figure 11 with a 98.21% of predictions within

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

zones A and B. Thus, we can use the 2Q7 fixed-point format for
Model HW2 since there are no differences from the clinical point of
view. These results also serve to inspect the numerical stability of the
LSTM. LSTM parameters are estimated using floating-point models
during the training stage and then quantized, inducing a modification
(quantization error) on the original value. Note this quantization error
affects all the parameters of the LSTM. Figure 12 shows that the
LSTM errors increase significantly when the quantization noise is
high (for those fixed formats with few fractional bits –left points
in figure— or with only 1 bit in the integer part –format 1Q).
However, under low quantization noise, the prediction error remains
low. Indeed, it is negligible from a clinical perspective.

Fig. 12: Error comparison for different fixed point formats.

Fig. 13: Fixed-point 2Q7 format Parkes Error Grid.

Other techniques also reduce energy consumption and complexity,
such as weight pruning. This optimization technique is meant to be
used in large NNs with thousands of trainable parameters in which
more than 50% of the weights are pruned [25]. As the size of the
neural network increases, the accuracy is less affected. The NN for
blood glucose prediction is too small for weight pruning . In our
experiments, with 206 trainable parameters, weight pruning decreases
the prediction accuracy: pruning 10% of the weights increases error
beyond acceptable for a clinical device. For this reason, we discard
the application of this optimization technique.

Table III summarizes the optimization techniques used by showing
the key differences between Model HW1 and Model HW2.

TABLE III: Key differences between Model HW1 and Model HW2.

Model HW1 Model HW2

Activation function tanh hard tanh
Recurrent activation function sigmoid hard sigmoid
Arithmetic 3Q12 2Q7
Time window 5 min 10 min

C. Hardware Implementation LSTM
Finally, we implement Model HW1 and Model HW2 to know the

impact of all energy optimization methods applied to Model HW2,
and compare with the same model running on smartphones.

First, we compare their area, indicating the model’s complexity
in terms of LBs. Table IV shows the LB usage compared with the
total amount of blocks within the Virtex-7 FPGA. Moreover, Model
HW2’s area, with 3573 LBs, is one-third of Model HW1’s area, with
11034 LBs. In addition, for Model HW1, we need digital signal
processing elements (DSP), while for the Model HW2, they are not
required. These DSPs are used for complex arithmetic operations.
For all these reasons, we conclude that Model HW2 circuit is less
complex, which may lead to less energy consumption. Virtex-7
XC7VX485T-2FFG1761C device fits into a package of 35x35 mm.
This package contains all the logic elements plus 350 I/O pins, 56x
12.5 Gb/s Low-Power Gigabit Transceivers with their ports, and 4x
Integrated blocks for PCI Express with their ports. Model HW1
requires less than 3% of the combinational elements and less than 1%
of the FFs, and neither Transceivers nor PCIe blocks. So, a chip in
28nm technology with a size lower than 3x3 mm could contain all the
logic of this design. In summary, both hardware LSTMs have a small
area usage of the whole FPGA area allowing their implementation on
a smaller and cheaper FPGA that could be carried as a complement
to any wearable device without additional costs.

TABLE IV: Logic block usage of the hardware LSTMs.

Logic Blocks Model HW1 Model HW2 Virtex-7

LUT 8486 2384 303600
LUTRAM 213 108 130800
FF 2281 1043 607200
BRAM 5 5 1030
DSP 22 0 2800
IO 44 32 700
BUFG 1 1 32

Secondly, we compare their performance by analyzing their critical
path delay and the number of clock cycles needed for one prediction.
The critical path is the path with the maximum delay between
synchronous memory elements, and its delay defines the minimum
period of the clock. In addition to the number of clock cycles needed
for one prediction, this period determines the total time taken by the
hardware LSTM to make a prediction. Table V shows the minimum
period (Tmin), the number of cycles needed for one prediction, and
the total time taken for a single prediction. Here is where the hard
activation functions have the greatest impact; Tmin is nearly reduced
by a factor of 6.40; while Model HW1 requires 56.22 ns, Model
HW2 requires 8.78 ns. Also, the number of cycles per prediction is
reduced; in this case, with 1602 cycles, the number of cycles is
divided by 2.87, as the Model HW1 needs 4592 cycles. Hence, the
total prediction time for the Model HW1 is 260 µs and the time
needed by Model HW2 is 14 µs, ×18.57 faster.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TENA et al.: ENERGY-OPTIMIZED HARDWARE LSTM FOR BLOOD GLUCOSE PREDICTION IN PEOPLE WITH DIABETES 9

Next, we have analyzed the energy consumption, which is the
most critical metric for this system to be wearable. It determines the
system’s autonomy, size, and weight due to the energy consumption
impacts on the battery needed by the wearable device. Table V
shows the energy consumption for both hardware models. The energy
consumption is the sum of the static energy, the energy needed
to keep the FPGA on, and the dynamic energy. Thus, it depends
on FPGA’s size; and the dynamic energy, which is the energy
consumed when making a prediction. Model HW2 needs 4950 nJ
per prediction, while Model HW1 needs 76 594 nJ. This means
that our approaches reduces ×15.5 the energy consumption overall.
The energy-consumption reduction and performance improvement of
Model HW2 is built notably upon the improvements provided by the
new activation functions. The hard activation module, which contains
the two hard activation functions, consumes 0.72 nJ per operation,
whereas the original activation function module consumes 23.20 nJ
per operation, a reduction of ×32. Regarding performance, the hard
activation module requires 6 clock cycles to compute an operation,
and it is capable of computing at a maximum clock frequency of
787MHz, whereas the CORDIC requires up to 29 clock cycles and
the maximum clock frequency is 18MHz.

TABLE V: Comparison of the performance and energy consumption
of the four NN: Model HW1, Model HW2, Android NN and iOS
NN. Each NN has been evaluated on a different device implemented
on different technologies.

Model Model
HW1 HW2 Android iOS

Technology node (nm) 28 28 7 5

Tmin (ns) 56.22 8.78 — —
Cycles/prediction 4592 1602 — —
Prediction time (µs) 260 14 200 193

Power (W) 0.28 0.31 0.83 0.18
Dynamic Power (W) 0.04 0.06 — —
Energy/prediction (nJ) 76 594 4950 5 048 736 34 763
LB Scaled Energy (nJ) 14 084 1434 — —

CGMs are commonly integrated with smartphone apps. The com-
putational power of today’s smartphones is enormous, there is a vast
user base that uses them daily, and, in the case of the iOS devices,
they provide a wearable AI accelerator. Hence, smartphones seem
to be good candidates to run edge NNs, through software, for BG
prediction. Therefore, we compare the energy consumption of the
hardware implementations with the proposed NN in Table I running
on an Android and an iOS device. The NN models deployed on
these devices are built using tools provided by Android and Apple
that translate the Python description into a highly optimized code
for each hardware. For such a reason, we code the hard activation
functions on the mobile implementation but rely on the Android and
iOS translation tools optimizers to provide the most efficient ML
code for the corresponding smartphone..

On the one hand, the Android NN is tested on a OnePlus Nord
smartphone, running Android Oxygen 11.1.10.10.AC01BA operating
system, which has a Qualcomm® SnapdragonTM 765G based on
the Samsung’s 7 nm Low Power Plus (7LPP) process technology
at 2.40GHz and a battery of 4115mAh with a nominal battery
voltage of 3.87V. This device has no specific ML hardware. The
NN is developed with TensorFlow Lite: a set of tools designed to
implement ML techniques on smartphones, embedded devices, and
the internet of things, optimized for power consumption and other
constraints. Hence, we design an app that implements the NN using
Android Studio and Java™. To monitor the energy consumption, we

use Battery Historian, a Google tool to analyze app performance.
It monitors energy consumption, CPU usage, time spent on each
of the apps, and other useful parameters for developers [26]. This
allows the energy consumption of the NN to be analyzed separately.
Even though the Android implementation of the NN is more energy-
efficient than the Python version, thanks to TensorFlow-lite, it needs,
averaged over 10000 samples, 5 048 736 nJ per prediction. This
consumption is around ×660 greater than Model HW1 and ×1020
greater than Model HW2. Hence, using a portable device with
generic hardware greatly impacts energy consumption compared to
specialized hardware for NNs.

On the other hand, the iOS NN is tested on an Apple® iPhone
13 ProTM running under the iOS 15.4.1 operating system, which
has an A15 Bionic chipset based on the TSMC’s 5 nm (N5P)
process technology, which is the current cutting-edge semiconductor
technology node, running at 3.23GHz and a battery of 3095mAh
with a nominal voltage of 3.91V. This chipset comprises specialized
ML cores named Apple’s Neural Engines, designed to accelerate
AI operations, lowering the processing time without compromising
its accuracy. The NN is ported from Python to Swift programming
language with the Python library CoreML. The app is designed with
XCode, a set of tools that provides user interface design, coding,
testing, and debugging. We use the iOS built-in battery usage app
to monitor the energy consumption of the iOS app that runs the
NN. With an energy consumption, averaged over 10000 samples, of
34 763 nJ per prediction, the AI accelerators designed by Apple lower
the energy consumption to the extent that it is better than Model
HW1. Nevertheless, the Model HW2 has an energy consumption of
×7 lower.

When we compare the energy consumption, the iOS NN is more
energy efficient than the Model HW1. However, we use the static
energy of the whole FPGA while using a small area; Table IV shows
that Model HW1 occupies a 1.06% and Model HW2 occupies a
0.34% of the FPGA area. For this reason, most static energy is used
to power LBs that the models will not use.

Even though we use the Xilinx Virtex-7 FPGA to obtain the
results, it is not the target FPGA. Our main goal is to make a
wearable device, so the target FPGA must be the smallest one
whose area is fully utilized, as much as possible, by the hardware
implementation. For this reason, we scale the static energy by the
area that each hardware NN occupies. The dynamic power of Model
HW1 is 0.04W, see Table V, so the scaled static energy is 670 nJ
and, therefore, the scaled energy consumption of Model HW1 is
14 084 nJ per prediction. For the Model HW2, the dynamic power is
0.06W, so the scaled static energy is 12 nJ with a total scaled energy
consumption of 1434 nJ per prediction. Hence, if we use an FPGA
mainly occupied by each hardware NN circuit, they consume less
energy per prediction than the other Android and iOS NN approaches.

Note that we are comparing chipsets with different technology
nodes. With the information provided by TSMC [27], the energy
consumption of the 7N technology is 7.30% and the energy con-
sumption of the N5P technology is 4.37% of the 28HPL technology.
This fact denotes the impact in energy consumption of the technology
leap between the FPGA transistor technology and the smartphones’
CPU transistor technologies.

In addition, Figure 14 shows the study of the energy consumption
and accuracy concerning the time window size. Our main goal is to
design an LSTM-based NN for glucose prediction that, in addition,
is wearable. With the optimization approaches that we have made,
the error grows from 19.82mg dL−1 to 25.26mg dL−1 and, in
combination with other devices that people with diabetes commonly
use, such as CGMs or insulin pumps, the different errors accumulate.
For this reason, we maintain the 10-minute window since we need

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

that the whole processing chain (from sensor to final prediction)
provides good predictions and good performance. If the accuracy
were not a critical issue, the 30-minute window could increase the
error by 0.92mg dL−1 and reduces the energy consumed by up to
two-thirds. In any case, the 10-minute window energy consumption
shows promising results.

Fig. 14: Prediction accuracy of the proposed model and energy
consumption of Model HW2 for different backpropagation windows,
from 5 to 45 minutes.

Finally, in Table VI we compare Model HW1 and Model HW2
with three state-of-the-art LSTM-based hardware models to obtain
a global view of its efficiency. Two of them use single-precision
IEEE754 FP arithmetic [28], [29], and the third one with 7Q8 format
[30]. As the models have different architectures, we compare their
performance as the number of FP operations per second (GFLOPS)
and their energy efficiency as the number of FP operations per joule
(GFLOP/J). In this case, we use the whole FPGA consumption as it is
done in the rest of the studies. Note that the NNs also have different
word formats to implement the arithmetic operations. Model HW1 is
the slower model, with 0.022 GFLOPS. Nevertheless, performance
is not an issue for glucose prediction since there are at least five
minutes between new data entries. Its efficiency is better than the
models of other studies by little, with 0.402 GFLOP/J. Model HW2
is at mid-range of performance with 0.404 GFLOPS, but, in terms of
efficiency, it is, by far, the best model of the comparison; with 1.142
GFLOP/J, it is between ×2.84 and ×7.82 greater than the rest of the
models. Theses values prove that using the same integrated circuit
technology, very substantial improvements in energy consumption
can be obtained in AI accelerators by applying specific optimizations
aimed at this purpose, i.e., there is room for improvement for low-
power implementations in AI accelerators.

TABLE VI: Comparison of state-of-the-art FPGA-based LSTM mod-
els. Technology node refers to the integrated circuit fabrication
technology; word format refers to the type of arithmetic, either fixed
point or floating point using single-precision 32-bit IEEE754. Power
is measured in watts, performance in GFLOPS, and energy efficiency
in GFLOP per joule.

Model HW1 HW2 [28] [29] [30]

FPGA Virtex-7 Virtex-7 Zynq Virtex-7 Zynq
XC7VX485T XC7VX485T XC7Z020 XC7VX485T XC7Z020

Technology 28 28 28 28 28node (nm)
Word format 3Q12 2Q7 IEEE754 IEEE754 7Q8
Power (W) 0.28 0.31 1.932 19.63 1.942

Performance 0.022 0.404 0.360 7.62 0.284(GFLOPS)
Efficiency 0.402 1.142 0.186 0.388 0.146(GFLOP/J)

V. CONCLUSIONS

We have designed a parametrizable and specialized hardware
device that implements a NN hardware model, named Model HW2,
for BG prediction on a wearable medical device. Model HW2 is
designed after an optimization process aimed to reducing the area
and power consumption, and increasing the performance.

Before and after energy optimization, the NN prediction perfor-
mance is tested using the most common analysis tools and metrics
in the literature for BG prediction. It is trained using the OhioT1DM
Dataset for a 30min prediction horizon. The NN prediction per-
formance, before and after energy optimization, is similar: their
metrics’ values are very close and have overlapping confidence
intervals. Hence, the proposed NN, without optimization, has an
RMSE of 19.82mg dL−1 while the NN with energy-optimized
activation functions has an RMSE of 20.02mg dL−1 and the NN
with energy-optimized activation functions and fixed-point arithmetic
has an RMSE of 33.72mg dL−1. Nevertheless, these differences are
not significant from a clinical perspective: the PEG analysis shows
that the NN has more than 98% of the points within zones A and
B with each optimization approach. Thus, the energy-optimized NN
can be used in clinical practice.

Its energy consumption is compared with an implementation that
best mimics the behavior of the originally proposed NN, Model
HW1, and software counterparts running on smartphones with AI ac-
celerators. Both hardware implementations, implemented in a Xilinx
Virtex-7 FPGA VC707 Evaluation Kit, are evaluated and compared
in terms of area, performance, and energy consumption with the
NN running in an Android smartphone with a general-purpose CPU
and in an iOS smartphone with AI application-specific CPU. As
expected, Model HW2 is the implementation with the lowest energy
consumption and processing time compared to Model HW1and the
smartphone implementations. Hence, the approaches that reduce the
energy consumption also lower the latency and LB usage without
losing accuracy from the clinical point of view.

We also compare the hardware implementation efficiency
(GFLOP/J) of Model HW1 and Model HW2 regarding other state-
of-the-art NNs implemented on FPGAs, even though they are not
aimed to be wearable. Model HW2, outperforms all other implemen-
tations with a higher number of GFLOP per joule. This experiment
proves that there is room for improvement in the energy consumption
reduction of edge wearable NN by optimizing different hyperparam-
eters of the NN taking into account the hardware implementation
target.

Both hardware implementations occupy a minimal portion of the
FPGA area, so most of the static energy is wasted to power-on
FPGA components that are not used by the models, reducing their
energy consumption efficiencies. Therefore, using an FPGA with
a size that fits the model area requirements lowers their energy
consumption, outperforming smartphone implementations’ energy-
consumption metrics.

The use of custom AI application-specific hardware is mandatory
for designing NNs that can run on battery-powered embedded sys-
tems. This proves that the best option is to use ad hoc hardware to
implement NNs for wearable medical devices. The iOS version that
uses software running on AI-specific hardware trails far behind the
ad hoc hardware implementations, and the Android version that uses
general-purpose CPUs is the worst option. Regarding the flexibility
and facility of deployment of the software implementations, with the
usage of parametrizable components, automatic high-level synthesis
tools, and reconfigurable logic, the FPGA implementations of NNs
can be tailored and deployed on-demand as much as the software
implementations.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TENA et al.: ENERGY-OPTIMIZED HARDWARE LSTM FOR BLOOD GLUCOSE PREDICTION IN PEOPLE WITH DIABETES 11

The application of emerging approaches such as compute-in-
memory, CIM, [31], and transformers [10] could lead to even
more significant improvements in energy efficiency and performance,
respectively. Nevertheless, CIM is not straightforwardly applicable
to our approach due to: (i) different paradigms in NN modeling
(execution of the arithmetic operations that model layer behavior in
CIM vs. actual implementation of each cell in our proposal) and
(ii) dataset size suitable for each paradigm (medium/big datasets
for CIM) vs. little/medium datasets in our case). How to combine
both approaches remains open research. Regarding transformers, they
have shown a better performance than LSTM. However, it is an
open discussion if they would provide such a performance under the
architectural constraints imposed by the severe energy consumption
constraints of wearable devices.

In summarising, using ad hoc hardware NN implementations would
allow taking advantage of the benefits of edge computing, reducing
its energy consumption, size, and costs to obtain a wearable medical
device for NN-based BG prediction.

REFERENCES

[1] S. Ghosh and A. Collier, “Section 1 - diagnosis, classification,
epidemiology and biochemistry,” in Churchill’s Pocketbook of
Diabetes (Second Edition) (Second Edition). Oxford: Churchill
Livingstone, 2012, pp. 1–49. DOI: https://doi.org/10.
1016/B978-0-443-10081-9.00008-7.

[2] M. Mayo and T. Kounty, “Neural multi-class classification
approach to blood glucose level forecasting with prediction
uncertainty visualisation,” in 5th International Workshop on
Knowledge Discovery in Healthcare Data, Chicago, IL, USA,
2005.

[3] J. E. Gerich, “Control of glycaemia,” Baillieres Clin En-
docrinol Metab, vol. 7, no. 3, pp. 551–86, 1993. DOI: 10.
1016/s0950-351x(05)80207-1.

[4] Mayo Clinic, Diabetic hypoglycemia, Web Page, 2020. [On-
line]. Available: https : / / www . mayoclinic . org /
diseases-conditions/diabetic-hypoglycemia/
symptoms-causes/syc-20371525.

[5] I. Hidalgo et al., “Identification of models for glucose
blood values in diabetics by grammatical evolution,” in 2018,
pp. 367–393. DOI: 10.1007/978-3-319-78717-6_15.

[6] F. Tena, O. Garnica, J. Lanchares, and J. I. Hidalgo, “Ensemble
models of cutting-edge deep neural networks for blood glucose
prediction in patients with diabetes,” Sensors, vol. 21, no. 21,
p. 7090, 2021. DOI: 10.3390/s21217090.

[7] C. Meijner and S. Persson, “Blood glucose prediction for type
1 diabetes using machine learning long short-term memory
based models for blood glucose prediction,” Thesis, 2017.
[Online]. Available: https://hdl.handle.net/20.
500.12380/251317.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI:
10.1162/neco.1997.9.8.1735. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.
1735.

[9] M. Satyanarayanan, “The emergence of edge computing,”
Computer, vol. 50, no. 1, pp. 30–39, 2017. DOI: 10.1109/
MC.2017.9.

[10] A. Vaswani et al., Attention is all you need, 2017. DOI:
10.48550/ARXIV.1706.03762. [Online]. Available:
https://arxiv.org/abs/1706.03762.

[11] Q. Wen et al., Transformers in time series: A survey, 2022.
DOI: 10.48550/ARXIV.2202.07125. [Online]. Avail-
able: https://arxiv.org/abs/2202.07125.

[12] R. Joost and R. Salomon, “Advantages of fpga-based multipro-
cessor systems in industrial applications,” in 31st Annual Con-
ference of IEEE Industrial Electronics Society, 2005. IECON
2005., 6 pp. DOI: 10.1109/IECON.2005.1568946.

[13] K. Gurney, An Introduction to Neural Networks. USA: Taylor
& Francis, Inc., 1997.

[14] S. Mirshekarian, R. Bunescu, C. Marling, and F. Schwartz,
“Using lstms to learn physiological models of blood glucose
behavior,” in 2017 39th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC),
pp. 2887–2891. DOI: 10.1109/EMBC.2017.8037460.

[15] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quanti-
zation of deep convolutional networks,” in Proceedings of The
33rd International Conference on Machine Learning, B. Maria
Florina and Q. W. Kilian, Eds., vol. 48, PMLR, pp. 2849–2858.
[Online]. Available: https : / / proceedings . mlr .
press/v48/linb16.html.

[16] Y. Zheng, H. Yang, Y. Jia, and Z. Huang, “Permlstm: A
high energy-efficiency lstm accelerator architecture,” Electron-
ics (Switzerland), vol. 10, no. 8, 2021. DOI: 10 . 3390 /
electronics10080882.

[17] F. Chollet et al. “Keras.” (2015), [Online]. Available: https:
//github.com/fchollet/keras.

[18] Lowering power at 28 nm with xilinx 7 series fpgas, Xilinx
WP389 (v1.1.1), Feb. 2012.

[19] C. Marling and R. Bunescu, “The ohiot1dm dataset for blood
glucose level prediction: Update 2020,” 2020. [Online]. Avail-
able: http://smarthealth.cs.ohio.edu/bglp/
OhioT1DM-dataset-paper.pdf.

[20] S. McKinley and M. Levine, “Cubic spline interpolation,”
College of the Redwoods, vol. 45, no. 1, pp. 1049–1060, 1998.

[21] M. Berger and D. Rodbard, “Computer Simulation of Plasma
Insulin and Glucose Dynamics After Subcutaneous Insulin
Injection,” Diabetes Care, vol. 12, no. 10, pp. 725–736, Nov.
1989. DOI: 10 . 2337 / diacare . 12 . 10 . 725. eprint:
https://diabetesjournals.org/care/article-
pdf/12/10/725/438354/12-10-725.pdf. [Online].
Available: https://doi.org/10.2337/diacare.12.
10.725.

[22] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” International Conference on Learning Repre-
sentations, 2014.

[23] J. L. Parkes, S. L. Slatin, S. Pardo, and B. H. Ginsberg, “A
new consensus error grid to evaluate the clinical significance of
inaccuracies in the measurement of blood glucose,” Diabetes
Care, vol. 23, no. 8, p. 1143, 2000. DOI: 10 . 2337 /
diacare.23.8.1143.

[24] R. Gray and D. Neuhoff, “Quantization,” IEEE Transactions
on Information Theory, vol. 44, no. 6, pp. 2325–2383, 1998.
DOI: 10.1109/18.720541.

[25] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring
the efficacy of pruning for model compression,” 2017. DOI:
10.48550/ARXIV.1710.01878. [Online]. Available:
https://arxiv.org/abs/1710.01878.

[26] W. Oliveira, R. Oliveira, and F. Castor, “A study on the energy
consumption of android app development approaches,” in 2017
IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 42–52. DOI: 10.1109/MSR.2017.
66.

[27] T. S. M. Company, 5nm technology, Jun. 2021. [Online].
Available: https : / / www . tsmc . com / english /
dedicatedFoundry/technology/logic/l_5nm.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

[28] U. Yoshimura, T. Inoue, A. Tsuchiya, and K. Kishine, “A
method for accelerating the inference process of FPGA-based
LSTM for biometric systems,” IEIE Transactions on Smart
Processing & Computing, vol. 10, no. 5, pp. 416–423, Oct.
2021. DOI: 10 . 5573 / ieiespc . 2021 . 10 . 5 . 416.
[Online]. Available: https : / / doi . org / 10 . 5573 /
ieiespc.2021.10.5.416.

[29] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelera-
tor for long short-term memory recurrent neural networks,”
in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), 2017, pp. 629–634. DOI: 10.1109/
ASPDAC.2017.7858394.

[30] A. X. M. Chang, B. Martini, and CulurcielloEugenio, Re-
current neural networks hardware implementation on fpga,
2015. DOI: 10.48550/ARXIV.1511.05552. [Online].
Available: https://arxiv.org/abs/1511.05552.

[31] S. Yu, X. Sun, X. Peng, and S. Huang, “Compute-in-
memory with emerging nonvolatile-memories: Challenges and
prospects,” in 2020 IEEE Custom Integrated Circuits Confer-
ence (CICC), 2020, pp. 1–4. DOI: 10.1109/CICC48029.
2020.9075887.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3300511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

